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Abstract

Subset selection for multiple linear regression aims to construct a regression model that minimizes
errors by selecting a small number of explanatory variables. Once a model is built, various statistical
tests and diagnostics are conducted to validate the model and to determine whether the regression
assumptions are met. Most traditional approaches require human decisions at this step. For example,
the user adding or removing a variable until a satisfactory model is obtained. However, this trial-and-
error strategy cannot guarantee that a subset that minimizes the errors while satisfying all regression
assumptions will be found. In this paper, we propose a fully automated model building procedure
for multiple linear regression subset selection that integrates model building and validation based
on mathematical programming. The proposed model minimizes mean squared errors while ensuring
that the majority of the important regression assumptions are met. We also propose an efficient
constraint to approximate the constraint for the coefficient t-test. When no subset satisfies all of the
considered regression assumptions, our model provides an alternative subset that satisfies most of
these assumptions. Computational results show that our model yields better solutions (i.e., satisfying
more regression assumptions) compared to the state-of-the-art benchmark models while maintaining
similar explanatory power.

Keywords: Regression diagnostics, Subset selection, Mathematical programming

1 Introduction

Regression analysis is one of the most popular forms of statistical modeling for analyzing the relationship
between variables. Due to its interpretability and simplicity, multiple (multivariate) linear regression
has been the most commonly used model for several decades, with a variety of fields employing it to
handle prediction tasks. Multiple linear regression seeks to identify the most suitable linear relationship
for several explanatory variables and a response variable. A multiple linear regression model for m
explanatory variables can be represented by the linear equation

b
n×1

= A
n×m

x
m×1

+ e,

where A represents the data matrix corresponding to m explanatory variables with n observations, b
denotes the data matrix corresponding to the values of the response variable, x is the matrix of estimated
parameters corresponding to the coefficients of the variables, and e refers to the errors between the
predictions of the linear model and the response variable. We further assume that data matrices A and
b are already standardized with their respective means and standard deviations, and thus, without loss
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of generality, we can remove the intercept from the model above. It then makes sense that x should be
chosen to minimize the error.

Subset selection is a procedure in which a subset of m explanatory variables is selected to reduce
model complexity while maintaining explanatory power. Guyon and Elisseeff [14] and James et al. [16]
demonstrate that a reduced subset can provide faster, more cost-effective predictors, along with a better
understanding of the underlying process that generated the data. A reduced subset can also prevent
over-fitting in the presence of too many irrelevant or redundant features [38] and can help users to more
readily understand the results [18].

Many studies have been conducted on subset selection in the literature. Stepwise selection, including
forward selection, backward elimination, and their combination, are the most popular algorithms thanks
to their simple implementation and fast computing time. However, the solutions found by these algo-
rithms are often low quality due to their greedy characteristics. Therefore, in order to improve subset
selection, more complicated algorithms have been proposed. Meta-heuristic algorithms are presented in
Zhang and Sun [39] (Tabu Search), Siedlecki and Sklansky [33] (genetic algorithm), and Hafiz et al. [15]
(particle swarm). Subset selection procedures based on statistical or machine learning methods have
also been carried out. For example, a Bayesian approach to subset selection is taken by Mitchell and
Beauchamp [24], while George and McCulloch [11] suggest a selection procedure based on the superiority
of each subset estimated from posterior probabilities given by Gibbs sampling. Genuer et al. [10] point
out that random forests can be employed in a strategy that involves the ranking of explanatory variables,
which provides insight for the selection of the variable(s). In addition, other research on machine learn-
ing algorithms for subset selection has been conducted by Castellano and Fanelli [8] (neural network),
Rakotomamonjy [29] (support vector machine), and Zheng and Wang [40] (information entropy-based
objective function). By assigning an L1 penalty to coefficients, the least absolute shrinkage and selec-
tion operator (LASSO) is introduced by Tibshirani [35]. Although there have been a few decades since
LASSO was first devised, it is still one of the most commonly used regression subset selection methods.
Note that most of the methods above are heuristic, which means they do not necessarily give the subset
with the minimum mean squared error (MSE).

Once a multiple linear regression model with a selected subset is established, the built model is
validated through various statistical tests [27]. This validation is essential when the model is used as
an explanatory model, which is the usual case for linear regression. For example, if a coefficient in
multiple linear regression fails to pass the statistical significance test, the interpretation of data using
the constructed model is not statistically justified. If the residual plots show violation of the regression
assumptions, the validity of the model is hurt. It is thus crucial to building a model that achieves a small
MSE as well as statistical validity.

1.1 Related work

Although the best subset selection problem can be formulated as mixed integer quadratic programming
(MIQP) when ordinary least squares (OLS) is used, the statistical community has not paid it close
attention because it requires significant computational time for practical implementation. However,
mathematical programming approaches to find the best subset minimizing MSE have gained increased
attention in the literature recently. Bertsimas and King [1] have pointed out that the computing power
of mixed integer programming (MIP) solvers has increased at a rapid rate in the last 25 years, while also
emphasizing the significant progress in the development of exact algorithms to solve integer programs.
These recent developments have made integer programming a key method for finding the best subset.
Konno and Yamamoto [22] introduce an MIQP formulation to find the best subset with a fixed number
of variables for multiple linear regression with the minimum sum of squared error (SSE). Konno and
Takaya [21] propose a multistep method to generate a nearly optimal solution in a shorter time. Based
on the formulation of Konno and Yamamoto [22], Bertsimas et al. [3] suggest obtaining tight big-M
values in the indicator constraint to improve computing speed. They also introduce an algorithm to
achieve an initial solution for a warm-start, effectively reducing the computing time. The choice of a
best subset for logistic regression via MIP using piecewise linear approximation is also presented in Sato
et al. [31]. Models and algorithms that do not require the number of selected variables to be fixed have
also been proposed. Miyashiro and Takano [25] introduce mixed integer second-order cone programming
formulations that do not restrict the cardinality of the subsets. Miyashiro and Takano [26] set Mallows’
Cp as the goodness of fit for the model and formulate the subset selection as MIP. In their work, Mallows’
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Cp includes the number of selected variables and hence the cardinality of the subset need not be fixed
when Mallows’ Cp is used as a measure of the goodness of fit. Park and Klabjan [28] consider an MIQP
formulation for subset selection when the shape of the data is not only ordinary (i.e., m < n) but also for
high dimensional (i.e., m > n) variable selection when the number of selected variables is not fixed. They
also provide a proof for big-M being an upper bound on coefficients and an efficient heuristic algorithm
for cases when m < n. Note that these studies only consider several goodness-of-fit measures to obtain an
optimal subset. Gómez and Prokopyev [12] recently developed a mixed-integer fractional programming
model for criteria such as the Akaike Information Criterion (AIC), the Bayesian Information Criterion
(BIC), and the Hannan-Quinn Information Criterion (HQIC). They further strengthen their formulations
by exploiting the normal equations underlying the optimization problem in computing.

While numerous studies have focused on regression subset selection, few have considered regression
assumptions and diagnostics in their solution approach. Diagnostics are indeed an essential component in
building a good explanatory regression model to explain the linear relationship between the response and
explanatory variables. While regression models can be used to make predictions and be evaluated based
on their prediction performance, in this study, we focus on improving the interpretability and explanatory
power of a regression model through regression diagnostics. Bertsimas and King [1] suggest a bootstrap-
based algorithmic approach that iteratively solves MIP problems to obtain a desirable model. They
use penalized objective functions and constraints for sparsity, multicollinearity reduction, robustness to
outliers, and statistical significance. Tamura et al. [34] propose MIQP for best subset selection while
eliminating multicollinearity from linear regression models. Carrizosaa et al. [7] study a mathematical
model for subset selection in order to construct a linear regression model with the significant coefficients
and small multicollinearity by constraints performing shrinkage of the coefficients. Kim and Kim [19]
consider group-wise multicollinearity in best subset selection framework and developed a modified discrete
first-order algorithm to reduce multicollinearities in the selected subset. Recently, Bertsimas and Li [2]
proposed an MIP-based framework based on Bertsimas and King [1] and accounted for significance and
multicollinearity. They also propose an asymptotic normality result, which works independent of the
regression normality assumption.

Our model differs from Bertsimas and King [1] and Carrizosaa et al. [7] in that our algorithm finds a
solution that satisfies the tests and diagnostics with only one call to an MIP solver, whereas they use an
iterative method that calls an MIP solver multiple times or heuristic observations for modeling. When
the regression normality assumption is met, our approach for significance test is equivalent to the model
of Bertsimas and Li [2]; our work has been conducted independently and simultaneously with Bertsimas
and Li [2].

In this study, we propose a fully automated model building and validation procedure for multiple lin-
ear regression via a mathematical programming-based algorithm that minimizes MSE while guaranteeing
both (i) the statistical significance of the regression coefficients and (ii) regression assumptions and diag-
nostics. The proposed model can replace the traditional iterative validation and diagnostics steps, and,
with the help of lazy constraint technique, successfully returns the best subset with significant coefficients
and a regression assumption-satisfying model in most cases. In addition, for the statistical significance
test that is difficult to formulate as an easier linear constraint, we propose an explicit constraint to
approximate the exact constraint for the coefficient t-test. The explicit constraint is formulated as a
linear constraint and directly added to the model upfront to further reduce the solution time and size
of the branch-and-bound tree explored. Our model is also capable of providing an alternative solution
when there is no subset that satisfies all of the considered regression assumptions and tests.

1.2 Contribution

The contributions of our paper can be summarized as follows:

• We provide a mathematical programming-based algorithm that allows a regression model to be
built that satisfies the majority of statistical tests and diagnostics. Note that it is not trivial to in-
corporate this model validation step into other popular subset selection approaches such as LASSO
and stepwise selection. To the best of our knowledge, residual-based diagnostics are incorporated
into the model for the first time in the literature. The experimental results show that our model
identifies a subset that satisfies all of the considered tests and assumptions within a reasonable
time while minimizing adjusted R squared.
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While an MIP solver is used to solve the problem, our algorithm is unique in the sense that it does
not require multiple iterative calls to the solver. The experimental results demonstrate that our
algorithm significantly speeds up the solution search in comparison to existing iterative methods,
resulting in the success of finding better solutions.

