Hydroswing Door Automation

Tyler J. Carney
Iowa State University, tjcarney@iastate.edu

Adam Degaetano
Iowa State University, adamdeg@iastate.edu

Nick Niemeyer
Iowa State University, ndn@iastate.edu

Creed Tucker
Iowa State University, ctucker@iastate.edu

Michael Anderson
Iowa State University, mea1@iastate.edu

See next page for additional authors

Follow this and additional works at: https://lib.dr.iastate.edu/tsm416_posters

Part of the Bioresource and Agricultural Engineering Commons, and the Industrial Technology Commons

Recommended Citation

Carney, Tyler J.; Degaetano, Adam; Niemeyer, Nick; Tucker, Creed; Anderson, Michael; and Koziel, Jacek A., "Hydroswing Door Automation" (2020). *TSM 416 Technology Capstone Posters*. 7.
https://lib.dr.iastate.edu/tsm416_posters/7

This Poster is brought to you for free and open access by the Undergraduate Theses and Capstone Projects at *Iowa State University Digital Repository*. It has been accepted for inclusion in *TSM 416 Technology Capstone Posters* by an authorized administrator of *Iowa State University Digital Repository*. For more information, please contact digirep@iastate.edu.
Authors
Tyler J. Carney, Adam Degaetano, Nick Niemeyer, Creed Tucker, Michael Anderson, and Jacek A. Koziel

This poster is available at Iowa State University Digital Repository: https://lib.dr.iastate.edu/tsm416_posters/7
Hydroswing Door Automation

Client: BioCentury Research Farm, Boone, Iowa

Problem Statement
The client is an entity of Iowa State university located on the ISU BioCentury Research Farm. Currently, the door is operated manually, and more efficient methods to operate the door exist such as using an automated system.

Objectives
Provide two complete solutions per the project scope. One OEM already available solution, and one Custom solution. Both systems must:
1. Create a safe and efficient automated door open/close cycle
2. Reduce time spent waiting on the door to open and close

Constraints
• $1000 budget
• Components for two different solutions
• Door is used daily and cannot be out of service
• Components must be compatible with existing system

Scope
• Create two systems that can be retrofitted to the existing door for automated operation.
• Provide a decision matrix of which system is preferred, logic diagrams of electronics, and computer simulation of the system.
• System cannot interfere with machinery which enters/exits through the door.

Custom Design System
• Fully custom design
• Cost of $1,170
Pros
• Lower cost
• High design flexibility
Cons
• No installation support
• Lower standard of safety
• Possible component compatibility issues

Name Brand (OEM)
• Schweiss components
• Off the shelf solution
• Cost of $1,745
Pros
• Manufacturer components
• Installation support included
• Limited liability
Cons
• Higher cost
• Limited design flexibility

Methods/Approach
• Develop a Decision matrix (right) to determine the best solution to suit our client’s needs to automate the door
 • Name brand OEM
 • Custom design
• Research on PLC, photo eye sensors, and limit switches
• Safety considerations
• Use of LogixPro Simulation to prove operation logic
• All safety implementations should have a maintenance mode, so the door does not get stuck open for long periods of time.

Major Deliverables
• Suggest an automated electrical design system
• Design has visual and audible indications of movement
• System that only allows movement when the lock is disengaged
• Safety implemented in the door with light curtains

Recommendations
• We recommend using the OEM option, because of how well it met our client’s expectations based on our decision matrix.

References
• https://www.bifold.com/
• https://www.grainger.com/

Acknowledgements: Authors are grateful to Rob Hartmann and Karl Moritz for the opportunity to work on this project. Project was co-funded by the differential tuition.