The World Wheat Trade Model: Specification, Estimation, and Validation

S. Devadoss
Iowa State University

Michael D. Helmar
Iowa State University

William H. Meyers
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/card_technicalreports

Part of the Agricultural and Resource Economics Commons, Agricultural Economics Commons, Econometrics Commons, and the International Economics Commons

Recommended Citation
http://lib.dr.iastate.edu/card_technicalreports/7

This Article is brought to you for free and open access by the CARD Reports and Working Papers at Iowa State University Digital Repository. It has been accepted for inclusion in CARD Technical Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
The World Wheat Trade Model: Specification, Estimation, and Validation

Abstract
The wheat trade model is one of the three models in the trade modeling system developed, updated, and maintained by the Center for Agricultural and Rural Development (CARD). The other two commodity trade models are for feed grains and the soybeans complex. The three trade models are linked through cross-price linkages in the supply and demand components of these models, yet each model can be solved on a stand-alone basis. In general, however, all three trade models are solved iteratively to obtain a simultaneous solution. Equilibrium prices, quantities of supply and demand and net trade are determined by equating excess demands and supplies across regions and explicitly linking prices in each region to a world reference price.

Disciplines
Agricultural and Resource Economics | Agricultural Economics | Econometrics | International Economics
The World Wheat Trade Model:
Specification, Estimation, and Validation

by S. Devadoss,
Michael Helmar, and William H. Meyers

Technical Report 90-TR 14
March 1990

Center for Agricultural and Rural Development
Iowa State University
Ames, Iowa 50011

S. Devadoss is an adjunct assistant professor; Michael Helmar is a predoctoral research associate; and William H. Meyers is professor of economics and associate director, CARD.

Support for this research was provided in part by the Food and Agricultural Policy Research Institute (FAPRI). FAPRI is a joint policy analysis program at Iowa State University and the University of Missouri-Columbia.
Contents

Figures	v
Tables	v
Introduction	1
Modeling Approach	2
Structure and Components of the Model	2
Specification and Estimation	7
Theoretical Foundations	8
Demand	13
Data Sources	17
Empirical Results	17
United States Wheat Submodel	17
Canada Wheat Submodel	26
Australia Wheat Submodel	35
Argentina Wheat Submodel	37
The European Community Wheat Submodel	46
India Wheat Submodel	52
Japan Wheat Submodel	57
Centrally Planned Economies Wheat Submodel	59
Other Regions	63
Evaluation	63
Uses of the Model	70
References	79
Figures

1. General representation of the structure of the world wheat trade model .. 4
2. Determination of equilibrium prices and quantities in the CARD/FAPRI agricultural trade models 5

Tables

1. Structural parameter estimates of the U.S. wheat submodel ... 18
2. Structural parameter estimates of the Canada wheat submodel .. 28
3. Structural parameter estimates of the Australia wheat submodel ... 38
4. Structural parameter estimates of the Argentina wheat submodel ... 43
5. Structural parameter estimates of the EC wheat submodel ... 48
6. Structural parameter estimates of the India wheat submodel .. 54
7. Structural parameter estimates of the Japan wheat submodel ... 58
8. Structural parameter estimates of the CPE wheat submodel ... 60
9. Structural parameter estimates for the other region wheat submodel .. 64
10. Summary of the estimated domestic supply and demand elasticities from the wheat trade model 67
11. Estimated import demand elasticities of the other regions with respect to U.S. wheat prices 68
12. Price transmission elasticities of the wheat prices of other regions with respect to U.S. wheat prices 69
13. Root mean square error and root mean square percentage error from the dynamic simulation 71
14. Theil's forecast error measures ... 73
Introduction

The wheat trade model is one of the three models in the trade modeling system developed, updated, and maintained by the Center for Agricultural and Rural Development (CARD). The other two commodity trade models are for feed grains and the soybeans complex. The three trade models are linked through cross-price linkages in the supply and demand components of these models, yet each model can be solved on a stand-alone basis. In general, however, all three trade models are solved iteratively to obtain a simultaneous solution. Equilibrium prices, quantities of supply and demand and net trade are determined by equating excess demands and supplies across regions and explicitly linking prices in each region to a world reference price.