• We propose an efficient explicit constraint that significantly reduces the solution space. The con-
straint is a relaxed version of the constraint we propose for the regression coefficient t-test. This
relaxed constraint is added to the model before the branch-and-bound algorithm to exclude the
solutions (subsets) that significantly violate the t-test from the branch-and-bound search tree. The
computational experiment shows that the relaxed constraint reduces the solution time and size of
the search tree.

• We present a logical procedure to find a near-feasible solution when no subset satisfies the tests
and diagnostics or our model fails to find a feasible solution within the given time limit. To the
best of our knowledge, our work is the first attempt that provides good alternative solutions in the
case, which indeed often arises in practice. The proposed procedure mimics the typical steps used
to build a linear regression model. The experimental results show that our procedure produces
higher quality subsets than do the benchmarks.

1.3 Structure of the paper

The paper is structured as follows. In Section 2, we discuss several characteristics of a desirable mul-
tivariate linear regression model that incorporates transformed variables and meets essential regression
assumptions. In Section 3, a mathematical programming approach for the best subset which reflects the
features discussed in Section 2 is presented. A logical procedure for obtaining an alternative solution
when the model is infeasible is proposed in Section 4. The results of computational experiments are
presented in Section 5, followed by conclusions in Section 6.

2 Model Validation for Multiple Linear Regression

Subset selection in multiple linear regression aims to find a subset of explanatory variables that gives
small fitting errors. At the same time, the model needs to satisfy the assumptions of linear regression
from a statistical perspective. To find such subset, Neter et al. [27] suggests building a regression
model by repetitively checking the assumptions and diagnostics. Figure 1 summarizes this strategy.
After preprocessing the collected data, several explanatory variables are selected to build a statistically
significant model. Diagnostics are then conducted on the model. If the model satisfies all assumptions,
it is forwarded to the postprocessing step. Otherwise, another subset of explanatory variables is selected
and tested. As a result, constructing a useful regression model requires many diagnostics tests. In
this section, we discuss three popular techniques and tests that will be included in the mathematical
formulation proposed in Section 3.

Data collection and 
preparation

Reduction of explanatory 
variables; construction of 

statistically significant model

Diagnostics; 
residual plots, etc.  

Remedial measures
needed?

Yes

No
Postprocessing

Figure 1: Strategy for linear regression model construction [27]

2.1 Transformation of explanatory variables

When the explanatory and response variables have a non-linear relationship, the non-linear trend can be
observed in the residual plot. To remedy this issue, log or other nonlinear transformation can be used for
the explanatory variables. When the transformed variables are added to the set of explanatory variables,
at most one between the original and transformed explanatory variables can be included in the subset
simultaneously to avoid multicollinearity. If the transformed explanatory variables work properly, the
non-linear relationship issue in the residual plot can be fixed. Therefore, we generate transformed data
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as a fixed candidate set of selected variables. The MIQP model presented in Section 3.2 has a constraint
that selects at most one of the original and transformed variables from the pair.

2.2 Statistical tests for linear regression parameters

One of the popular tests in the model evaluation step is the statistical significance test for regression
coefficients. This test checks if the estimated regression coefficients are non-zero using Student’s t-
distribution. Let s(A)j and x̂j be the standard deviation and estimated coefficients, respectively, of
explanatory variable j ∈ {1, ..., k}. Then, the coefficients follow Student’s t-distribution.

x̂j − xj
s(A)j

∼ t1−α2 ,n−k−1, j = 1, ..., k. (1)

Our interest is to test whether coefficient x̂j is equal to zero. We conclude that linear relationship between
the response variable and the j-th explanatory variable is not statistically significant if x̂j is close to zero
with a large standard deviation. On the other hand, if x̂j is large enough, we conclude that there is a
significant linear relationship. Formally, the following hypothesis can be tested: H0 : xj = 0, H1 : xj 6= 0.
Thus, to reject the null hypothesis, the following inequality must hold:∣∣∣∣ x̂j

s(A)j

∣∣∣∣ ≥ t1−α2 ,n−k−1, j = 1, ..., k. (2)

We will discuss how this requirement can be handled with a mathematical programming approach in
Section 3.3 and Section 3.4.

2.3 Model validation with residual plots

One of the key assumptions of linear regression is that errors have constant variance over fitted values or
over explanatory variables. This can be verified by drawing residual plots. The residuals have constant
variance if they form a band-like region with constant width over the entire range of fitted values.
However, linear models often do not satisfy the assumption. The violation of residual assumptions can
induce the biased estimation of standard errors that may result in invalid inferences [6]. Thus, once a
linear regression model is constructed, it is critical to check the diagnostic plots of the residuals.
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Figure 2: Examples of residual plot

Figure 2 shows representative plots of residuals versus fitted values. In Figure 2a, the variance of the
residuals seems to be constant over the range of fitted values and thus the generated model satisfies the
key regression assumption. However, this is not the case for the other examples in Figure 2. Figure 2b
displays a positive correlation between the residuals and fitted values, Figure 2c shows heteroscedasticity,
in which the variance of the residuals increases as the fitted values increase, and Figure 2d presents a
non-linear relationship between the residuals and fitted values. The plot in Figure 2a is ideal, whereas
the latter three cases in Figure 2 are problematic, need to be fixed, and frequently observed when
implementing linear regression models for real-world problems. We next describe how to detect these
cases without the visual aids.
Correlation in residuals To detect the situation depicted in Figure 2b, a simple linear regression
model, called an auxiliary model, is constructed where the explanatory and response variables are the
fitted values and residuals in the plot, respectively. If the estimated slope is close to zero, then we
conclude the model does not suffer from linearity. If the estimated slope is far from zero, then we
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conclude the model violates the residual assumption. A simple hypothesis test can be used to check
whether the estimated slope is zero. To describe this test mathematically, let b̂ and ê be the vector of
fitted values and residuals, respectively. Then, we establish an auxiliary model ê = xaux1 1 + xaux2 b̂ + ε
where xaux1 and xaux2 represent the estimated intercept and coefficient, respectively, and ε is the error of
the model. To check whether xaux2 is statistically significant, the following hypothesis test is conducted:
H0 : xaux2 = 0 and H1 : xaux2 6= 0. It is then followed by a usual t-test. Note that a failure to reject H0

indicates the linearity assumption is met.
Heteroscedasticity To detect heteroscedasticity (Figure 2c), two statistical tests need to be performed.
The first test, referred to as an absolute residual test in this paper, is identical to the previous test except
for the fact that the values of the response variable in the auxiliary model are the absolute values of
the residuals. Observe that if the negative side of Figure 2c is flipped to overlap the positive side,
an increasing trend in the residuals is observed as illustrated in Figure 3b. On the other hand, the
same procedure for the ideal case of Figure 2a creates the constant variance of the absolute residuals
over fitted values in Figure 3a. Thus, if a linear trend is detected from the auxiliary model of the
absolute residuals, we can assume that the residuals of the linear model have heteroscedasticity. Another
widely used diagnostic tool for heteroscedasticity is the Breusch-Pagan test [6]. To prevent being overly
rigorous, we conclude that the heteroscedasticity exists and the residual assumption is violated only if
both proposed tests indicate heteroscedasticity. In Section 3.4, our mathematical programming-based
diagnostic approach is presented to capture the features of heteroscedasticity.
Nonlinearity in residuals To remedy the nonlinear trend in the residual plot in Figure 2d, we consider
both original and transformed explanatory variables, as explained in Section 2.1, while we restrict the
model to select at most one among the original and transformed variables.
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Figure 3: Examples of absolute residual plot

We note here that other tests such as the F -test for the model and the multicollinearity test for the
pairwise coefficients can be incorporated into our framework proposed in Section 3.

3 Integrated Model Building and Validation Procedure via Math-
ematical Programming

In this section, we develop an automated procedure based on mathematical programming models that
minimizes SSE to select a subset of a fixed number of explanatory variables and include statistical tests
and diagnostics for multivariate linear regression. In Section 3.1, we introduce the base model from
the literature, which does not consider statistical test or diagnostics. In Section 3.2, we extend the base
model to include log-transformed explanatory variables. In Section 3.3, we propose constraints to remove
statistically insignificant coefficients. In Section 3.4, we present the final algorithm, which considers all
of the remaining tests and diagnostics.

3.1 Base model

We start with a basic model similar to that proposed by Wilson [36] and all data matrices are standard-
ized. The sets, parameters, and decision variables used are as follows.

Sets and Parameters

(n,m) : number of observations and explanatory variables
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(I,J ) : index set of observations, I = {1, ..., n}, and explanatory variables, J = {1, ...,m}
k : number of selected explanatory variables
A : standardized data matrix corresponding to explanatory variables, A = [Aj ] = [aij ] ∈ Rn×m
b : standardized data matrix corresponding to response variables, b = [bi] ∈ Rn

Decision Variables

xj : coefficient of the j-th explanatory variable, ∀j ∈ J
ei : error (i.e., residual) between the i-th observation and its prediction value, ∀i ∈ I
zj : 1 if the j-th explanatory variable is selected; 0 otherwise, ∀j ∈ J

Using the parameters and decision variables above, the following basic mathematical programming
model can be formulated.

minimize
∑
i∈I

e2i (3a)

subject to ei =
∑
j∈J

aijxj − bi, ∀i ∈ I, (3b)

−Mzj ≤ xj ≤Mzj , ∀j ∈ J , (3c)∑
j∈J

zj = k, (3d)

xj unrestricted, zj ∈ {0, 1}, ∀j ∈ J , (3e)

ei unrestricted, ∀i ∈ I. (3f)

The basic model (3) minimizes the SSE of a multivariate linear regression model with a fixed k. Note

that although MSE =
∑
i∈I e

2
i

n−k−1 is not directly minimized in (3a), minimizing SSE =
∑
i∈I e

2
i in (3a)

is equivalent to minimizing MSE because k is fixed as a given parameter. Constraint (3b) defines the
residuals, and constraint (3c) indicates that if an explanatory variable is not selected, then the coefficient
of the variable must be zero. Lastly, constraint (3d) ensures that the number of selected variables is k.

