Model-assisted validation of a strain-based dense sensor network

Thumbnail Image
Date
2019-03-27
Authors
Yan, Jin
Du, Xiaosong
Hu, Chao
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Person
Leifsson, Leifur
Associate Professor
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Aerospace EngineeringMechanical EngineeringCivil, Construction and Environmental EngineeringCenter for Nondestructive Evaluation (CNDE)
Abstract

Recent advances in sensing are empowering the deployment of inexpensive dense sensor networks (DSNs) to conduct structural health monitoring (SHM) on large-scale structural and mechanical systems. There is a need to develop methodologies to facilitate the validation of these DSNs. Such methodologies could yield better designs of DSNs, enabling faster and more accurate monitoring of states for enhancing SHM. This paper investigates a model-assisted approach to validate a DSN of strain gauges under uncertainty. First, an approximate physical representation of the system, termed the physics-driven surrogate, is created based on the sensor network configuration. The representation consists of a state-space model, coupled with an adaptive mechanism based on sliding mode theory, to update the stiffness matrix to best match the measured responses, assuming knowledge of the mass matrix and damping parameters. Second, the physics-driven surrogate model is used to conduct a series of numerical simulations to map damages of interest to relevant features extracted from the synthetic signals that integrate uncertainties propagating through the physical representation. The capacity of the algorithm at detecting and localizing damages is quantified through probability of detection (POD) maps. It follows that such POD maps provide a direct quantification of the DSNs’ capability at conducting its SHM task. The proposed approach is demonstrated using numerical simulations on a cantilevered plate elastically restrained at the root equipped with strain gauges, where the damage of interest is a change in the root’s bending rigidity.

Comments

This article is published as Yan, Jin, Xiaosong Du, Simon Laflamme, Leifur Leifsson, Chao Hu, and An Chen, "Model-assisted validation of a strain-based dense sensor network," Proc. SPIE 10970, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems (2019): 109702C. DOI: 10.1117/12.2515232. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Tue Jan 01 00:00:00 UTC 2019
Collections