The trade models, along with the U.S. domestic crops and livestock models maintained by CARD, have been used extensively to examine the impact of domestic and foreign farm policy changes and exogenous shocks. Policy scenarios evaluated with this modeling system have ranged from very restrictive mandatory supply control to complete elimination of domestic and foreign farm programs. The models are also used periodically to project key agricultural variables over a ten-year period. The analyses of impacts of exogenous shocks include technology shocks, such as yield changes; changes in macroeconomic variables, such as income growth, inflation rate, or exchange rates; and external policy shocks, such as those involving tariffs and subsidies. Requests for policy research have
come from the U.S. Congress, the National Governors' Association, the U.S. Department of Agriculture, the U.S. Agency for International Development, Agriculture Canada, Commission of the European Communities, and farm organizations including the National Corn Growers Association, the Iowa Corn Promotion Board, and the Iowa Soybean Promotion Board.

The organization of this documentation is as follows. The next section describes the structure of the model and presents country and regional details. The third section contains theoretical foundations for model specification, data sources, estimation procedures, and results. In the fourth section, elasticity estimates are reported and the model validation is presented using simulation results. A brief discussion of applications and limitations of the model is presented in the final section.

Modeling Approach

The purpose of this section is to describe the structure of the wheat model, and to explain country and regional disaggregation.

Structure and Components of the Model

A general description of the structure and country/regional disaggregation of the model is presented here. The overall structure of the model is based on the dissertation research of Mahama (1985). Other studies which were used in the development of the regional model are
Spriggs (1978, 1981) and Bailey (1987, 1989). The wheat trade model is a nonspatial partial equilibrium model: nonspatial because it does not identify trade flows between specific regions, and partial equilibrium because only one commodity is modeled.

Figure 1 illustrates the structural components of the wheat trade model. The model includes domestic supply and demand functions for major trading and producing countries and regions. Equilibrium prices, quantities, and net trade are determined by equating excess demands and supplies across regions and explicitly linking prices in each region to a world price. Except where they are set by governments, domestic prices are linked to world prices via price linkage equations including bilateral exchange rates and transfer service margins. Where some degree of insulation of domestic prices from external market conditions exists, the free adjustment of trade flows is restricted. The price linkage equation defines the degree of price transmission of external market conditions into the internal system. Trade occurs whether price transmission is allowed or not. The quantity traded adjusts only to internal conditions if there is no price transmission.

The basic elements of a nonspatial equilibrium supply and demand model are illustrated in Figure 2. The U.S. export supply curve (ESUS) is the difference between domestic supply (SUS) and demand (DUS) in the United States and represents the quantity supplied in the world market at various price levels. Other exporters' supply and demand schedules are given in the lower panel. The curve ESO is the combined excess supply of all competing exporters, which is derived as the difference between the
Figure 1. General representation of the structure of the world wheat trade model
Figure 2. Determination of equilibrium prices and quantities in the CARD/FAPRI agricultural trade models.
supply and demand of all the exporters. The import demand schedule (EDT) of all importers is their total demand minus the total supply. Other competitors' export supply and importers' import demand are represented in the middle diagram of the top panel. The export demand schedule (EDN) facing the United States is the difference between the import demand of all importers and the export supply of competitors. The kinked and less elastic nature of the EDN is due to the restrictive trade policies pursued by some foreign countries, which insulate domestic prices from world price variability. A trade equilibrium is allowed by the clearing of excess demands and supplies generated within each region.