The mathematical model (3) can be converted into an MIQP using a popular linearization technique.
Instead of unrestricted continuous decision variables xj and ej , non-negative variables x+j , x−j , e+j , and

e−j are used, where ei = e+i − e
−
i and xi = x+i − x

−
i . By plugging these in, the following MIQP can be

obtained:

minimize
∑
i∈I

(
e+i

2
+ e−i

2
)

subject to e+i − e
−
i =

∑
j∈J

aij
(
x+j − x

−
j

)
− bi, ∀i ∈ I,

x+j + x−j ≤Mzj , ∀j ∈ J , (4)∑
j∈J

zj = k,

x+j , x
−
j ≥ 0, zj ∈ {0, 1}, ∀j ∈ J ,

e+i , e
−
i ≥ 0, ∀i ∈ I.

Recall that the main purpose of our study is to build a multivariate linear regression model that
considers diagnostics. To meet this goal, we now extend the base mathematical model (4) to include the
important diagnostic tests presented in Section 2 as constraints.

3.2 Inclusion of log-transformed explanatory variables

We first discuss how to include log-transformed explanatory variables in the model. Because an explana-
tory variable and its log-transformation are highly correlated, we need to prevent both variables from
being selected simultaneously, as discussed in Section 2.1. Let us then define new parameters and sets.
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Set and Parameters

J l : index set of the logarithm of the explanatory variables, J l = {m+ 1, ..., 2m}
Al : standardized data matrix formed of the logarithm of the explanatory variables, Al = [alij ] ∈ Rn×m

Ã : data matrix concatenating A and Al, i.e., Ã = [A Al] = [ãij ] ∈ Rn×2m

If a vector corresponding to the j-th column of A possesses non-positive elements, we compute the
logarithm of the column using a conventional method to deal with the non-positives: alij = log(aij +
|min({aij |i ∈ I})| + 1). Because all original explanatory variables have transformed variables, we can
define jl = j +m for each jl ∈ J l. The model incorporating the log-transformed explanatory variables,
MPbase(k), can be formulated as follows:

MPbase(k) : minimize
∑
i∈I

(
e+i

2
+ e−i

2
)

(5a)

subject to e+i − e
−
i =

∑
j∈J∪J l

ãij
(
x+j − x

−
j

)
− bi ∀i ∈ I, (5b)

x+j + x−j ≤Mzj , ∀j ∈ J ∪ J l, (5c)∑
j∈J∪J l

zj = k, (5d)

zj + zjl ≤ 1, ∀j ∈ J , jl = j +m, (5e)

x+j , x
−
j ≥ 0, ∀j ∈ J ∪ J l, (5f)

e+i , e
−
i ≥ 0, ∀i ∈ I, (5g)

zj ∈ {0, 1}, ∀j ∈ J ∪ J l. (5h)

The extended model MPbase(k) is similar to formulation (4). The difference is that (5) has additional
derived explanatory variables in J l and (5e) ensures that both the original and log transformed explana-
tory variables are not selected at the same time. We note that, in addition to the log-transformation,
other types of transformation of the explanatory variables can be considered in a similar manner. Finally,
we remark that an appropriate value of M in (5c) is required to solve the problem. When M is too
small, we cannot guarantee optimality. When M is too large, the optimization solver can struggle due
to numerical issues. Park and Klabjan [28] proposed a sampling-based approach, where M is estimated
by iteratively sampling a subset of explanatory variables. We use this method with a slight modification
to ensure that the sampled explanatory variables do not simultaneously include an original explanatory
variable and its transformation.

3.3 Inclusion of constraints corresponding to t-tests for the significance of
the regression coefficients

In this section, we present constraints to check the statistical significance of the regression coefficients.
Formulating these constraints is not a trivial task because the statistical significance of an estimated
coefficient depends on the selected subset. In detail, s(A)j in (1) can only be calculated given a subset
so that an inequality including s(A)j cannot be trivially formulated as a convex constraint. In order to
address this issue, we convert the inequality (2) into a constraint that checks the statistical significance
of the j-th variable if it is selected. We derive∣∣∣∣ xj

s(As(k))j

∣∣∣∣ ≥ t1−α2 ,n−k−1 (6a)

=⇒ |xj | ≥ t1−α2 ,n−k−1
∣∣s(As(k))j

∣∣−M(1− zj) (6b)

=⇒ x+j + x−j ≥ t1−α2 ,n−k−1s(As(k))j −M(1− zj), (6c)

where s(k) is a subset with k explanatory variables, As(k) is a submatrix of A derived from s(k),
and s(As(k))j is the standard deviation of the estimated coefficient for explanatory variable j which is
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equivalent to
√

MSEAs(k)
(A′s(k)As(k))

−1
j and only defined for explanatory variables in s(k) (i.e., j ∈ s(k),

but we omit the notation j from s(k) for notational simplicity). The resulting constraint above is only
activated when the j-th variable is selected (i.e., zj = 1). Note that As(k) varies according to the selected
variables. It implies that the values s(As(k))j in the constraint above vary accordingly and we cannot
calculate the s(As(k))j value if subset s(k) is not fixed. Hence, it is still difficult to add constraint (6c)
in its current form to the MIQP model.

To handle changing values of s(As(k))j depending on the selected subset, we use the lower bound
of s(As(k))j , which gives a relaxed version of the exact constraint. A tight lower bound for s(As(k))j
can cut some of the subsets with insignificant regression coefficients. Also, the lower bound should be
calculated very efficiently to avoid additional computational cost.

Let R2(A, b) denote the coefficient of determination for a multiple linear regression model fitted to
data matrices A and b. To obtain the lower bound for s(As(k))j , we start with the following definition.

Definition 1. In a multiple linear regression with design matrix A, the variance inflation factor (VIF) of
the j-th explanatory variable, denoted by V IFj, is given as V IFj = 1

1−R2(A−j ,Aj)
where A−j represents

a submatrix of A formed by excluding the j-th column.

Note that R2(A−j ,Aj) is the coefficient of determination for a linear regression model, where variable
j is the response variable and all variables except for j are explanatory variables. The quantity V IFj
is indeed given by the j-th diagonal elements of (A′A)−1. Now we recall the lemma from Rencher and
Schaalje [30].

Lemma 1. In a multiple linear regression model, if s ⊂ s′, then R2(As, b) ≤ R2(As′ , b).

Lemma 1 states that the coefficient of determination does not decrease by adding a new explanatory
variable. Based on the lemma, we derive the lower bound for s(As(k))j to obtain the relaxed constraints.

Theorem 1. Let R2
−j = min

j′∈(J∪J l)\{j}
R2(Aj′ ,Aj) for j ∈ J ∪ J l and k ≥ 2. Then for each j,

s(As(k))j ≥
√

MSELB(k)
1−R2

−j
, where MSELB(k) is the optimal solution of the LP-relaxation of MPbase(k).

Proof. Because s(As(k))j =
√

MSEAs(k)
(A′s(k)As(k))

−1
j , we can calculate the lower bound of s(As(k))j

by obtaining lower bounds of MSEAs(k)
and (A′s(k)As(k))

−1
j .

We first derive a lower bound of MSEAs(k)
. Observe that MSEAs(k)

corresponds to the optimal
solution of MPbase(k). Because the optimal value of a mixed integer programming model minimizing
the objective function is lower bounded by that of its LP-relaxation, we have MSEAs(k)

≥ MSELB.

Now let us derive a lower bound of (A′s(k)As(k))
−1
j . We start with noting that for an arbitrary j and

a subset s(k) that includes j, there exists j0 ∈ (J ∪ J l)\{j} where {j0} ⊂ s(k)\{j}. Thus, by Lemma
1 we can realize the inequalities R2

(
As(k)\{j},Aj

)
≥ R2(Aj0 ,Aj) ≥ min

j′∈(J∪J l)\{j}
R2(Aj′ ,Aj) = R2

−j .

Then, by Definition 1 and the fact that 0 ≤ R2(A, b) ≤ 1 for any A and b, we have

(A′s(k)As(k))
−1
j =

1

1−R2
(
As(k)\{j},Aj

) ≥ 1

1−R2
−j
.

Finally, combining the lower bounds of MSEAs(k)
and (A′s(k)As(k))

−1
j , the lowerbound of s(As(k))j

is given by

s(As(k))j =
√

MSEAs(k)
(A′s(k)As(k))

−1
j ≥

√
MSELB(k)

√
1

1−R2
−j
.

Setting sj(k)LB =
√

MSELB(k)
1−R2

−j
, we can formulate the relaxed constraint of (6) as

x+j + x−j ≥ t1−α2 ,n−k−1sj(k)LBzj , ∀j ∈ J ∪ J l. (7)

It is worthy to note that calculating sj(k)LB is computationally efficient. The quantity MSELB(k)
is obtained by solving an LP and the coefficient of determination R2

−j can be quickly obtained by the
closed-form formula for (m− 1) simple linear regression models.
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Because sj(k)LB is a calculated constant and t1−α2 ,n−k−1 is determined by the user, constraint (7) is
a linear constraint. However, constraint (7) does not work properly with (5). This is because, given a
solution to (5), both x+j and x−j can be increased to satisfy (7) without violating the other constraints
in (5) or changing the objective function value of the solution. To handle this issue, we introduce new
variables z+j and z−j , where z+j = 1 if x+j > 0, z+j = 0 if x+j = 0 and z−j = 1 if x−j > 0, z−j = 0 if x−j = 0.

