Spatiotemporal Patterns in Nest Box Occupancy by Tree Swallows Across North America

Thumbnail Image
Date
2012-01-01
Authors
Shutler, Dave
Hussell, David
Norris, D.
Winkler, David
Bonier, Frances
Belisle, Marc
Clark, Robert
Dawson, Russell
Wheelwright, Nathaniel
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Vleck, Carol
Professor Emerita
Research Projects
Organizational Units
Organizational Unit
Ecology, Evolution and Organismal Biology

The Department of Ecology, Evolution, and Organismal Biology seeks to teach the studies of ecology (organisms and their environment), evolutionary theory (the origin and interrelationships of organisms), and organismal biology (the structure, function, and biodiversity of organisms). In doing this, it offers several majors which are codirected with other departments, including biology, genetics, and environmental sciences.

History
The Department of Ecology, Evolution, and Organismal Biology was founded in 2003 as a merger of the Department of Botany, the Department of Microbiology, and the Department of Zoology and Genetics.

Dates of Existence
2003–present

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Ecology, Evolution and Organismal Biology
Abstract

Data from the North American Breeding Bird Survey (BBS) suggest that populations of aerial insectivorous birds are declining, particularly in northeastern regions of the continent, and particularly since the mid-1980s. Species that use nest boxes, such as Tree Swallows (Tachycineta bicolor), may provide researchers with large data sets that better reveal finer-scale geographical patterns in population trends. We analyzed trends in occupancy rates for ca. 40,000 Tree Swallow nest-box-years from 16 sites across North America. The earliest site has been studied intensively since 1969 and the latest site since 2004. Nest box occupancy rates declined significantly at five of six (83%) sites east of -78° W longitude, whereas occupancy rates increased significantly at four of ten sites (40%) west of -78° W longitude. Decreasing box occupancy trends from the northeast were broadly consistent with aspects of a previous analysis of BBS data for Tree Swallows, but our finding of instances of increases in other parts of the continent are novel. Several questions remain, particularly with respect to causes of these broad-scale geographic changes in population densities of Tree Swallows. The broad geographic patterns are consistent with a hypothesis of widespread changes in climate on wintering, migratory, or breeding areas that in turn may differentially affect populations of aerial insects, but other explanations are possible. It is also unclear whether these changes in occupancy rates reflect an increase or decrease in overall populations of Tree Swallows. Regardless, important conservation steps will be to unravel causes of changing populations of aerial insectivores in North America.

Comments

This article is from Avian Conservation & Ecology 7:1 (2012); article 3, doi: 10.5751/ACE-00517-070103. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Sun Jan 01 00:00:00 UTC 2012
Collections