Spring 2011

The Impact of a Reading Room's Closure on Collection Development

Heather S. Lewin
Iowa State University, hslewin@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/refinst_pubs

Part of the Library and Information Science Commons

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/refinst_pubs/8. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
The Impact of a Reading Room's Closure on Collection Development

Abstract
This paper discusses the preparations for the closure of Iowa State University's Physical Science Reading Room from the perspective of collection management and development. The anticipated changes to the reading room collection provided an opportunity to analyze the core physical sciences collection in regards to composition, space occupied, and use. Additionally, this paper reviews the data gathered to determine the effects of material accessibility and use on future collection development decisions.

Disciplines
Library and Information Science

Comments
Originally published in Issues in Science and Technology Librarianship, 65 (Spring 2011).
The Impact of a Reading Room's Closure on Collection Development

Heather Lewin
Science and Technology Librarian
Parks Library
Iowa State University
Ames, Iowa
hslewin@iastate.edu

Copyright 2011, Heather Lewin. Used with permission.

Abstract

This paper discusses the preparations for the closure of Iowa State University's Physical Science Reading Room from the perspective of collection management and development. The anticipated changes to the reading room collection provided an opportunity to analyze the core physical sciences collection in regards to composition, space occupied, and use. Additionally, this paper reviews the data gathered to determine the effects of material accessibility and use on future collection development decisions.

Introduction

The Physical Science Reading Room at Iowa State University contained a 26,922 piece collection focused on supporting the Chemistry, Physics, and Materials Science departments. The collection contained a small reserve collection, reference tools, monographs and serials which were selected for inclusion by the departments' faculty due to their perceived importance and use in their teaching and research. In Spring of 2009, changes to the reading room collection were anticipated as the facility connecting the chemistry and physics buildings, which housed the Reading Room, was slated for demolition. All discussions of future sites included less space for print resources. Because
of this, the evaluation of the reading room collection was necessary for making informed decisions. Data were collected on the number of circulations, space occupied, electronic coverage, and duplication within the university-wide collection.

Changes to the university budget model led to the facility upkeep costs being transferred to the Chemistry Department. This, combined with the economic downturn affecting the University budget, lead to the decision by the Department to reclaim the space until its scheduled demolition. In December of 2009, the Reading Room was closed and the materials integrated into the collections at the main library. This report looks at the collection composition and the implications for collection development as discovered in this process.

Background

There have been numerous papers chronicling the closing of branch facilities (Hitchcock et al. 2005), specifically those that contain materials in the physical sciences such as chemistry (Armstrong 2005; Johnson et al. 2004). Garritano's study (2007) showed that more and more facilities containing chemistry materials are being consolidated into larger, less specific collections. Many of these articles talk about the process of the actual event: evaluating, weeding, packing, moving, and integration into another collection. These are helpful in understanding the steps that must take place, but they do not address the value of the information gathered as it relates to collection development.

Collection management, serials retention, and other collection evaluation projects are covered extensively in literature. There are papers that present information on data collection, evaluation, and retention decisions, including an analysis by Altmann and Gorman of an academic library (1999).

This paper looks at how the assessment of a collection and the closing of a facility can lead to changes in collection development policy and acquisition priorities. Shouse and Teel (2006) referenced such change clearly when they wrote about assessment being "an essential step in future collection development".

Methods

An understanding of the content and the use of the collection was necessary before decisions could be made for relocating materials and planning for future acquisitions. The project began with the library system analyst providing a spreadsheet of the titles, call numbers and circulation data of the reading room collection and all duplicate titles. Each piece of the collection was listed separately. To make the use of the data more manageable, the entries were consolidated to one line per title, combining the circulation data for each piece into one value per title.

The next step was to determine how much physical space each title occupied. Each separate title was measured and the data entered into the spreadsheet. The information
was marked for serials currently received and the scope of electronic coverage was determined by cross-referencing the catalog and e-journal list. As the future of the reading room was considered and the decision for closure finalized, the collected data was given to those in facility management. The relocation decisions were made by the Chemistry Librarian using a combination of the data collected and consultation with experienced staff.

Most of the reading room collection was moved into the corresponding collections in the main library. The analysis of the collection was useful in streamlining the process of closing the reading room as duplicates and other withdrawals were removed before the relocation. The knowledge of the space needed was essential for a smooth transition. The measurements of the collection reflected the piece count and did not play a large part in the analysis once facility management was given the information.

The decisions for moving and retention were made with general guidelines:

- Withdraw the additional copies of materials with no circulations;
- Move the serials and monographs to correlating collection in the main library;
- For items with multiple editions, withdraw the oldest edition from the collection.

The Collection

The data needed to be analyzed further in regards to composition and use before it could impact ongoing acquisitions. The data for the whole collection were examined, with particular emphasis on the QD classified materials. These data included twelve items of non-library owned reserve materials, such as textbooks, which accounted for 1,636, nearly 7%, of all the recorded circulations. The data presented here did not include these materials as they were not purchased or retained by the library; the other reserve materials were included in the analysis. This inclusion may have skewed the data due to heavy circulation rates of materials on reserve but there is no way with the current integrated library system to determine which books had previously been on reserve, and therefore no way to eliminate this potentially distorting data. Additionally the four titles that were assigned call numbers starting with only CDROM were not included in the analysis because of low circulation and no subject designations. While the majority of the titles were monographs, the serials had more volumes and thus occupied more space. The basic information about the collection is outlined in Table 1.