By replacing zj with z+j and z−j , (5) can be modified as follows:

minimize
∑
i∈I

(
e+i

2
+ e−i

2
)

(8a)

subject to e+i − e
−
i =

∑
j∈J∪J l

ãij
(
x+j − x

−
j

)
− bi ∀i ∈ I, (8b)

x+j ≤Mz+j , ∀j ∈ J ∪ J l, (8c)

x−j ≤Mz−j , ∀j ∈ J ∪ J l, (8d)∑
j∈J∪J l

(
z+j + z−j

)
= k, (8e)

z+j + z−j + z+
jl

+ z−
jl
≤ 1, ∀j ∈ J , jl = j +m, (8f)

x+j + x−j ≥ t1−α2 ,n−k−1sj(k)LB
(
z+j + z−j

)
, ∀j ∈ J ∪ J l, (8g)

x+j , x
−
j ≥ 0, z+j , z

−
j ∈ {0, 1}, ∀j ∈ J ∪ J l, (8h)

e+i , e
−
i ≥ 0, ∀i ∈ I. (8i)

Note that zj is replaced by z+j or z−j in (8c) and (8d) and z+j + z−j is used instead of zj in (8e) and
(8f). Note that (8g) is added for the t-test, but it is a relaxed version of the exact t-test constraint (6).
This relaxed constraint is useful in reducing the search space of the branch-and-bound algorithm of the
solver, while the exact constraint is enforced by the technique presented in the subsequent section.

3.4 Final algorithm

Recall that constraint (8g) is a relaxed constraint derived from the lower bound of s(As(k)) and that
a feasible solution for (8) can have statistically insignificant coefficients, while we want all coefficients
to be statistically significant. Furthermore, it is challenging to formulate tests to check the residual
assumptions in Section 2.3 as linear or convex constraints. To overcome these limitations, we propose a
lazy constraint-based approach to solve the following problem.

minimize (8a)

subject to (8b)-(8i),

coefficients t-tests constraints (2) from Section 2.2,

residual diagnostics constraints from Section 2.3.

(9)

Lazy callback is mainly employed in practical implementations using an optimization solver when the
number of constraints in an MIP model is extremely large [13]. For example, we may use lazy callback
when solving the traveling salesman problem (TSP) because it has a large number of subtour elimination
constraints. Instead of adding all subtour elimination constraints at the root node of the branch-and-
bound algorithm, we can iteratively and selectively add some of these constraints. In detail, when the
solver arrives at a branch-and-bound node and the solution contains a subtour, lazy callback allows us to
add the corresponding subtour elimination constraint at the current node. Although our MIQP model
does not have an extremely large number of constraints, we can use lazy callback to stop at a branch-
and-bound node and check if the solution completely satisfies all of the tests and diagnostics. Recently,
Bertsimas and Li [2] also use the lazy constraint to overcome difficulties related to the coefficient t-test.
Our lazy constraint-based procedure, conducted independently of Bertsimas and Li [2], is provided in
Algorithm 1.

In the algorithm, Jnode is the index set of selected variables at the current node in the brand-and-
bound tree. The lazy constraint

∑
j∈Jnode

(
z+j + z−j

)
≤ k−1 is added to the model when (i) a linear model

10



Algorithm 1 Lazy constraint procedure (at each node Jnode)

Input: a set of α (significance levels for each statistical test)
1: for each j′ ∈ Jnode do
2: if the coefficient corresponding to variable j′ is not statistically significant then
3: add a lazy constraint

∑
j∈Jnode

(
z+j + z−j

)
≤ k − 1 to the model

4: return
5: end if
6: end for
7: if the model with variables in Jnode fails to pass the residual diagnostics test then
8: add a lazy constraint

∑
j∈Jnode

(
z+j + z−j

)
≤ k − 1 to the model

9: end if
10: return

associated with j ∈ Jnode fails to pass at least one of the statistical tests for the coefficients or (ii) the
model fails to pass the residual diagnostics test. The lazy constraint eliminates the solution of selecting
all explanatory variables in Jnode from the feasible region. For example, let us consider a problem with
10 explanatory variables with the associated binary variables set {z1, ..., z10}. We assume that we set
k = 4 and the solver is currently at the node with a solution having z+1 = z+4 = z−9 = z+10 = 1 and
z+j , z

−
j = 0 for all others. The procedure generates a linear model with the selected explanatory variable

set Jnode = {1, 4, 9, 10} and conducts statistical tests and diagnostics for the model. When the regression
model fails to pass at least one of the tests, lazy constraint

∑
j∈Jnode

(
z+j + z−j

)
= z+1 +z+4 +z−9 +z+10 ≤ 3

is added to the MIQP model. As a result, the solution z+1 = z+4 = z−9 = z+10 = 1 (the others are zero due
to constraint (8e)) becomes infeasible in all of the subsequent branches.

When there is no feasible solution with a fixed k value, the user can relax the cardinality constraint
and consider different k values. This search can easily be performed by re-running the algorithm with
different k values; we do not consider multiple k values in the proposed alternative solution procedure.

Table 1 summarizes the model building and validation procedures presented in this section, along with
the associated constraints and sections. Finally, we remark that the proposed lazy constraint framework
can easily be extended and incorporate other tests such as F -tests or pairwise multicollinearity tests
based on user needs.

Table 1: Constraints for model building and validation procedures

Model building and validation procedure Associated constraints Section reference
Nonlinear variable transformations (8f) Section 2.1

Significance of estimated coefficients (8g), lazy constraint Section 2.2
Residual tests lazy constraint Section 2.3

4 Alternative solution procedure for infeasible problems

Based on the algorithm in Section 3.4, we can obtain the best subset satisfying all tests for model
validation discussed in Section 2. However, when all possible subsets violate at least one of the tests and
assumptions, the model (8) becomes infeasible and the algorithm will not return a solution. Even in this
case, a near-feasible solution is desired (i.e., satisfying most of the tests and assumptions while mildly
violating a few of the tests). To find such solutions, we propose an algorithm, referred to as alternative
solution procedure. The algorithm searches for a near-feasible solution based on the model development
strategy in Figure 1 and penalties for violation of regression tests and assumptions.

The alternative solution procedure is invoked at each branch-and-bound node while no feasible so-
lution satisfying all tests and diagnostics has been found by the algorithm. Once a feasible solution is
found, the alternative solution procedure will not be invoked because at least one feasible solution to
the problem satisfying all of the tests and diagnostics exists. When the alternative solution procedure is
invoked, it compares a new subset with the incumbent best subset (not feasible, but the best alternative
near-feasible subset) and decides which subset is better. Our model updates and keeps only one alter-
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native solution until it finds a feasible solution. The new subset, denoted as Snew, is the subset at the
current branch-and-bound node and the incumbent best subset, denoted as Sbest, is the best alternative
subset found so far. Remark that Snew and Sbest must be infeasible solutions with some insignificant
coefficients or residual assumption violations because the alternative solution procedure keeps Sbest until
a feasible solution is found. To simplify the discussion, we will use Sbest and Snew to refer to both selected
subsets and linear regression models.

Note that one of the simplest approaches to comparing Snew, Sbest, and all other subsets is to add
penalty terms to the objective function based on diagnostic violations such as the average p-value or the
number of insignificant variables. Before presenting the details of the alternative solution procedure, we
first explain why the simple penalty approach may fail and why the proposed procedure is needed. First,
the penalty approach cannot effectively reflect the overall development procedure of a linear regression
model. In typical model development, explained in Section 2, we first establish a linear regression model
with statistically significant coefficients. We then check the residual assumptions via diagnostics. That
is, we should consider the residual assumptions after establishing a statistically significant model. This
cannot be achieved with the simple penalty approach. Next, there exist non-trivial cases where the
penalty approach may fail to select the better subset. This problem is discussed with the illustrative
examples presented in Table 2.

Table 2: Illustrative examples for the alternative solution procedure

Cases Set of p-values Better set

Case 1
Sbest {0.06,0.06,0.06, 0.025, 0.02}

SnewSnew {0.055,0.055, 0.04, 0.025, 0.02}

Case 2
Sbest {0.06,0.06,0.06, 0.025, 0.02}

SbestSnew {0.95, 0.04, 0.04, 0.025, 0.02}

Case 3
Sbest {0.06,0.06,0.06, 0.025, 0.02}

SnewSnew {0.065, 0.04, 0.04, 0.025, 0.02}

Table 2 presents three cases of determining which solution is better between Sbest and Snew, where k
and α are set to 5 and 0.05, respectively. The set of p-values from the statistical test for the coefficients
is shown for each case. In Case 1, it is not surprising that we choose Snew because the number of
insignificant coefficients in Snew is less than that in Sbest (i.e., 3 > 2), and the average of the violating
p-values for Snew is also less than that for Sbest (i.e., 0.060 > 0.055). On the other hand, Sbest must
be better in Case 2 because the average of the violating p-values for Snew is much larger than that for
Sbest (0.06 < 0.95), even though the number of insignificant coefficients in Snew is greater than that
in Sbest (3 > 1). In Case 3, although the average of the violating p-values for Sbest is less than that
for Snew (0.60 < 0.65), selecting Snew as the better solution seems reasonable because the difference
is negligible while the number of insignificant coefficients in Sbest is significantly greater than in Snew

(i.e., 3 > 1). These illustrative examples indicate that we should consider both the average of the
violating p-values and the number of insignificant coefficients. However, due to the different magnitudes
of the measures, it is not trivial to set appropriate weights. Consequently, it is necessary to develop
an intuitive procedure that reflects the framework of linear regression model construction and further
alleviates the scale difference for measures of diagnostic violation. The experiment in Section 5 shows
that the alternative solution procedure outperforms a simple penalty approach.

