Initial observations of plastic-lined ponds for fingerling walleye production

Matthew L. Rogge
Iowa State University

Alan A. Moore
Iowa Department of Natural Resources

Christopher P. Clouse
Iowa Department of Natural Resources

Joseph E. Morris
Iowa State University, jemorris@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/aecl_pubs
Part of the [Aquaculture and Fisheries Commons](http://lib.dr.iastate.edu/aecl_pubs), [Environmental Sciences Commons](http://lib.dr.iastate.edu/aecl_pubs), and the [Terrestrial and Aquatic Ecology Commons](http://lib.dr.iastate.edu/aecl_pubs)

Recommended Citation
http://lib.dr.iastate.edu/aecl_pubs/5

This Article is brought to you for free and open access by the Animal Ecology at Iowa State University Digital Repository. It has been accepted for inclusion in Animal Ecology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Initial observations of plastic-lined ponds for fingerling walleye production

Abstract
Fish culture ponds are commonly fertilized to increase fish production through enhancement of the plankton forage base. Many fish culture facilities rely on natural production of zooplankton and aquatic insects as food sources for larval fish. Literature on pond fertilization regimes varies; recommendations range from no fertilization to a combination of inorganic and organic fertilizers. More research on the interactions among water quality, nutrients, plankton (phytoplankton and zooplankton) and fertilizers of the appropriate nutrient ratios is needed to move fertilization from an art to a science.

Disciplines
Aquaculture and Fisheries | Environmental Sciences | Terrestrial and Aquatic Ecology

Comments

This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/aed_pubs/5
Fish culture ponds are commonly fertilized to increase fish production through enhancement of the plankton forage base. Many fish culture facilities rely on natural production of zooplankton and aquatic insects as food sources for larval fish. Literature on pond fertilization regimes varies; recommendations range from no fertilization to a combination of inorganic and organic fertilizers. More research on the interactions among water quality, nutrients, plankton (phytoplankton and zooplankton) and fertilizers of the appropriate nutrient ratios is needed to move fertilization from an art to a science.

For decades, fish culturists have used fertilizer to increase fish production (Piper et al. 1982, Boyd 1990, Avault 1996). Because there is a barrier to nutrients leaching in from sediments when a pond is lined, we anticipate fertilization will be even more important in plastic-lined systems. Most fertilization studies have concentrated on fry production in earthen ponds. Different conclusions have been drawn as to what quality and quantity of fertilizers to use in these ponds. Furthermore, culturists disagree on the merits of organic versus inorganic fertilizers relative to enhanced fish growth.

The analogy of using a tub to culture fish describes the use of plastic-lined ponds for fish culture; that means no sediment, but a hard, smooth bottom surface. The result is limited rooted plant growth as well as potentially limited benthic insect populations. Additional nutrients may be necessary to sustain the zooplankton and aquatic insect populations needed as a larval fish food source in such ponds. Perceived benefits of these ponds include: 1) ease of harvest, 2) limited plant growth, 3) limited water loss, and 4) ability to remove excess nutrients or unwanted organisms.

In April 2000, the Iowa Department of Natural Resources completed the construction of ten 0.4 ha and six 0.04 ha plastic-lined ponds for fish production and research purposes. Prior to that time, plastic-lined ponds were not used by the Iowa Department fish hatchery system. Pond fertilization strategies and rearing techniques for walleye need to be investigated to maximize fish production and hatchery efficiency.

The development of fertilization regimes for plastic-lined ponds will increase the quality and size of walleye produced in the ponds. The fish will be used for stocking purposes and habituation to formulated feed. Data garnered will provide Rathbun hatchery personnel with information necessary to maximize fish production without undue experimentation that can jeopardize production. The six 0.04-ha ponds will provide the basis for experimentation. The larger production ponds will be used for walleye production while at the same time utilizing current management strategies to maximize fish production.

Management of zooplankton in walleye culture is critical to survival and growth of first feeding larvae. Included in this management is the monitoring of water quality, water fertility and fish stocking density. To manage water fertility, walleye hatchery managers regularly add fertilizer, both inorganic and organic, either on an amount per pond basis or to reach a desired nitrogen/phosphorus ratio. In addition, the production of large walleye fingerlings, greater than 0.6 g, requires an adequate aquatic insect forage base.