The necessary components of the model are given in the equations below:

\[
\text{EDT} = \sum_{i}^{m} \left[\text{FOD}_i (\text{PD}_i, X_{1i}) + \text{FED}_i (\text{PD}_i, X_{2i}) + \text{SD}_i (\text{PD}_i, X_{3i}) - S_i (\text{PD}_i, X_{4i}) \right], \\
i = 1, \ldots, m \text{ importers;}
\]

\[
\text{ESO} = \sum_{j}^{n} \left[S_j (\text{PS}_j, X_{4j}) - \left(\text{FOD}_j (\text{PD}_j, X_{1j}) + \text{FED}_j (\text{PD}_j, X_{2j}) + \text{SD}_j (\text{PD}_j, X_{3j}) \right) \right], \\
j = 1, \ldots, n \text{ exporters;}
\]

\[
\text{ESUS} = S_u (\text{P}_u, X_{4u}) - \left[\text{FOD}_u (\text{P}_u, X_{1u}) + \text{FED}_u (\text{P}_u, X_{2u}) + \text{SD}_u (\text{P}_u, X_{3u}) \right],
\]

\[
\text{US}. \text{ excess supply;}
\]

\[
\text{ESUS} = \text{EDN} = \text{EDT} - \text{ESO}, \quad \text{world market equilibrium;}
\]

\[
\text{PD}_i = G_i (\text{P}_u^{*e_i}, Z_i), \quad i = 1, \ldots, m \text{ importers; and}
\]

\[
\text{PD}_j = G_j (\text{P}_u^{*e_j}, Z_j), \quad j = 1, \ldots, n \text{ exporters,}
\]
where

\begin{align*}
\text{FOD} &= \text{domestic food demand}; \\
\text{FED} &= \text{domestic feed demand}; \\
\text{SD} &= \text{domestic stock demand}; \\
\text{S} &= \text{domestic supply}; \\
\text{EDT} &= \text{excess demand function of all importers}; \\
\text{ESO} &= \text{excess supply function of all exporters, excluding the United States}; \\
\text{ESUS} &= \text{excess supply function of the United States}; \\
\text{EDN} &= \text{excess demand facing the United States}; \\
\text{PD} &= \text{domestic market price}; \\
\text{PS} &= \text{domestic supply price}; \\
\text{P}_u &= \text{Gulf port price}; \\
\text{e} &= \text{exchange rate}; \\
\text{Z} &= \text{vector of policy variables that influence the price transmission}; \\
\text{X}_k &= \text{vector of demand shifters (k = 1, ..., 3); and} \\
\text{X}_4 &= \text{vector of supply shifters}.
\end{align*}

The countries and regions included in the study are the United States, Canada, Australia, Argentina, the European Community (EC-12), India, Japan, China, the USSR, Eastern Europe, Africa and the Middle East, high-income East Asian countries, other Asian countries, and other Western European countries.

Specification and Estimation

The previous sections have provided an overview of the current literature, structure of the model, and country and regional disaggregation. This section includes theoretical foundations for the
estimation of structural specification, estimation methods, data sources, and estimated equations.

Theoretical Foundations

This section contains a conceptual model of domestic demand and supply, which reflects the general structure of the country submodels. However, specifications for individual countries vary significantly, particularly for the United States, Canada, and the European Community. The wheat markets of these countries are modeled in detail by incorporating their domestic policies. The specifications for other countries are, in general, less detailed.

Domestic Supply Block. The domestic supply block of ith country (exporting or importing country) is specified as

Area Harvested,

\[AH_{i,t} = AH(PS_{i,t-1}, PC_{i,t-1}, GP_{i,t}, Z_{i,t}) ; \]

Production,

\[PROD_{i,t} = AH_{i,t} \times YLD_{i,t} ; \]

Supply,

\[S_{i,t} = PROD_{i,t} + IM_{i,t} + BS_{i,t} ; \]

where area harvested \((AH_{i,t})\) is expressed as a function of the lagged domestic supply price of wheat \((PS_{i,t-1})\), lagged domestic price of competing crops \((PC_{i,t-1})\), government policy variable \((GP_{i,t})\), a vector of other variables that affect the acreage planted \((Z_{i,t})\). Wheat production \((PROD_{i,t})\) is equal to acreage harvested times wheat yield \((YLD_{i,t})\).
Finally, wheat supply is equal to production plus imports (IM_{i,t}) plus beginning stocks (BS_{i,t}).