Now, we discuss the alternative solution procedure. To explain this more efficiently, we first define
the functions related to the significance test for the coefficients.

π(S) : number of insignificant coefficients in the model with subset S
E(S) : average p-values of the insignificant coefficients in the model with subset S; 0 if all

coefficients in subset S are statistically significant
rl(S) : p-value from the residual linearity test for subset S
rh(S) : p-value for the residual heteroscedasticity tests, which is the maximum p-value between

the p-values of the absolute residual test and the Breusch-Pagan test
fq(S1, S2) : decision by quality ; S1 and S2 are subsets

12



ft(S1, S2; τ) : decision with tolerance; S1 and S2 are subsets

The last two functions, fq(S1, S2) and ft(S1, S2; τ), decide whether S1 or S2 is better based on
different principles, which will be discussed in detail later in this section.

The overall alternative solution procedure is presented in Algorithm 2. Step 1 is for when Snew is the
statistically significant model while Sbest is not. Hence, it is natural to return Snew. Step 2 considers
the opposite case to that of Step 1. In Steps 3-4, non-trivial cases are considered: both models are
statistically significant in Step 3 and both models are statistically insignificant in Step 4. For these two
cases, fq, referred to as decision by quality, and ft, referred to as decision by tolerance, are employed to
make a decision.

Algorithm 2 Alternative solution procedure

Input: Sbest, Snew

Output: the better subset between Sbest and Snew

1: if π(Sbest) > 0 and π(Snew) = 0 then return Snew

2: else if π(Sbest) = 0 and π(Snew) > 0 then return Sbest

3: else if π(Sbest) = 0 and π(Snew) = 0 then return fq(Sbest, Snew)
4: else if π(Sbest) > 0 and π(Snew) > 0 then return ft(Sbest, Snew; τ)
5: end if

Function fq(Sbest, Snew) returns the better solution between Sbest and Snew by quantifying the quality
of the solutions using the penalty function q for solution S, introduced below.

MSE(S) : the MSE of solution S
λπ, λE , λl, λh : penalty parameters for π, E, rl, and rh, respectively

w1(p, α) : percentage transform function for E(S); max (p−(1−α),0)
α

w2(p, α) : percentage transform function for rl(S) and rh(S); max((1−α)−p,0)
1−α

q(S;λπ, λE , λl, λh) = MSE(S) + λππ(S) + λEw1(E(S), αE) + λlw2(rl(S), αl) + λhw2(rh(S), αh)

Note that function q includes percentage transform functions w1(p, α) and w2(p, α) to indicate the
percentage gap between the significance levels. We introduce these functions because first we want to
accurately measure the insignificance of the p-values when the significance levels are at different scales,
and second, we do not want to apply penalties if the p-value falls within the significance level.

Two examples are provided for w1 and w2 to support our claims and demonstrate their necessity.
The first example is of penalty nullification. Suppose rh(S1) = 0.2 and rh(S2) = 0.04, which implies the
residuals of S1 are consistent while those of S2 have heteroscedasticity. Given αh = 0.9, we can calculate

w2(rh(S1), αh) = max((1−0.9)−0.2,0)
0.1 = 0, and w2(rh(S2), αh) = max((1−0.9)−0.04,0)

0.1 = 0.06
0.1 = 0.6. The

penalties make sense because S1 does not violate the test. Hence, the evaluation of S1 is based only on the
MSE and the significance of the coefficients. The second example demonstrates the role of scaling between
p-values from different statistical tests. Suppose that we get E(S3) = 0.15, rh(S3) = 0.05. Further, αE
and αh are both set to 0.9. Then, S3 violates the t-tests of the coefficients by 0.15 − (1 − 0.9) = 0.05,
which is equal to the value of the heteroscedasticity test violation (1 − 0.9) − 0.05 = 0.05. However,
the violation of 0.05 is relatively small for the possible t-test violation range [0, 0.9] compared to the
possible residual test violation range [0, 0.1]. Thus, despite the same violation size, the significance of the
violation can differ depending on the tests and diagnostics. We can scale the magnitude of the violations
through w1 and w2: w1(E(S3), αE) = 0.15−0.1

0.9 ≈ 0.056, and w2(rh(S3), αh) = 0.1−0.05
0.1 = 0.5.

We now discuss the decision with tolerance presented in Algorithm 3. Step 1 is key to our procedure.
If E(Snew)−E(Sbest) exceeds the tolerance τ , a positive parameter predetermined by the user, then the
alternative solution procedure concludes that Sbest is better. When the average of the violating p-values
of Snew is smaller or not significantly worse (smaller than τ) than that of Sbest, we conclude Snew is
competitive and investigate further in Steps 3-7 by comparing the two solutions based on two factors, π
and E. Step 3 concludes that, if Snew is smaller than Sbest in terms of these two factors, Snew is better.
The opposite case is shown in Step 4. If there is a conflict between the two factors, fq settles the decision.
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Note that Algorithms 2 and 3 imitate the linear regression model building procedure described in Section
2 by using statistical significance tests first to make the decision, followed by other diagnostics.

Algorithm 3 Decision with tolerance, ft

Input: Sbest, Snew, τ
Output: the better subset between Sbest and Snew

1: if E(Snew)− E(Sbest) > τ then return Sbest

2: else
3: if E(Sbest) > E(Snew) and π(Sbest) > π(Snew) then return Snew

4: else if E(Sbest) < E(Snew) and π(Sbest) < π(Snew) then return Sbest

5: else return fq(Sbest, Snew)
6: end if
7: end if

We illustrate the entire alternative solution procedure using the three toy examples presented in Table
2. Suppose that our model is searching a subset whose cardinality k is set to 5 and that a feasible solution
has not yet been found. A user sets the significance levels and τ to 95 percent and 0.1, respectively.

• Case 1. Our model cannot determine which solution is better in the first step because π(Sbest) =
3 > 0 and also π(Snew) = 2 > 0. Hence, decision with tolerance is invoked (Algorithm 3). In Step
1, the algorithm computes E(Sbest) = 1

3 (0.06 + 0.06 + 0.06) = 0.06, E(Snew) = 1
2 (0.055 + 0.055) =

0.055, and E(Snew) − E(Sbest) = −0.005 < τ = 0.1. Thus, the next steps compare E(Snew) with
E(Sbest) and π(Snew) with π(Sbest). Since E(Snew) < E(Sbest) and π(Snew) < π(Sbest), Snew is
determined to be the better solution.

• Case 2. Because π(Sbest) and π(Snew) are both greater than 0, our model cannot determine which
solution is better in Step 4 of Algorithm 2, and ft is called. In Algorithm 3, since E(Snew) −
E(Sbest) = 0.95− 0.06 = 0.89 > τ = 0.1 in Step 1, Sbest is returned.

• Case 3. Similar to the previous cases, ft is called in Step 4 of Algorithm 2. In Algorithm 3,
although E(Snew)−E(Sbest) = 0.065−0.06 = 0.005 and E(Snew) is greater than E(Sbest), Steps 3-
6 are considered because E(Snew)−E(Sbest) = 0.005 < 0.1 = τ . However, since E(Snew) is greater
than E(Sbest) (0.065 > 0.06) and π(Snew) is less than π(Sbest) (1 < 3), the winning solution is
determined using fq.

Overall, we find that the alternative solution procedure selects the desired solution discussed in Table
2. During the alternative solution procedure, we first compare Snew with Sbest using the significance of
the estimated coefficients, in particular with π(S) and E(S). If this step cannot lead to a decision, resid-
ual diagnostics are considered. This multistage procedure reflects the linear regression model building
framework discussed in Section 2. The procedure also deals with the possible issues illustrated in Case
2 and 3 in Table 2 by introducing ft. A user can intuitively provide a value of τ based on the average
difference in the p-value that they can permit. In Experiment 4 of Section 5, we provide experimental
results that illustrate the benefit of using the proposed procedure rather than a simple penalty function.

In this alternative solution framework, we empirically adopt E(S) and π(S) as measures evaluating
how statistically significant a regression model is. The practical examples discussed above justify the
measures. We finally note that these measures can be varied or alternatives can be employed to reflect
their own perspectives on the statistical significance. In the next sections, MP lazy(k) denotes our final
algorithm: solving (8) with Algorithm 1 and the alternative solution procedure in Algorithms 2 and 3.

Finally, we summarize the proposed approach as follows. Our ultimate goal is solving the MIP model
(9). Due to the nonlinearity of the exact t-test and diagnostic constraints, we instead start with solving
the MIP model (8). While solving the model, a lazy constraint for the t-test and diagnostic is added at
each branch-and-bound node if needed. Simultaneously, we keep the best near-feasible solution found
by the alternative solution procedure invoked at the node. Once a feasible solution is found during the
search, the alternative solution procedure is not invoked. If we do not find a feasible solution until the
solution search terminates, the model outputs the best near-feasible solution found by the alternative
solution procedure.
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5 Computational Results

In this section, the results of numerical experiments using the proposed model and benchmarks are
presented. The experiments are designed to demonstrate the performance of the proposed model and
the necessity for the alternative solution procedure.

5.1 Benchmark dataset description and preprocessing

Twelve publicly available datasets are used in the experiment. We collect five datasets for regression
from the UCI machine learning data repository [23] and seven datasets from other sources. The features
of the experimental datasets are summarized in Table 3.

Table 3: Datasets used in the experimental demonstration

Dataset Observations (n)
Explanatory variables

Source
Raw Preprocessed (m)

Housing 506 13 26 UCI data repository
Servo 167 4 38 UCI data repository

AutoMPG 392 8 50 UCI data repository
Automobiles 159 26 124 UCI data repository
Winequality 1599 11 22 UCI data repository

Bodyfat 252 15 30 Johnson [17]
Barro 161 13 26 Koenker and Machado [20]

Carseats 400 10 28 James et al. [16]
Crime 630 22 50 Cornwell and Trumbull [9]

Framing 265 14 30 Brader et al. [5]
Griliches 758 19 50 Blackburn and Neumark [4]
Hprice3 321 19 22 Wooldridge [37]

We preprocess the datasets as follows. First, we remove records which include at least one missing
value. Second, dummy variables are introduced for the categorical variables. Third, nominal variables
are changed into numerical variables. Next, log-transformed variables are created for the numerical
variables in the original data. Finally, all of the datasets are standardized.

