Mycotoxin levels in Distillers Grains:

Managing your Risk in a Changing Environment

May 2013
Angela Carlson
Mycotoxins

- What are mycotoxins?
- Environmental factors in their production
- Stages for monitoring in the ethanol production process
 - Pre-harvest
 - Inbound grain
 - Co-product
- Test methods
- Looking back at 2012 and ahead at 2013
What Is A Mycotoxin?

- Toxic secondary metabolite produced by fungi
- Over 300 known mycotoxins, but only a few considered significant risks to feed and food safety
- Exposure to mycotoxin contaminated feed/food leads to mycotoxicosis
 - Consumption of
 - Physical contact
 - Inhalation
- Mycotoxicosis
 - Liver and kidney toxicity
 - Central nervous system effects
 - Estrogenic effects
Mould Species That Produce Mycotoxins

Table 1 - Moulds and mycotoxins of world-wide importance

<table>
<thead>
<tr>
<th>Mould species</th>
<th>Mycotoxins produced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspergillus parasiticus</td>
<td>Aflatoxins B₁, B₂, G₁, G₂</td>
</tr>
<tr>
<td>Aspergillus flavus</td>
<td>Aflatoxins B₁, B₂</td>
</tr>
<tr>
<td>Fusarium sporotrichioides</td>
<td>T-2 toxin</td>
</tr>
<tr>
<td>Fusarium graminearum</td>
<td>Deoxynivalenol (or nivalenol)</td>
</tr>
<tr>
<td>Fusarium moniliforme (F. verticillioides)</td>
<td>Zearalenone</td>
</tr>
<tr>
<td>Penicillium verrucosum</td>
<td>Fumonisin B₁</td>
</tr>
<tr>
<td>Aspergillus ochraceus</td>
<td>Ochratoxin A</td>
</tr>
<tr>
<td></td>
<td>Ochratoxin A</td>
</tr>
</tbody>
</table>
Primary contribution to mould growth

- Temperature
- Moisture
- Pests

Mould may have a optimal growth conditions but...

- production of mycotoxins can be increased in stressed conditions
- Visible mould not an indicator or mycotoxin potential (or vice versa)
Temperature

- Growth range from 10 - 40 C (50-104 F)
 - Many fungi can grow as low as 4 C (typical refrigerator temperature) or less

- Survival of mould by spores at extreme conditions
Moisture

- **Equilibrium Moisture content (EMC):** the point the product is not gaining nor losing moisture
 - This is dynamic, dependant on temperature and RH

- **Relative Humidity:** the ratio of the partial pressure of water vapor in the mixture to the saturated vapor pressure of water at a given temperature.
 - Relative humidity is expressed as a percentage.

- **Water Activity** (a_ω) = RH/100, indicator of the moisture available to microbes
 - Typical mould growth is at 0.7 - 0.99 water activity
Corn Equilibrium Moisture Content Table

