Electric Motor Dynamometer Manufacturability

Kyle Plach
Iowa State University, ksplach@iastate.edu

Michael Schulte
Iowa State University, mas16@iastate.edu

Christian Van Sloun
Iowa State University, vansloun@iastate.edu

Dylan Wood
Iowa State University, dywood@iastate.edu

Michael Anderson
Iowa State University, mea1@iastate.edu

See next page for additional authors

Follow this and additional works at: https://lib.dr.iastate.edu/tsm416_posters

Part of the *Bioresource and Agricultural Engineering Commons*, and the *Industrial Technology Commons*

Recommended Citation

https://lib.dr.iastate.edu/tsm416_posters/10

This Poster is brought to you for free and open access by the Undergraduate Theses and Capstone Projects at Iowa State University Digital Repository. It has been accepted for inclusion in TSM 416 Technology Capstone Posters by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Authors

This poster is available at Iowa State University Digital Repository: https://lib.dr.iastate.edu/tsm416_posters/10
Electric Motor Dynamometer Manufacturability

Client: ABE/TSM 363 Lecture/Lab

Problem Statement
- Develop a manufacture-ready electric motor dynamometer based on a prototype system.
- System will be replicated and utilized in ABE/TSM 363 Lecture/Lab demonstrations and testing

Objectives
- Create a complete, visually appealing, and operational mechanical system including:
 - Appropriate safety shielding and electrical protection
 - Functioning instrumentation system
 - User interface and data collection system

Constraints
- Able to measure manually or digitally
- Budget: $2000
- Metal surfaces must resist rust

Timeline
- Design approved December
- BOM approved parts ordered January
- Manufacture completed March
- Finalized documentation April

Scope
- Manufacturable design complete with documentation
- Finalized visually appealing product
- Automated data collection
- Ability to manually and digitally collect data

Methods/Approach
- Inventor design
- Waterjet cut components to exact dimension
- Assemble parts on prototype board
- Finalize assembly design
- Document for repeatability

Major Deliverables
- Design of manufacture-ready dynamometer
- Bill of material
- Replication instructions

Recommendations
- Future project group should incorporate instrumentation to this design
- This design should eventually replace dynamometer used in ABE/ TSM 363

References
- Design based on previous prototype
- Autodesk Inventor used for CAD design
- LabView will be used in future for digital readings

Acknowledgements: Authors are grateful to Tim Shepherd for the opportunity to work on this project. Project was co-funded by the differential tuition.