5.2 Experimental design

In this section, we present the design of the five experiments. To demonstrate the practical viability
of our model, we set a time limit of 600 seconds for every experiment, except for Experiment 2 where
the time limit is set to 3600 seconds to compare the performances when the algorithms have sufficient
amount of time. The algorithm time includes the computation time for big-M in (5c) and s(k)LB in
(7). We set several parameters for the experiments: αE = 0.95 and αl = αh = 0.99, where αE , αl,
and αh are the significance levels for the t-tests for the coefficients, diagnostics for residual linearity,
and residual heteroscedasticity, respectively. Parameters for the alternative solution procedure is set to
as follows: τ = 0.1;λE = 1.5;λπ = λh = λl = 0.125. The parameters are tuned to balance the fitting
errors and validation measures based on the datasets used in our experiment. In our pilot computational
experiments, we found that the suggested parameters return good results for various datasets. Therefore,
for a new dataset, we recommend the user to start with the suggested parameters and iteratively adjust
the parameters to improve the specific validation measures π,E, rl, and rh as needed. Alternatively, one
can choose the parameters by cross-validation. In general, increasing the penalty parameter improves
the corresponding validation measure. In Experiment 5, we show how the validation measures change
as we change the penalty parameters and we hope this will help the user to successfully search for good
parameters and determine their own best parameters.
Experiment 1: Proposed model vs. simple benchmark models We compare MP lazy(k) with
three benchmark models: MPbase(k), FS(k) (a forward selection algorithm), and LASSO. With this
experiment, the performance of the proposed model in terms of the aforementioned statistical significance
and regression assumptions can be verified.
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The forward selection algorithm iteratively adds an explanatory variable until k variables are selected
while the original and log-transformed variables cannot be in the subset simultaneously. The algorithm
is constructed by modifying a standard forward selection algorithm to select from among variables and
their log-transforms. Specifically, once a variable is selected, both the original and transformed variables
are excluded from the candidate set of variables. If j∗ ∈ J , then the log-transformed variable is excluded
as well. If j∗ ∈ J l, then the original variable is excluded as well. Thus, FS(k) always provides a solution,
with at most one variable from an original and transformed variable pair.

LASSO is a very popular regularized regression method that penalizes the L1 norm of coefficients.
The key advantage of LASSO is that it automatically performs variable selection while the coefficients
shrink through the regularization. LASSO and the proposed model are different in that our model has
an L0 norm-based constraint (penalty) and diagnostic constraints. Intrinsically, it is not straightforward
to include the additional constraints in LASSO.

For each dataset, all models and algorithms are tested over k = 3, 4, ..., 10. Because LASSO does not
select k explicitly, the proper penalty parameters of LASSO that give k = 3, 4, ..., 10 are found by grid
search. For each case, we check the goodness-of-fit with an adjusted R2, denoted as R2

adj . Although the

objective of all models and algorithms is to maximize the SSE, this is equivalent to maximizing R2
adj

because k is fixed. Also, because R2
adj ranges from 0 to 1, we can easily compare the goodness-of-fit over

different k values and datasets.
Experiment 2: Proposed model vs. iterative model We compare our model with the iterative
algorithm used in Bertsimas and King [1] for cases where the solution for MPbase(k) violates some of
the tests and diagnostics. The algorithm iteratively adds constraints to avoid subsets with insignificant
coefficients. We will refer to the iterative model asMP iter(k) in this paper. Recall that a key feature of
our algorithm is the ability to avoid iterative calls of the MIQP solver, where iterative approaches solve
multiple MIQPs by adding constraints. In this comparison, we demonstrate the effectiveness of our lazy
constraint-based algorithm. As the two models have different constraints and parameters, we compare
the two models using common constraints, the number of variables selected and t-tests. That is, we do
not consider the residual tests in this experiment.
Experiment 3: Proposed model vs. model without the relaxed t-test constraints We show
the effectiveness of the relaxed t-test constraints (8g) derived in Section 3.3 by comparing our model
with and without the relaxed constraint (8g). The experiment is indeed equivalent to the comparison
between our model and the recently proposed model by Bertsimas and Li [2] without multicollinearity
constraints. We evaluate the models based on two criteria: (i) the solution time and (ii) the number of
branch-and-bound nodes searched until the optimal solution is obtained. If the model with (8g) is faster
and searches less number of nodes, then we can show that (8g) is effective. In this experiment, we use
the cases where our proposed model is able to find the optimal solution within a given time limit in the
previous experiments.
Experiment 4: Alternative solution procedure vs. simple penalty function We demonstrate the
effectiveness of the alternative solution procedure by comparing it with a simple penalty function. The
benchmark is obtained by replacing the alternative solution procedure with the simple penalty function
fq. The benchmark model will be referred to as MPpenalty(k).
Experiment 5: Sensitivity analysis In this experiment, we demonstrate how the solutions obtained
from MP lazy differ and lead to different validation measures when the penalty parameters λE , λπ, λh,
and λl change. The Bodyfat dataset is used. We set k = 7, 8, 9, and 10, excluding k = 3, 4, 5, and 6
as our model MP lazy found feasible solutions (see the results of Experiment 1 in Section 5.3) and the
penalty parameters did not affect the results in these cases because they are used to search for alternative
solutions when feasible solutions are not available.

To check the effect of λE , we run the algorithm for λE ∈ {0.5, 1, 1.5, ..., 4.5, 5} with the other pa-
rameters fixed using the values presented in Section 5.2. Similarly, to check the effect of λπ, we run the
algorithm for λπ ∈ {0.025, 0.05, ..., 0.225, 0.25} with the other parameters fixed. Because E ∈ [0, 1] and
π ∈ {1, 2, ..., k} are on different scales, different values are checked for λE and λπ in this experiment.
Note that, of the penalty parameters, we only vary λπ and λE . This is because the solutions from
the experiment for Bodyfat do not exhibit heteroscedasticity (see the results for Bodyfat in Figure 4).
Because the p-values are either very large or small, changing the associated penalty parameters λh and
λl does not change rh and rl in this experiment.
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5.3 Experimental results

We now present the experimental results. For the numerical experiments, we utilize Intel(R) Core(TM)
i7-8700 CPU @ 3.40GHz (8 CPUs) and 32GB RAM. All models and algorithms are implemented with
Python, in which mathematical models are solved using Gurobi 9.0.0. For the construction of the linear
model in FS(k), we employ the Python package statsmodels [32]. In every experiment, none of the
solutions from the comparative models demonstrate linearity between their residuals and fitted values,
so the corresponding results are not provided.
Results for Experiment 1: Proposed model vs. simple benchmark models To measure the
explanatory power of each model, we introduce a measure for relative explanatory power REP =

R2
adj(S)

R2
adj(SMPbase

)
, where SMPbase

is a subset obtained by solving MPbase and S is the solution of the

corresponding model. We use the R2
adj of MPbase as a denominator of REP since MPbase provides

the greatest R2
adj of the compared models (except for LASSO) because it does not have any diagnostic

constraints. Note that REP of LASSO can be greater than 1, because LASSO does not include the log
transform constraint (5e).

We present the summarized results for the datasets and the number of variables selected (k) in Tables
4 and 5, respectively. The complete results are available in the online supplement. In both tables, REP
is the average over the dataset or the k values. To test the performance when using only feasible cases,
we also present REPfeas, which only considers cases with feasible solutions available when calculating
the average. Additionally, we count the number of cases satisfying (i) the t-test and residual test, (ii)
the t-test only, and (iii) the residual test only.

Table 4: Results by dataset

Dataset
REP REPfeas Execution time

MP lazy MPbase FS LASSO MP lazy MPbase FS LASSO MP lazy MPbase FS LASSO
Housing 0.950 1.000 1.000 0.979 0.950 1.000 1.000 0.979 329.676 7.802 0.066 0.001

Servo 0.921 1.000 1.000 0.946 0.367 1.000 1.000 0.915 494.756 60.021 0.094 0.000
AutoMPG 0.929 1.000 0.998 0.927 0.929 1.000 0.998 0.927 478.818 332.581 0.140 0.001

Automobiles 0.992 1.000 1.000 0.943 0.992 1.000 1.000 0.943 549.824 513.232 0.348 0.001
Winequality 0.872 1.000 1.000 0.997 0.658 1.000 1.000 1.000 487.790 41.402 0.058 0.008

Bodyfat 0.783 1.000 1.000 1.002 0.816 1.000 1.000 1.002 469.123 22.906 0.062 0.004
Barro 0.910 1.000 0.989 0.833 1.000 1.000 0.974 0.593 376.991 3.597 0.056 0.001

Carseats 0.983 1.000 1.000 0.948 1.000 1.000 1.000 0.929 155.391 4.808 0.071 0.001
Crime 0.847 1.000 0.993 0.887 0.823 1.000 0.992 0.872 420.495 23.823 0.141 0.003

Framing 0.999 1.000 1.000 0.997 1.000 1.000 1.000 1.000 303.066 7.046 0.069 0.001
Griliches 0.987 1.000 0.997 0.900 0.987 1.000 0.997 0.900 163.162 184.169 0.154 0.001
Hprice3 0.950 1.000 0.988 0.961 0.921 1.000 0.989 0.941 335.505 3.551 0.047 0.001

Dataset
t-test & residual test t-test Residual test

MP lazy MPbase FS LASSO MP lazy MPbase FS LASSO MP lazy MPbase FS LASSO
Housing 8 1 1 1 8 8 8 5 8 1 1 1