Domestic Demand Block. The conceptual specifications for the domestic demand block are as follows:

Per capita food demand,

\[PFOD_{i,t} = FOD(PD_{i,t}, FY_{i,t}); \]

Total food demand,

\[FOD_{i,t} = POP_{i,t} * PFOD_{i,t}; \]

Feed Demand,

\[FED_{i,t} = FED(PD_{i,t}, PS_{i,t}, LPI_{i,t}, LN_{i,t}); \]

Ending stocks,

\[SD_{i,t} = SD(PD_{i,t}, PROD_{i,t}, GS_{i,t}),24v \]

where \(PFOD_{i,t} \) is per capita consumer food demand for wheat, \(PY_{i,t} \) is per capita income, \(LPI_{i,t} \) is livestock price index, \(LN_{i,t} \) is livestock number, \(SD_{i,t} \) is ending stocks demand, and \(GS_{i,t} \) is government stocks.

The detailed theoretical specifications for the U.S. wheat market are discussed below.

Acreage response and supply. The estimation of the supply response to changing government commodity programs has been problematic due to the frequent adjustments made in the composition of the commodity programs, as well as changes in their underlying payment structures and acreage reduction options. The most common approach used to incorporate the influence of commodity programs is the inclusion of effective support
payment and diversion payment variables as explanatory variables in the area-planted equations, as exemplified by Houck and Ryan (1972). However, as de Gorter and Paddock (1985) note, these composite variables ignore the voluntary nature of the commodity programs, and impose questionable restrictions on the effects of changing policy parameters.

The estimation of wheat supply response includes endogenous participation rates. The participation rate ([program planted and idled]/base acreage) in the model is expressed as a function of the difference between participant expected net returns (PARTENR) and nonparticipant expected net returns (NPARTENR):

\[
\text{PART} = f(\text{PARTENR} - \text{NPARTENR}), \tag{1}
\]

where \text{PART} represents the model participation rate. Increases in participant expected net returns relative to nonparticipant expected net returns has a positive effect on program participation.

Participant expected net returns (PARTENR) per acre are derived from deficiency payments, diversion payments, cash receipts from marketings, and variable cost of production and cost of maintaining idled land. The arithmetic representation of \text{PARTENR} is given by

\[
\text{PARTENR} = \max [0, TP - \max(LR, LFP)] \times PY \times (1-\text{ARPR} - \text{PLDR})
+ DPR \times PY \times \text{PLDR} + \max(LR, LFP) \times TY \times (1-\text{ARPR} - \text{PLDR})
- VC \times (1-\text{ARPR} - \text{PLDR}) - 20 \times (\text{ARPR} + \text{PLDR}). \tag{2}
\]

The first component of the right hand side of equation (2) is expected deficiency payments. The variables that enter the expected deficiency
payments are target price (TP), loan rate (LR), lagged farm price (LFP), program yield (PY), acreage reduction program rate (ARPR), and paid land diversion rate (PLDR). The second term is expected diversion payments, where DPR is diversion payment rate. The third component is market return, where TY is the trend yield. The fourth component is variable cost of production from planted acreage, where VC is variable cost of wheat production per acre. The final component indicates that $20 is expected to be spent in maintaining the land idled under acreage reduction program and paid land diversion.

Nonparticipant expected net returns are defined as

\[\text{NPARTENR} = \text{LFP} \times \text{TY} - \text{VC}, \]

where the variable definitions are as given in the above two equations.

Area planted under programs (APP) is given by the identity

\[\text{APP} = \text{PART} \times (1 - \text{ARPR} - \text{PLDR}) \times \text{BA}, \]

where BA is the base average.

The total land idled (IA) under the acreage reduction program and the paid land diversion program is given by the identity

\[\text{IA} = \text{PART} \times (\text{ARPR} + \text{PLDR}) \times \text{BA}, \]

where PLDR is equal to announced rate times percent of acreage reduction program of participants also participating in paid land diversion program.

