Solid-Substrate Fermentation of Corn Fiber by Phanerochaete chrysosporium and Subsequent Fermentation of Hydrolysate into Ethanol

Thumbnail Image
Date
2008-06-11
Authors
Shrestha, Prachand
Rasmussen, Mary
Khanal, Samir
Pometto, Anthony
van Leeuwen, Johannes
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
van Leeuwen, Johannes
Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Civil, Construction and Environmental Engineering

The Department of Civil, Construction, and Environmental Engineering seeks to apply knowledge of the laws, forces, and materials of nature to the construction, planning, design, and maintenance of public and private facilities. The Civil Engineering option focuses on transportation systems, bridges, roads, water systems and dams, pollution control, etc. The Construction Engineering option focuses on construction project engineering, design, management, etc.

History
The Department of Civil Engineering was founded in 1889. In 1987 it changed its name to the Department of Civil and Construction Engineering. In 2003 it changed its name to the Department of Civil, Construction and Environmental Engineering.

Dates of Existence
1889-present

Historical Names

  • Department of Civil Engineering (1889-1987)
  • Department of Civil and Construction Engineering (1987-2003)
  • Department of Civil, Construction and Environmental Engineering (2003–present)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Civil, Construction and Environmental Engineering
Abstract

The goal of this study was to develop a fungal process for ethanol production from corn fiber. Laboratory-scale solid-substrate fermentation was performed using the white-rot fungusPhanerochaete chrysosporium in 1 L polypropylene bottles as reactors via incubation at 37 °C for up to 3 days. Extracellular enzymes produced in situ by P. chrysosporium degraded lignin and enhanced saccharification of polysaccharides in corn fiber. The percentage biomass weight loss and Klason lignin reduction were 34 and 41%, respectively. Anaerobic incubation at 37 °C following 2 day incubation reduced the fungal sugar consumption and enhanced the in situ cellulolytic enzyme activities. Two days of aerobic solid-substrate fermentation of corn fiber with P. chrysosporium, followed by anaerobic static submerged-culture fermentation resulted in 1.7 g of ethanol/100 g of corn fiber in 6 days, whereas yeast (Saccharomyces cerevisiae) cocultured with P. chrysosporium demonstrated enhanced ethanol production of 3 g of ethanol/100 g of corn fiber. Specific enzyme activity assays suggested starch and hemi/cellulose contribution of fermentable sugar.

Comments

Posted with permission from Journal of Agricultural and Food Chemistry 56 (2008): 3918–3924, doi:10.1021/jf0728404.

Description
Keywords
Citation
DOI
Copyright
Tue Jan 01 00:00:00 UTC 2008
Collections