Common fertilization practices for walleye culture vary among managers. Call (1996) stated that fertilization at Garrison Dam National Fish Hatchery began immediately after pond filling, using alfalfa meal at 149 kg/ha and every three days until just before harvest. Fairport, Iowa hatchery personnel used cottonseed meal, wheat shorts, meat and bone meal and yeast at 392.4 kg/ha until 1992. From 1993 to date, no fertilization has been used. A similar regime was used at Mt. Ayr, Iowa hatchery until 1992, when solely alfalfa meal at 560.5 kg/ha was used (Mischke and Morris 1997). Cassidy (1997) compared alfalfa pellets with inorganic liquid nitrogen and phosphorus in a test to produce walleye fingerlings in plastic-lined ponds in Nebraska. He found ponds fertilized with inorganic fertilizer produced larger fingerling walleye with about the same harvest return as ponds fertilized with organic fertilizer.

Choice of fertilizer and stocking rates affect fish production.
Pond Studies

The objective of this study was to determine proper pond fertilization techniques necessary to maximize production of primary forage, thereby maximizing production of walleye fingerlings (50 percent survival at a minimum size of 1,760 fish per kg).

Three treatments (control, inorganic, and organic) were assigned to six 0.04-ha ponds, two replicates per treatment. Control ponds were unfertilized. Inorganic ponds were treated with 10-0-0 and 12-49-6 (N-P-K) to a target nitrate to phosphorus ratio of 7:1 (Mischke 1999); organic ponds were treated weekly with alfalfa and cottonseed pellets (84 kg/ha). All research ponds were stocked at 250,000 fish/ha. Ponds were filled one week before stocking.

Three stocking densities were evaluated in nine 0.40-ha ponds. Fertilization was similar in all ponds: weekly applications of 112 kg/ha alfalfa pellets. Three ponds each were stocked at 250,000/ha, 375,000/ha and 500,000/ha. Ponds were filled one week before stocking.

We measured various water chemistry and physical parameters, including alkalinity, nitrogenous compounds and phosphorus, as well as temperature, pH, and dissolved oxygen. Zooplankton was sampled the same day as water quality. Since these ponds had plastic liners, we were not able to use a standard grab sampler to assess the insect populations. Instead, we used a multiple-plate sampler. Fingerlings were harvested after an approximate 30 day culture period. Ponds were drained and fish collected in a concrete catch basin.

Study Results

The 0.04-ha ponds. All research ponds had similar survival. Fish in ponds fertilized with organic fertilizer were heavier and longer than fish in the control ponds and those fertilized with inorganic fertilizer. All fertilization treatments had high zooplankton populations within days of initial fry stocking, but those populations declined drastically. Organic fertilization had a significant positive impact on insect populations, which consisted principally of midge larvae. Most water quality parameters were similar among treatments, except for pH and dissolved oxygen. Ponds treated with organic fertilizers had depressed oxygen levels while ponds receiving inorganic fertilizer had increased pH. Other than ponds fertilized with organic fertilizer, no treatments reached our goal of 1,760 fish/kg; survival was low in all ponds.

The 0.40-ha ponds. Harvest figures showed higher survival in production ponds stocked at 250,000/ha compared with ponds stocked at 500,000/ha. There were no differences in other treatment comparisons. Plankton populations varied only slightly among stocking densities. As with the research ponds, benthos
and pond conditions at stocking; the production ponds stocked at 250,000/ha were stocked last. While production values for the 2000 production season did not meet our goals, valuable data on the importance of benthic insects and plankton management were gathered. Those data were used in making suitable adjustments in the 2001 walleye culture season.

Notes

1Department of Animal Ecology, Iowa State University, Ames, Iowa USA
2Iowa Department of Natural Resources

References

Call for proposals in ASEFAF project

Access to South European Finfish Aquaculture Facilities

Supported by EU through improving human potential programme

On its research centers of Brest and Palavas, Ifremer proposes to European and Associated States researchers 29 experimental units fitted with tanks, supplied with sea or fresh water, to make experiments on all life-stages of South European finishes.

MAIN RESEARCH TOPICS ARE:
- Aquaculture in controlled system
- Genetics and reproduction
- Fish nutrition
- Environmental physiology
- Immuno-pathology

Information, contact, apply form www.ifremer.fr/asefaf

E mail : asefaf@ifremer.fr

World Aquaculture 61