Nonprogram planted acres (APNP) is expressed as a behavioral relationship with the following variables:
\[\text{APNP} = f(\text{NPartNR}, \text{OCENR}, \text{APP}, \text{IA}, \text{LAPNP}), \quad (6) \]

where \text{OCENR} represents the expected net returns from a competing crop and \text{LAPNP} is the lagged nonprogram planted acres. An increase in the nonparticipant expected net return given the values of other variables will have a positive effect on \text{APNP}. Total planted area (AP) is given by the identity

\[\text{AP} = \text{APP} + \text{APNP}. \quad (7) \]

The ratio of area harvested to area planted (AH/AP) is expressed as a behavioral relationship with the following functional form:

\[(\text{AH/AP}) = f(\text{T}, \text{LFP}, X_{(AH/AP)}), \quad (8) \]

where \text{T} represents the time trend, \(X_{(AH/AP)}\) represents a vector of other variables that affect the (AH/AP) ratio.

Area harvested is defined as the identity

\[\text{AH} = \text{AP} \times (\text{AH/AP}). \quad (9) \]

Wheat yield per acre (WY) is expressed as a function of government policy parameters such as target prices (TP), idled acreage (IA), time trend (T) to represent technological progress, and other factors (X_{WY}). Target prices have a positive effect on yield as higher target prices are assumed to induce more input usage. Idled land is assumed to be drawn from less productive land; therefore, an increase in land idling is expected to increase yields. The functional form of the yield equation is given by:
WY = f(TP, IA, T, \text{X}_\text{WY}). \tag{10}\\

Wheat production (WPROD) is defined as a product of acres harvested and yields per acre:

WPROD = AH \times WY. \tag{11}\\

Expected net returns are affected significantly by policy parameters. Therefore, the incorporation of the program participation decision, which depends on expected net returns, in the determination of planted acres provides a means of analyzing the effects of policy parameter changes on participation rates, acreage planted, yields, production, and planted area and production of alternative crops.

Wheat supply is the sum of production, beginning stocks (WBI), and exogenous imports (WIM). Thus, the wheat supply identity is given by

WS = WPROD + WBI + WIM. \tag{12}\\

Demand

Demand is disaggregated into a number of categories. Major demand components include food use, feed use, seed use, stocks, and exports.

Domestic Disappearance. The theoretical specification for food use is based on the consumer theory of utility maximization subject to budget constraint. Solution of the utility maximization yields consumer demand as a function of own price, cross prices, and income. However, the restrictions (homogeneity, symmetry, cournot aggregation, and angel aggregation) derived from the demand theory are not imposed in the
estimation. The functional form of the per capita food demand (WFOOD) is given by

\[WFOOD = f(P_{own}, P_{cross}, RPCE, X_{food}) , \] (13)

where \(P_{own} \) represents own price of the commodity in real terms, \(P_{cross} \) represents the real price of competing goods, RPCE represents the real per capita consumer expenditure, and \(X_{food} \) represents a vector of other variables that explain the food use. Total food use is determined as a product of per capita food use and population.

Since feed is used as input in livestock production, the theoretical specification of feed demand follows the derived demand approach. Thus, feed demand (WFEED) is expressed as a function of the real price of the commodity (\(P_{own} \)), the real price of competing feed products (\(P_{cfeed} \)), livestock product prices (PL), livestock numbers (LN), and a vector of other variables \(X_{feed} \). Thus, the functional form of feed demand is

\[WFEED = f(P_{own}, P_{cfeed}, PL, LN, X_{feed}) . \] (14)

The demand for seed use (WSEED) is specified as a function of acreage planted (AP), and a time trend (T). The behavioral relationship is given as

\[WSEED = f(AP, T) . \] (15)

Stocks. Total wheat inventories (WEI) are further disaggregated into Commodity Credit Corporation (CCC) inventories, Farmer-Owned Reserve (FOR)
stocks, nine-month loan program carryover, and "free" stocks unencumbered by any government program. CCC, FOR, and nine-month loan stocks are exogenous in the model; however, in policy analyses these stocks are adjusted to reflect factors ranging from loan rates and market prices to participation rates and the availability of generic certificates.

