Capacity Expansion in the Integrated Supply Network for an Electricity Market

Thumbnail Image
Date
2011-01-01
Authors
Jin, Shan
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Ryan, Sarah
Department Chair
Research Projects
Organizational Units
Organizational Unit
Industrial and Manufacturing Systems Engineering
The Department of Industrial and Manufacturing Systems Engineering teaches the design, analysis, and improvement of the systems and processes in manufacturing, consulting, and service industries by application of the principles of engineering. The Department of General Engineering was formed in 1929. In 1956 its name changed to Department of Industrial Engineering. In 1989 its name changed to the Department of Industrial and Manufacturing Systems Engineering.
Journal Issue
Is Version Of
Versions
Series
Department
Industrial and Manufacturing Systems Engineering
Abstract

Constraints in fuel supply, electricity generation, and transmission interact to affect the welfare of strategic generators and price-sensitive consumers. We consider a mixed integer bilevel programming model in which the leader makes capacity expansion decisions in the fuel transportation, generation, and transmission infrastructure of the electricity supply network to maximize social welfare less investment cost. Based on the leader's expansion decisions, the multiple followers including the fuel suppliers, ISO, and generation companies simultaneously optimize their respective objectives of cost, social welfare, and profit. The bilevel program is formulated as a mathematical program with complementarity constraints. The computational challenge posed by the discrete character of transmission expansions has been managed by multiple model reformulations. A lower bound provided by a nonlinear programming reformulation increases the efficiency of solving a binary variable reformulation to global optimality. A single-level optimization relaxation serves as a competitive benchmark to assess the effect of generator strategic operational behavior on the optimal capacity configuration.

Comments

This is a manuscript of an article from IEEE Transactions on Power Systems 26 (2011): 2275, doi: 10.1109/TPWRS.2011.2107531. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Sat Jan 01 00:00:00 UTC 2011
Collections