Table 1: Basic Facts of the Physical Sciences collection:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total titles</td>
<td>913</td>
</tr>
<tr>
<td>serials</td>
<td>231</td>
</tr>
<tr>
<td>monographs</td>
<td>682</td>
</tr>
<tr>
<td>Total volumes</td>
<td>26,922</td>
</tr>
</tbody>
</table>

http://www.istl.org/11-spring/refereed2.html
The serial collection was comprised of 231 titles, 37 of these having multiple locations listed in their record. Twenty-five of the title duplicates were housed at multiple locations where serial runs had been split into segments without overlapping volumes. Only a dozen of these titles contained duplicate copies of the same volumes. The monographs contained a much greater percentage of duplications: over 60% of the monograph titles were duplicates. As with the serials, not all of the duplications were additional copies but rather some were alternate editions, with the newest in the reading room and next oldest in the reference collection or general collection in the main library. The materials that were exact duplicates were removed from the collection while the alternate editions were shifted to the general or reference collections. The few exceptions occurred when multiple editions or multiple copies of a title were kept due to heavy use or historical importance.

The collection was 97% QDs and QCs with supporting materials from 18 other call number ranges. The QD serials occupied over half of the space with 145 titles while the 421 QD monograph titles only occupied around 7%. The QC serials and monographs made up 39% of the collection.

Circulation data do not provide a comprehensive assessment of use but there was no time to perform an intensive use study. The available data included monograph circulation records starting from the implementation of the previous automated system in the early 1990's and serials circulation records for less than ten years. This information only provides a snapshot of one type of use: those materials that have been taken out of the library. Titles with numerous circulations do not provide concrete evidence of use in comparison to titles with low to non-existent circulations. The absence of circulations...
could either represent no activity, in-library use only or after-hours use of materials by faculty with keys to the facility. Consultation with staff responsible for re-shelving provided insight into perceived in-library use information.

The QD section of the collection was of most interest to this author due to collection responsibilities and was analyzed more intensely. The 566 QD titles were broken up into ten more subject-specific sections. General chemistry (QD1-65), organic chemistry (QD241-449), and physical chemistry (QD450-499) were more highly represented than other areas within chemistry. This was not surprising given that these areas had been identified in previous collection management projects as key disciplines for retention in the Reading Room; however, it was good to have this verified. Selection was dependent on immediate need; materials that directly related to experimental procedure were chosen over theoretical topics with the intent of providing quick access to those needing information in close physical proximity to labs.

The QD subsections were evaluated to determine which had the highest percentage of the use and the greatest average use per piece. The three areas with the highest circulation rates would be targeted for greater depth of coverage and more accessibility with more purchases of electronic versions of materials. A few electronic resources have already been purchased to ease the strain of losing quick access to highly used print materials. The initial purchases were done to fulfill requests from faculty and supplement reference materials. The highest rates of circulations for the time period represented by the data occurred within the QD 241-299 range, organic synthesis, for both percentage of use and use per piece. While major changes to the acquisition distribution within chemistry are not expected to shift drastically, the knowledge of the heightened use of these materials will be a consideration in future collection development.

Most of the collections were simply relocated, but some unexpected titles were examined in the process. Some of the historically important titles which were expected to have higher circulation, such as Gmelin, had both low circulation rates and low perceived in-library use and were sent to storage. The staff also noted titles with high levels of use within the reading room that had no circulation data. One example of this led to the subscription to e-EROS as a replacement for a heavily used reference set. The consultation with knowledgeable staff was vital to the success of both the physical movement of the collection and the usability of the collection in its new locations, either in the general collection, reference, or storage.

Conclusion

There are many results of losing this distinct space for the core collection of physical science resources. We have lost an easy way to determine the immediate priorities of the faculty researchers in the physical sciences—specifically physics and chemistry. While attempts will be made to include faculty in future projects, there has been more difficulty in garnering participation in a full-scale collection projects than in decisions for the smaller core collection that was located in their own building. Additionally, priority is being put on
purchasing electronic resources (despite the tight budget) due to the increased need for remote accessibility now that the resources once so readily available are further removed. The reading room, despite its decrease in activity was still heavily used for referencing materials on organic and inorganic synthesis methods.

The loss of physical space in a library system is always difficult, but there have been unanticipated positives. First, there have been savings associated with the closure of the facility due to reduced duplication of resources between the reading room and other locations. Other savings have been made due to the reduction of student workers with the closing of the public service desk. Second, it has provided collection development knowledge that is otherwise difficult to impart without first-hand experience. Third, it has provided data to help shape future collection development decisions so that the collection best meets the needs of our patrons and the distinct research environments. The data collected from this project and other collection management projects will be kept for reference and comparison for future projects and updating the collection development policy. The familiarity with the collection and the knowledge of its use are valuable resources to any librarian with collection responsibilities.

References