Free (or private) stocks are endogenized in the model by using speculative and transactions motives of inventory demand theory. The speculative motive indicates that the amount of grain stored at any time depends on the difference between current and expected prices. According to the theory of stock demand, this price difference must be equated to the marginal cost of storage to determine the optimal level of storage. Further, it is assumed that commercial stock holders base their expectations of future prices on expected production and government stocks. The transaction motive indicates that the amount of grain stored is determined by the level of current output. Using these two motives for storage, the behavioral relationships for free stocks \((WSTOCK)\) is specified as

\[
WSTOCK = f(P_{own}, WPROD, EWPROD, GSTOCK, X_{STOCK}),
\]

where \(WPROD\) is current wheat production, \(EWPROD\) is expected wheat production, \(GSTOCK\) is government stock (sum of CCC, FOR, and nine-month loan stocks), and \(X_{STOCK}\) is a vector of other variables that influence free stocks.

Exports. Wheat exports are determined as residuals:

\[
WEX = WPROD + WBI + WIM - WFOOD - WFEED - WSEED - WEI.
\]
The above specification of wheat demand is based on price theory that may not be applicable to the centrally planned economies of the Soviet Union, China, and Eastern Europe, or, indeed, to most other developing countries. For these regions, demand is postulated to depend on income and the available supplies mainly from production; that is,

$$QD = f(QP_t, Y_t).$$ \(17\)

A linear specification of this demand function is

$$QD_t = \alpha_0 + \alpha_1 Y + \alpha_2 QP_t, \quad \alpha_1 > 0 \text{ and } 0 < \alpha_2 < 1. \quad (18)$$

Import demand as a residual of demand and supply becomes

$$QM_t = QD_t - QP_t.$$

Because of the lack of sufficient data for the aggregate regions--Africa and the Middle East, high-income East Asia, other Asia, and other Western Europe--only net import equations are estimated. The general specification of import demand equations for these regions are as follows:

$$QM_{t,j} = QM (Y_j, P), \quad (19)$$

where

$$QM_{t,j} = \text{imports},$$
$$Y = \text{income}, \text{ and}$$
$$P = \text{world wheat price}.$$
Data Sources

The data used for the analyses include wheat-use and supply-quantity data obtained from the Foreign Agricultural Service of the USDA. Macroeconomic data such as incomes, exchange rates, and inflation are obtained from the International Monetary Fund (IMF). All macroeconomic data has been converted to the appropriate crop year basis for each country or regional component. For example, a calendar year macro variable is converted to July-June crop year basis by taking a weighted average of its July to December values of the first year and January to June values of the second year. The weights are 0.5 for both the first six months and the second six months. Most of the wheat price data were derived from the Food and Agricultural Organization (FAO) price statistics. Additional price information on the United States, Canada, Australia, and the EC was obtained from the USDA Agricultural Statistics (various years), Canada Grain Trade Statistics (various years), Yearbook of the Commonwealth of Australia (various years), Herlihy et al. (1983), and The Agricultural Situation in the Community (various years).

Empirical Results

The estimated equations for the various submodels are given in this section. Reasons for the inclusion of relevant variables in an equation, the sign, and the significance of the estimated coefficients are discussed.

United States Wheat Submodel

The U.S. component of the wheat model is reported in Table 1. The estimated results are satisfactory with anticipated signs and mostly high
Table 1. Structural parameter estimates of the U.S. wheat submodel

(1.1) Wheat Program Participation Rate (Next Year)

$$\text{USWHEPRF} = 0.611 + 2.055 \times \frac{[\text{USWHEPNRF} - \text{USWHEYDTF} - \text{USWHEVCF}]}{\text{USPWJM}}$$

- $0.619 \times \text{DM173} - 0.619 \times \text{DM174}$
 (-4.44) (-4.45)
- $0.618 \times \text{DM175} - 0.617 \times \text{DM176}$
 (-4.44) (-4.42)
- $0.614 \times \text{DM179} - 0.599 \times \text{DM180}$
 (-4.39) (-4.22)

$R^2 = 0.93$ \quad \text{DW} = 1.09

(1.2) Wheat Nonprogram Acreage (Next Year)

$$\text{USWHENPF} = 48.798 - 0.893 \times \text{USWHEPRF} \times \text{USWHEBAF}$$