<table>
<thead>
<tr>
<th>Temperature (°F)</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
<th>65</th>
<th>70</th>
<th>75</th>
<th>80</th>
<th>85</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>10.3</td>
<td>11.2</td>
<td>12.1</td>
<td>13.0</td>
<td>13.9</td>
<td>14.8</td>
<td>15.7</td>
<td>16.6</td>
<td>17.6</td>
<td>18.7</td>
<td>19.8</td>
<td>21.2</td>
<td>22.9</td>
</tr>
<tr>
<td>40</td>
<td>10.0</td>
<td>10.9</td>
<td>11.8</td>
<td>12.7</td>
<td>13.5</td>
<td>14.4</td>
<td>15.3</td>
<td>16.2</td>
<td>17.1</td>
<td>18.2</td>
<td>19.3</td>
<td>20.7</td>
<td>22.3</td>
</tr>
<tr>
<td>45</td>
<td>9.8</td>
<td>10.6</td>
<td>11.5</td>
<td>12.3</td>
<td>13.2</td>
<td>14.0</td>
<td>14.9</td>
<td>15.8</td>
<td>16.7</td>
<td>17.7</td>
<td>18.9</td>
<td>20.2</td>
<td>21.8</td>
</tr>
<tr>
<td>50</td>
<td>9.5</td>
<td>10.4</td>
<td>11.2</td>
<td>12.0</td>
<td>12.9</td>
<td>13.7</td>
<td>14.5</td>
<td>15.4</td>
<td>16.3</td>
<td>17.3</td>
<td>18.5</td>
<td>19.8</td>
<td>21.4</td>
</tr>
<tr>
<td>55</td>
<td>9.3</td>
<td>10.1</td>
<td>11.0</td>
<td>11.8</td>
<td>12.6</td>
<td>13.4</td>
<td>14.2</td>
<td>15.1</td>
<td>16.0</td>
<td>17.0</td>
<td>18.1</td>
<td>19.3</td>
<td>20.9</td>
</tr>
<tr>
<td>60</td>
<td>9.1</td>
<td>9.9</td>
<td>10.7</td>
<td>11.5</td>
<td>12.3</td>
<td>13.1</td>
<td>13.9</td>
<td>14.8</td>
<td>15.7</td>
<td>16.6</td>
<td>17.7</td>
<td>18.9</td>
<td>20.5</td>
</tr>
<tr>
<td>65</td>
<td>8.9</td>
<td>9.7</td>
<td>10.5</td>
<td>11.3</td>
<td>12.0</td>
<td>12.8</td>
<td>13.6</td>
<td>14.5</td>
<td>15.3</td>
<td>16.3</td>
<td>17.4</td>
<td>18.6</td>
<td>20.1</td>
</tr>
<tr>
<td>70</td>
<td>8.7</td>
<td>9.5</td>
<td>10.3</td>
<td>11.0</td>
<td>11.8</td>
<td>12.6</td>
<td>13.4</td>
<td>14.2</td>
<td>15.0</td>
<td>16.0</td>
<td>17.0</td>
<td>18.2</td>
<td>19.8</td>
</tr>
<tr>
<td>75</td>
<td>8.5</td>
<td>9.3</td>
<td>10.1</td>
<td>10.8</td>
<td>11.6</td>
<td>12.3</td>
<td>13.1</td>
<td>13.9</td>
<td>14.8</td>
<td>15.7</td>
<td>16.7</td>
<td>17.9</td>
<td>19.4</td>
</tr>
<tr>
<td>80</td>
<td>8.4</td>
<td>9.1</td>
<td>9.9</td>
<td>10.6</td>
<td>11.4</td>
<td>12.1</td>
<td>12.9</td>
<td>13.7</td>
<td>14.5</td>
<td>15.4</td>
<td>16.4</td>
<td>17.6</td>
<td>19.1</td>
</tr>
<tr>
<td>85</td>
<td>8.2</td>
<td>9.0</td>
<td>9.7</td>
<td>10.4</td>
<td>11.2</td>
<td>11.9</td>
<td>12.6</td>
<td>13.4</td>
<td>14.3</td>
<td>15.2</td>
<td>16.2</td>
<td>17.3</td>
<td>18.8</td>
</tr>
<tr>
<td>90</td>
<td>8.1</td>
<td>8.8</td>
<td>9.5</td>
<td>10.3</td>
<td>11.0</td>
<td>11.7</td>
<td>12.4</td>
<td>13.2</td>
<td>14.0</td>
<td>14.9</td>
<td>15.9</td>
<td>17.0</td>
<td>18.5</td>
</tr>
<tr>
<td>95</td>
<td>7.9</td>
<td>8.7</td>
<td>9.4</td>
<td>10.1</td>
<td>10.8</td>
<td>11.5</td>
<td>12.2</td>
<td>13.0</td>
<td>13.8</td>
<td>14.7</td>
<td>15.6</td>
<td>16.8</td>
<td>18.2</td>
</tr>
<tr>
<td>100</td>
<td>7.8</td>
<td>8.5</td>
<td>9.2</td>
<td>9.9</td>
<td>10.6</td>
<td>11.3</td>
<td>12.0</td>
<td>12.8</td>
<td>13.6</td>
<td>14.5</td>
<td>15.4</td>
<td>16.5</td>
<td>17.9</td>
</tr>
</tbody>
</table>

University of Arkansas, Division of Agriculture

DDGS EMC

Sorption isotherm of corn distillers dried grains with solubles (DDGS) and its prediction using chemical composition; Kingsly, Ileliji 2009
Pests

- Insects directly damage seed through feeding

- Indirect damage is from the insects’ respiration
 - Respiration increases temperature in area
 - Storage fungi will closely follow insect damage

- Insects also spread fungal spores
6 Primary Mycotoxin Classes

- Aflatoxins
- Zearalenone
- Trichothecenes
- Fumonisins
- Ochratoxin A
- Ergot alkaloids