Servo 1 0 0 0 8 7 7 8 1 0 0 0
AutoMPG 8 0 0 0 8 8 8 3 8 0 0 0

Automobiles 8 3 5 0 8 8 8 1 8 3 5 0
Winequality 3 0 0 0 7 5 5 4 3 0 0 0

Bodyfat 4 0 0 0 4 0 0 1 8 0 0 0
Barro 3 3 3 0 3 3 3 0 8 8 8 8

Carseats 6 5 5 7 6 5 5 7 8 8 8 8
Crime 7 0 0 1 8 8 8 1 7 0 0 2

Framing 4 4 4 5 4 4 4 5 8 8 8 8
Griliches 8 4 2 3 8 6 5 3 8 4 2 3
Hprice3 5 0 0 0 7 6 4 4 5 0 0 0

In Table 4, we observe that MP lazy obtains solutions with a REP of 90% or above except for the
Winequality, Bodyfat, and Crime datasets. This indicates that our model maintains explanatory power
while satisfying all diagnostics constraints. Column REPfeas also indicates that our model maintains
an R2

adj closer to the base model. The results in the ‘t-test & residual test’ column indicate that our
model is able to find substantially more linear models satisfying both the statistical significance of all
coefficients and the residual assumptions for most of the datasets. In particular, our model finds optimal
solutions satisfying all diagnostics constraints for all cases for four data sets (bolded in the ‘t-test &
residual test’ column). On the other hand, our model finds the same number of feasible solutions as the
benchmarks for the Framing dataset, with the results from our model for REPfeas equal to 1 for this
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Table 5: Results by k

k
REP REPfeas Execution time

MP lazy MPbase FS LASSO MP lazy MPbase FS LASSO MP lazy MPbase FS LASSO
3 0.952 1.000 0.996 0.902 0.947 1.000 0.996 0.899 30.671 14.843 0.050 0.001
4 0.869 1.000 0.997 0.913 0.869 1.000 0.997 0.913 114.242 34.682 0.065 0.001
5 0.917 1.000 0.995 0.926 0.909 1.000 0.995 0.922 294.359 64.270 0.083 0.002
6 0.913 1.000 0.999 0.959 0.916 1.000 0.999 0.960 415.163 95.284 0.102 0.002
7 0.924 1.000 0.998 0.956 0.937 1.000 0.997 0.945 517.561 128.043 0.118 0.002
8 0.932 1.000 0.998 0.972 0.939 1.000 0.998 0.962 522.185 131.130 0.136 0.002
9 0.921 1.000 0.998 0.978 0.915 1.000 0.999 0.964 578.240 141.099 0.149 0.003
10 0.948 1.000 0.998 0.977 0.958 1.000 0.998 0.954 603.944 142.587 0.166 0.003

k
t-test & residual test t-test Residual test

MP lazy MPbase FS LASSO MP lazy MPbase FS LASSO MP lazy MPbase FS LASSO
3 11 4 4 5 12 11 11 9 11 4 4 6
4 12 4 4 3 12 11 11 7 12 4 4 5
5 11 4 4 3 12 11 11 7 11 4 4 4
6 9 3 3 2 11 10 10 6 10 4 4 3
7 7 3 2 2 9 9 8 5 10 5 4 3
8 6 1 1 1 9 7 5 3 9 4 4 3
9 5 0 1 1 8 5 5 3 9 3 4 3
10 4 1 1 0 6 4 4 2 8 4 4 3

dataset. In fact, the corresponding solutions for MPbase are exactly the same as those of our model.
This indicates that, although MPbase finds an optimal solution without considering any diagnostics or
statistical significance, the solution fortunately has no insignificant coefficients and satisfies the residual
assumptions. Thus, these results in Table 4 make clear that our model is able to provide a quality linear
model independent of the dataset. Finally, the execution time indicates that our model can find linear
models within a practical timeframe.

Table 5 presents the results by averaging or summing the number of variables selected (k). We can
verify that the results of our model for REPfeas are close to 1, and the results in the ‘t-test & residual
test’ column are substantially better than those of the benchmarks, as in Table 4. This suggests that
our model can also generate quality subsets regardless of the size of k.

In Figure 4, we check the results for the alternative solution procedure for the following cases where
no feasible solution is found within the 600-second time limit: Servo, Winequality, Bodyfat, Barro, and
Framing with k = 7, 8, 9, 10. In the plot matrix of Figure 4, the horizontal and vertical axes represent the
datasets and the performance measures, respectively. Note that E = 0 if a solution has no statistically
insignificant coefficient because, as illustrated in Section 4, a penalty term is activated when a violation
of the corresponding statistical test occurs. Also, heteroscedasticity would not be a concern for the Barro
and Framing dataset because every case in the dataset satisfies the regression assumption (rh > 0.01).

The plots in Figure 4 explicitly illustrate the promising performance of the alternative solution pro-
cedure. As seen in the charts in the first row, the REP of the proposed model remains above 0.89
except for the Bodyfat dataset. Moreover, except for the two cases (Framing with k = 7, 8) including
the case marked with a ‘∗’, the measures π, E, and rh for the alternative solutions are better than or
equal to those of the benchmarks. These results indicate that the alternative solutions improve upon
those of the benchmarks in most cases. For example, for Winequality (k = 8), the π and E of MP lazy

are considerably lower than those of the benchmarks while it has REP greater than 0.99. On the other
hand, the REP for the alternative solutions for Bodyfat is relatively less than for the other results.
However, π and E are significantly better than the benchmarks. This indicates that our model sacrifices
explanatory power (i.e., MSE) to improve the statistical tests and diagnostics (π and E).

We investigate the case marked with a ‘∗’ (Framing with k = 8) more in detail, in which the alternative
solutions do not outperform the benchmark solutions for every measure. This is due to our algorithm’s
tolerance parameter τ . Let S′current be the solution of MP lazy with π = 3 and E = 0.1719 and S′new be
the solution for LASSO with π = 2 and E = 0.5577 from the result in Figure 4. These two solutions
can be compared using our alternative solution procedure. Based on Algorithms 2 and 3, ft is called in
Step 4 of Algorithm 2. Then Step 1 of Algorithm 3 compares E(S′new) and E(S′current) accounting for
the given tolerance parameter τ = 0.1. Because E(S′new) − E(S′current) = 0.3858 > 0.1, the alternative
solution procedure concludes that S′current is a better solution, which is a clearly reasonable decision. We
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Figure 4: Comparison of the alternative and benchmark solutions. In each plot, the horizontal axis is
the number of selected variables (k).

find that LASSO gives a better solution in only one case, Framing with k = 7.
Figure 5 presents representative residual plots (residuals versus fitted values) for the AutoMPG

(k = 8), Automobile (k = 3), and Servo (k = 4). In Table 6, the corresponding p-values are presented.
The plots in Figure 5 show that the variance of the residuals from the benchmarks gradually increases or
decreases, while the linear regression model derived from our model has a relatively consistent residual
trend in relation to the fitted values. The p-values in Table 6 show that our model provides better
solutions because a higher p-value is preferable for the heteroscedasticity tests.
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Figure 5: Residual plots for three representative cases

Results for Experiment 2: Proposed model vs. iterative model In Table 7, we compare our
model with the iterative model (MP iter) for cases where the solution for MPbase violates some of the
tests and diagnostics. We only consider these 28 cases because both algorithms are not needed ifMPbase

can provide a solution that satisfies all tests and diagnostics. In the Status column, ‘alt sol’ indicates
that, within the time limit, a model could not find a solution with statistically significant coefficients for
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Table 6: p-values from heteroscedasticity tests

Case rh
(dataset, k) MP lazy MPbase FS LASSO

AutoMPG (k = 8) 0.0142 2.6402× 10−5 2.7821× 10−8 2.8149× 10−12

Automobile (k = 3) 0.0111 3.3471× 10−6 1.1835× 10−9 1.6423× 10−6

Servo (k = 4) 0.0106 1.4686× 10−11 1.5836× 10−16 7.1300× 10−24

all of the selected variables, and an alternative solution is obtained at termination. The terms ‘opt’ and
‘best feas’ represent cases where an optimal solution (satisfying all constraints) and a feasible solution
are found, respectively. The term ‘infeas’ forMP lazy means that the problem is infeasible and our model
returns an alternative solution. These cases are organized according to the following hierarchy: ‘opt’ >
‘best feas’ > ‘alt sol’ = ‘infeas’. In columns Status, E, and π, the results indicating that our model is
better are in boldface. The results in Table 7 are summarized in Table 8.