+ $15.580 \times \frac{[\text{USWHEPF} \times \text{USWHEYDTF} - \text{USWHEVCF}]}{\text{USPWJM}}$
 (1.51) [0.09]
+ $2.036 \times \text{TRND6683} + 14.987 \times \text{DM182}$
 (11.40) (3.12)

$R^2 = 0.98$ \quad \text{DW} = 1.34

(1.3) Wheat Area Planted (Next Year)

$$\text{USWHEAPF} = \text{USWHENPF} + \text{USWHEPRF} \times \text{USWHEBAF} \times \text{USWHEPLRF}$$

(1.4) Percentage of Wheat Planted Area That is Harvested (Next Year)

$$\text{USWHEPHF} = 0.850 + 2.696 \times \frac{\text{USWHEPF} / \text{USPWJM}}{0.04}$$

- $0.032 \times \text{DM1S82} - 0.046 \times \text{DM182}$
 (-2.94) (-2.47)

$R^2 = 0.78$ \quad \text{DW} = 2.04
Table 1. Continued

(1.5) Wheat Yield (Next Year)

\[\text{USWHEYDF} = -1038.130 + 178.709 \times \text{USWHETGF/USPWJM} \]
\[\text{(2.62)} \]
\[\text{[0.10]} \]

\[+ 0.050 \times \text{USWHEPRF} \times \text{USWHEBAF} \times (1-\text{USWHEPLRF}) \]
\[\text{(1.61)} \]
\[\text{[0.01]} \]

\[+ 2.534 \times \text{DMWHESD} + 0.540 \times \text{TREND} \]
\[\text{(6.84)} \]
\[\text{(6.85)} \]

\[R^2 = 0.95 \quad DW = 2.85 \]

(1.6) Wheat Area Harvested (Next Year)

\[\text{USWHEAHF} = \text{USWHEAPF} \times \text{USWHEPHF} \]

(1.7) Expected Production

\[\text{USWHEQPF} = \text{USWHEAHF} \times \text{USWHEYDF} \]

(1.8) Production

\[\text{USWHEQP} = \text{LAG (USWHEQPF)} \]

(1.9) Feed Use

\[\text{USWHEFE} = -414.921 + 34.097 \times (\text{USCATNF} + \text{USGCAU}/10) \]
\[\text{(3.36)} \]
\[\text{[3.80]} \]

\[- 14981.700 \times \text{USWHEPF/USPWJM} \]
\[\text{(-2.34)} \]
\[\text{[-1.28]} \]

\[+ 11846.000 \times \text{USCORPF/USPWJM} + 191.485 \times \text{DM18387} \]
\[\text{(1.13)} \]
\[\text{(5.81)} \]

\[R^2 = 0.83 \quad DW = 2.41 \]
Table 1. Continued

(1.10) Food Use Per Capita

\[
\text{USWHEFPC} = 1.965 - 5.289 \times \frac{\text{USWHEFF/USPWJM}}{\text{USWHEPF}} \\
(10.72) (-2.97) \\
[-0.03]
\]

\[+ 0.356 \times \log(\text{USCE/USNPT}) - 0.090 \times \text{DM17072}\]
\[(-4.26) (-4.00) \]
\[[0.13]\]

\[+ 0.127 \times \text{DM175} + 0.120 \times \text{DM1852886}\]
\[(3.71) (6.52)\]

\[R^2 = 0.94 \quad \text{DW} = 1.89\]

(1.11) Food Use

\[\text{USWHEFO} = \text{USWHEFPC} \times \text{USNPT}\]

(1.12) Seed Use

\[\text{USWHESD} = -917.841 + 1.324 \times \text{USWHEAPF} + 0.461 \times \text{TREND}\]
\[(-6.66) (38.86) (6.52) \]
\[[1.08]\]

\[R^2 = 0.997 \quad \text{DW} = 1.31\]

