12-1-2017

Design Optimization for Manufacturing for Farrowing System

Emma Gallegos
Iowa State University, gallegos@iastate.edu

Landon Johnson
Iowa State University, landonj@iastate.edu

Austin Lamphier
Iowa State University, austinl@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/tsm415

Part of the Bioresource and Agricultural Engineering Commons, and the Industrial Technology Commons

Recommended Citation
http://lib.dr.iastate.edu/tsm415/18

This Poster is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in TSM 415 Technology Capstone Posters by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Design Optimization for Manufacturing for Farrowing System

Client: FarrPro Inc., Des Moines, Iowa

Problem Statement
- Designing a Farrowing system
 - Keeping it manufacturable
 - Keeping it functional
 - Keeping it within cost parameters

Objectives
- Use materials that have the ability to withstand caustic environments estimated 3-5 years.
- Meet or Exceed current safety standards set by prototype.
- Meet Production Cost Goals to maintain profitability.

Constraints
- Limited Funding
- Timeline
- Material handling a caustic environment
- Distance from Prototype
- Varied knowledge on subject matter

Scope
- Designing a heat retaining shield to cut the cost on energy, yet still provide comfort to piglets.

Proposed Solutions
- Injection Molding
- 2 Hinged Doors
- Single injected shield
- Extrusion
- Thermo molding
- Different light sources

Major Outcomes
- Reduce cost of production by 4% per crate
- More manufacturable unit
- Durable and functional Crate

Methods
- Gathering data from field prototypes
- Perform a Cost Analysis on system
- Use a computer designing software for design, and manufacturability solutions.

Benefit to Client
- Improved manufacturability
- Finding cost effective replacements to benefit the bottom line.

Acknowledgements: Authors are grateful to (Amos Petersen and the FarrPro Team, for the opportunity to work on this project. Project was co-funded by the differential tuition.