Table 7: Comparative results for the iterative model

dataset k
Status REP E π Execution time

MP iter MP lazy MP iter MP lazy MP iter MP lazy MP iter MP lazy MP iter MP lazy

Servo 10 alt sol best feas 1 0.9963 0.1745 0 1 0 3600 3601
Bodyfat 3 opt opt 0.9998 0.9998 0 0 0 0 83 5
Bodyfat 4 alt sol opt 0.9997 0.7557 0.2541 0 1 0 3600 86
Bodyfat 5 alt sol opt 0.9999 0.7539 0.162 0 4 0 3600 1978
Bodyfat 6 alt sol best feas 0.9999 0.7568 0.3183 0 5 0 3600 3601
Bodyfat 7 alt sol best feas 0.9999 0.7414 0.343 0 6 0 3600 3601
Bodyfat 8 alt sol alt sol 1 0.7524 0.2904 0.1619 7 1 3600 3601
Bodyfat 9 alt sol alt sol 1 0.7587 0.2898 0.1403 8 4 3600 3601
Bodyfat 10 alt sol alt sol 1 0.76 0.3554 0.3026 9 3 3600 3601
Barro 6 alt sol alt sol 0.4900 0.5191 0.5495 0.0931 3 1 3600 3600
Barro 7 alt sol alt sol 0.9664 0.5372 0.3176 0.1095 3 2 3600 3601
Barro 8 alt sol alt sol 0.9829 0.5171 0.4093 0.1817 3 3 3600 3600
Barro 9 alt sol alt sol 0.9905 0.9469 0.4361 0.2407 4 4 3600 3600
Barro 10 alt sol alt sol 0.9892 0.9721 0.391 0.2507 5 5 3600 3601

Winequality 8 alt sol opt 0.9959 0.9924 0.4756 0 1 0 3600 88
Winequality 9 alt sol opt 0.9988 0.9974 0.5346 0 2 0 3600 48
Winequality 10 alt sol alt sol 0.9988 0.9863 0.4835 0.0725 3 2 3600 3600

Carseats 8 opt opt 0.9998 0.9998 0 0 0 0 397 9
Carseats 9 alt sol opt 0.8117 0.9923 0.5056 0 3 0 3600 289
Carseats 10 alt sol alt sol 1 0.9502 0.2099 0.1743 2 1 3600 3601
Framing 7 alt sol alt sol 0.9886 0.9971 0.2128 0.1768 2 1 3600 3601
Framing 8 alt sol alt sol 0.9643 0.8653 0.2711 0.1649 4 3 3600 3602
Framing 9 alt sol alt sol 0.9965 0.8651 0.2213 0.1614 4 4 3600 3601
Framing 10 alt sol alt sol 0.9969 0.9654 0.3761 0.1957 5 5 3600 3601
Griliches 9 alt sol opt 1 0.9963 0.0509 0 1 0 3600 417
Griliches 10 alt sol opt 0.9996 0.9934 0.0604 0 2 0 3600 843
Hprice3 9 opt opt 0.9952 0.9952 0 0 0 0 625 47
Hprice3 10 alt sol alt sol 0.9914 0.9936 0.553 0.0943 3 1 3600 3600

Average - - 0.9698 0.8699 0.2945 0.0900 3.25 1.43 3253.7 2450.9

Table 8: Summary table for the results in Table 7

Measures MP iter wins MP lazy wins Tie

Status 0 10 18
E 0 25 3
π 0 20 8

Execution time 0 10 18
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According to Tables 7 and 8, MP lazy outperforms MP iter in most cases, while maintaining an
explanatory power around 87% of MPbase. In cases where MP lazy finds an optimal solution, MP lazy

is appreciably faster than MP iter. Moreover, by comparing performance measures E and π for the
alternative solutions, we can see that the alternative solutions from our model outperform those from
the iterative model in terms of the statistical significance of the coefficients, while differences in the
explanatory power can be ignored in most cases. Furthermore, for Barro (k = 6), Carseats (k = 9),
Framing (k = 7), and Hprice3 (k = 10), our model finds a better solution in terms of both explanatory
power and statistical significance. Several results in the Bodyfat and Barro datasets indicate that the
explanatory power of our model is less than 80% of MPbase. However, MP lazy clearly outperforms
MP iter in terms of the statistical significance of the coefficients in these cases.
Results for Experiment 3: Proposed model vs. model without the relaxed t-test constraints
To confirm the effectiveness of the proposed relaxed t-test constraint (8g), we compare our proposed
model with and without (8g). We run the models on the cases (dataset and k pairs) where the optimal
solution is found within 600 seconds. For each case, we run the algorithms 30 times to obtain the average
and median number of explored nodes and computation time. Table 9 provides summary statistics by
aggregating the results by k, where the complete results are reported in the online supplement.

Table 9: Summary table for the results of experiment 3

#node Time
k #case Ratio %improved Ratio %improved
3 12 0.998 72.7 1.051 18.2
4 12 0.984 63.6 1.015 27.3
5 5 0.862 80.0 0.940 60.0
6 5 0.821 100 0.892 100
7 2 0.918 100 0.972 50
8 2 0.831 100 0.893 50

ALL 39 0.936 77.8 0.989 41.7
k ≥ 5 14 0.846 92.3 0.921 71.4

For each case (dataset and k pair), we define Ratio to be the average ratio between the model with
and without the cut. If Ratio is less than 1, it implies that the model with the cut is better for the
corresponding performance measure (either #node and Time). In Table 9, for each k, Ratio is the
average Ratio out of all corresponding cases and %improved is the percentage of cases with Ratio < 1.
The last two rows include the averages across all cases and cases with k ≥ 5.

In Table 9, we can verify the advantage of including the relaxed t-test constraint. For every k, the
Ratio for #node is less than 1. This shows that our model searches less number of solutions before
obtaining the optimal solution than the model without the constraint. This is because the constraint
reduces the solution space by cutting some solutions with insignificant coefficients. As a result, the
computation time to obtain the optimal solution decreases as shown in the Time column. In particular,
the computation time of the model with the cut is significantly faster when k is larger (e.g., k = 5, ..., 8):
by including the constraint, #node and computation time are significantly decreased by 15.4% and
7.9%, respectively. This trend implies that for a larger k, more solutions are excluded by the constraint.
It corresponds to the fact that it is more likely to have insignificant coefficients when we have more
explanatory variables.
Results for Experiment 4: Alternative solution procedure vs. simple penalty function In
Table 10, the p-values for the coefficients from the linear models derived fromMP lazy andMPpenalty for
Bodyfat (k = 7) and Carseat (k = 10) are presented, where the two cases are selected because the two
approaches provide clearly distinguished solutions. Recall that the only difference between MP lazy and
MPpenalty is that the former uses the alternative solution procedure whereas the latter uses the simple
penalty function fq. The p-values greater than 1− αE = 1− 0.95 = 0.05 are bolded.

Note that the average of the violating p-values (E) forMP lazy for Bodyfat (k = 7) is 0.0649, while it
is 0.0899 forMPpenalty. Also, the R2

adj ofMP lazy is greater than that ofMPpenalty. In Carseat (k = 10),
the average of the violating p-values for MP lazy is smaller than that of MPpenalty (0.1736 < 0.1800)
and furthermore the number of insignificant coefficients for MP lazy is smaller than that of MPpenalty

(1 < 2). The R2
adj of MP lazy is worse, however, the difference in R2

adj is negligible. Thus, our model,
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Table 10: p-values from the t-tests for the coefficients

Dataset (k) Model R2
adj E p-values

Bodyfat (7)
MP lazy 0.7288 0.0649 0.0000 0.0649 0.0112 0.0001 0.0076 0.0045 0.0091
MPpenalty 0.7274 0.0899 0.0899 0.0000 0.0035 0.0402 0.0302 0.0050 0.0179

Carseat (10)
MP lazy 0.8296 0.1736 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.1736 0.0000 0.0000 0.0000
MPpenalty 0.8682 0.1800 0.0000 0.0000 0.0000 0.0000 0.0004 0.1800 0.0000 0.0000 0.0000 0.1800

which includes the alternative solution procedure, can provide a better solution than the model employing
a simple penalty function.
Results for Experiment 5: Sensitivity analysis The plots in Figure 6 represent the trends in E
and π according to changes in λE and λπ for the Bodyfat dataset, respectively. In each plot, it can be
observed that each violation measure decreases with an increase in the corresponding parameter. This
relationship does not appear to be monotonous, because the optimization algorithm embedded in the
solver searches different spaces and terminates due to the time limit every time it is called. For example,
let us compare the solutions SA and SB in Figure 6a. (The other validation measures are not significantly
different.). According to each value of E and π, it is obvious that SA is a better solution than SB under
the parameter set with λE = 2 and λE = 2.5. However, because the optimization solver did not find
SA during the search with λE = 2.5, SB is returned as the best alternative solution. In Figure 6b, it
is noteworthy that the decrease in π does not appear when λπ is greater than 0.15. This indicates that
increasing the parameter does not necessarily improve the validation measure after a certain point.
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Figure 6: Trends in the measures according to changes in the parameters (Bodyfat with k = 7, 8, 9, 10)

6 Conclusion

Although minimizing fitting errors is the most important objective when building a regression model,
it is also important to check if all the regression assumptions and diagnostics are met or satisfied.
However, most of the current approaches do not (or cannot) incorporate this model validation step into
their algorithms. In this work, we propose a fully automated model building procedure for multiple
linear regression subset selection that integrates model building and validation based on mathematical
programming. The procedure is further improved in terms of computation efficiency by including the
relaxed t-test constraint which can be efficiently derived. The proposed procedure is also capable of
providing an alternative solution when there is no feasible solution or a feasible solution is not found
within the set time limit.

The computational experiments with real-world datasets show that our model can provide quality
solutions satisfying all of the considered diagnostics while maintaining an R2

adj value close to the base
solution (optimal value when all the diagnostics are ignored). Furthermore, the results demonstrate the
viability of our model in real regression analysis by setting a practical time limit. We also find that the
alternative solutions are superior to those of the benchmarks. The R2

adj value of the alternative solutions
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are comparable with those of the benchmarks, while being significantly better in terms of diagnostics.
We also show that our model based on lazy constraints outperforms the existing iterative approach.
The proposed lazy constraint-based procedure is faster than the iterative approach while providing more
quality alternative solutions within the time limit. Lastly, we demonstrate the benefit of the relaxed
t-test constraint showing that including the constraint can significantly decrease the number of explored
solutions and the computation time.

In conclusion, we strongly believe that our model is useful in practice because we integrate model
building (subset selection) and validation steps, whereas traditional approaches require human decisions
and significant trial-and-error to alternate the two steps. Furthermore, the proposed lazy constraint
approach based on mathematical programming that addresses the statistical tests and diagnostics for
linear regression is substantially more efficient than the existing iterative model. We also remark that
other regression diagnostics that are not considered in this paper can be easily integrated into our lazy
constraint framework. One of the most challenging research directions for the improvement of the current
procedure includes formulating a linear or a convex constraint to replace the current approximation
constraint for t-tests or improve the quality of the approximated constraint.
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