<table>
<thead>
<tr>
<th>COMMODITIES</th>
<th>MYCOTOXIN ANALYTICAL PRIORITY GUIDANCE*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Priority 1</td>
</tr>
<tr>
<td>Barley, Oats, Wheat and Rye and their Products</td>
<td>Vomitory</td>
</tr>
<tr>
<td>Corn and Corn Products</td>
<td>Aflatoxins</td>
</tr>
<tr>
<td>Corn and Corn Products</td>
<td>Aflatoxins</td>
</tr>
<tr>
<td>Cottonseed, Peanuts, and Sorghum (milo) and their Products</td>
<td>Aflatoxins</td>
</tr>
<tr>
<td>Rice and Rice Products</td>
<td>Zearalenone</td>
</tr>
<tr>
<td>Soybean and Soybean Products</td>
<td>Aflatoxins</td>
</tr>
<tr>
<td>Horse and Rabbit Feed</td>
<td>Fumonisins</td>
</tr>
<tr>
<td>Swine Feed</td>
<td>Vomitory</td>
</tr>
<tr>
<td>Cattle and Poultry Feed</td>
<td>Aflatoxins</td>
</tr>
<tr>
<td>Dog and Cat Food</td>
<td>Vomitory</td>
</tr>
</tbody>
</table>

*The mycotoxin(s) mentioned in the Priority 1 column for a particular commodity should be analyzed for in almost every sample. The mycotoxin(s) mentioned in the Priority 2 column for a particular commodity should be analyzed for in most samples. The mycotoxin(s) mentioned in the Priority 3 column for a particular commodity should be analyzed for occasionally. The mycotoxin(s) mentioned in the Priority 4 column for a particular commodity should only be analyzed for on rare occasions.
Pre-Harvest

- Communicate with your local suppliers
- Offer testing to local suppliers prior to harvest with onsite test kits
In-Bound Grain

- Set your acceptance limits based on grain supply and annual fluctuations.
 - What market will you be targeting for sale of your product
 - Remember that In-bound → Final co-product = 3-4X concentration

- Probe trucks according to GIPSA standards (www.gipsa.usda.gov)

- Course grind as large of subplot as possible from probed sample
 - Further divide after course grind to 500g subsample and grind further for onsite testing (20mesh particle size)
Uncertainty in sampling and testing
<table>
<thead>
<tr>
<th>Sample (kg)</th>
<th>Sub-sample (gr)</th>
<th>aflatoxin (ppb)</th>
<th>95% confidence interval aflatoxin/corn</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>20</td>
<td>100</td>
<td>20</td>
<td>7</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
<td>20</td>
<td>2</td>
</tr>
</tbody>
</table>
In-Bound Grain

- New Crop
 - Minimum Daily
 - High incidence - every truckload

- High incidence – continue to check every truckload or other designated level
 - If on-site testing not available send weekly composite

- Low incidence – move to weekly composite after multiple loads tested per supplier
Final Co-Product

- Collect at dryer, allow to cool, test using onsite kits
 - Aflatoxin and Vomitoxin
 - Zearalenone, Fumonisin

- High Incidence - sample every 2hrs, test daily composite
 - No onsite test kit – send weekly composite to lab
 - Composite monthly for HPLC testing methodology for full scan of mycotoxins

- Low incidence – test weekly composite
 - Composite monthly for HPLC testing methodology for full scan of mycotoxins
Testing Methods

- Lateral Flow Strips (LFS)
 - Inexpensive screening method
 - Works for most ranges of mycotoxins
 - Can be done onsite without special equipment

- GIPSA approved kits are listed on their website (updated 4/26/13)

Onsite Testing kits

- Coarsely grind as large of initial sample as feasible
- Understand the range of the test kit
- Follow the directions!!
 - Ask for training
Testing Methods

- **ELISA testing**
 - Inexpensive screening method
 - Robust, works for most ranges of mycotoxins
 - 1 day turn around time

- Place extract antibody coated ELISA plate with corresponding enzyme conjugate
 - Mycotoxins in sample compete with enzymes conjugates for antibody binding sites

- Add color solution which reacts with bound enzyme conjugate creating blue color
 - *Dark Color= less mycotoxins*
Testing Methods

- High Performance Liquid Chromatography (HPLC) with Ultraviolet (UV), Fluorescent (FLD), detection Mass Spectrometry
 - precise and accurate
 - Can achieve wider range of toxins
 - 4-10 days turn around time

- Thin Layer Chromatography (TLC), Gas Chromatography (GC)
2012

- Aflatoxin
 - Drought leading to high levels in regional areas
 - SD, NE, IN, IL, MO, KS, IA
 - Trade impacts:
 - US 2012 38.9% global supply vs 52% in 2011
 - Former Soviet Union 2012 16.8% vs 8% in 2011
 - Domestically decreases in cattle, pork production

- Vomitoxin
 - Still present in regional areas

2013

- Weather Outlook
Questions?

Angela Carlson, Analytical Lab Manager
angela.carlson@sgs.com
SGS Brookings 605-692-7611 Ext 5

www.sgs.com/us-feed