(1.13) Free Stock

\[\text{USWHEFRE} = 445.249 - 19004.800 \times \frac{\text{USWHEFF/USPWJM}}{\text{USWHEPF}}\]
\[(2.76) (-2.50) \]
\[[-0.88]\]

\[+ 0.434 \times \text{USWHEQP} - 0.177 \times \text{USWHEQPF}\]
\[(3.24) (-1.45) \]
\[[2.82] [-1.17]\]

\[= 0.546 \times (\text{USWHECCC + USWHEFOR + USWHELON})\]
\[(-6.07) \]
\[[-1.21]\]

\[R^2 = 0.76 \quad \text{DW} = 1.15\]
Table 1. Continued

(1.14) Wheat Ending Stocks

\[
USWHEES = USWHEFRE + USWHELON + USWHECCC + USWHEFOR
\]

(1.15) Wheat Gulf Port (Export) Price (Nominal)

\[
\text{WHFGPU90} = 5.735 + 43.206 \times USWHEPF - 18.447 \times D174
\]

\[
(1.29) \quad (28.01) \quad (-2.57)
\]

\[
[0.96]
\]

\[
R^2 = 0.98 \quad \text{DW} = 1.46
\]

(1.16) Net Export

\[
USWHESMN = USWHEQP + \text{LAG}(USWHEES)
\]

- USWHEFE - USWHEFO - USWHESD - USWHEES

(1.17) World Wheat Market Clearing Condition

\[
\frac{USWHESMN}{36.7437} + \text{WHUXNCA} - \text{WHSMNAU} - \frac{\text{WHSMNAR}}{1000}
\]

- \text{WHSMNE2/1000} = \text{WHSMNIN} + \text{NETMJP} + \text{WHSMNSU}

+ \text{WHSMNE8} + \text{WHSMNCN} + \text{WHSMNF1} + \text{WHSMNOAS}

+ \text{WHSMNR4} + \text{WHSMNOWE} + \text{WHSMNRW}

Endogenous Variables

- **NETMJP** = Japan, Wheat Net Imports (mil. MT)
- **RGULFUS** = Real Wheat Gulf Port Prices (1975 dollars/MT)
- **USWHEAHR** = U.S., Wheat Area Harvested, next year (mil. ac.)
- **USWHEAPF** = U.S., Wheat Area Planted, next year (mil. ac.)
- **USWHEES** = U.S., Wheat Ending Stock (mil. MT)
- **USWHEFE** = U.S., Wheat Feed Use (mil. bu.)
- **USWHEFO** = U.S., Wheat Food Use (mil. bu.)
- **USWHEFPC** = U.S., Wheat Use Per Capita (bu./cap.)
- **USWHEFRE** = U.S., Wheat Free Stocks (mil. bu.)
- **USWHENPF** = U.S., Wheat Nonprogram Planted Area, next year (mil. ac.)
- **USWHEPF** = U.S., Wheat Market Price (US $/bu.)
Table 1. Continued

USWHEPHF	U.S., Wheat, Proportion of Planted Area that is Harvested, next year (%)
USWHEPRF	U.S., Wheat, Participation Rate, next year (%)
USWHEQF	U.S., Wheat Production (mil. bu.)
USWHEQPF	U.S., Wheat Production, next year (mil. bu.)
USWHESD	U.S., Wheat Seed Use (mil. bu.)
USWHESMN	U.S., Wheat Exports (mil. bu.)
USWHEYDF	U.S., Wheat Yield, next year (bu./ac.)
WHPGPU90	U.S., Wheat Export Price, fob Gulf Port (US $/MT)

Exogenous Variables

WHSMNAR	Argentina, Wheat Net Exports (1000 MT)
WHSMNAU	Australia, Wheat Net Exports (MMT)
WHSMNCH	China, Wheat Net Imports (MMT)
WHSMNCE2	EEC, Wheat Net Exports (1000 MT)
WHSMNE8	E. Europe, Wheat Net Imports (MMT)
WHSMNFP	Africa, Wheat Net Imports (1000 MT)
WHSMNIN	India, Wheat Net Imports (MMT)
WHSMNOAS	Other Asia, Wheat Net Imports (1000 MT)
WHSMNOEU	Other W. Europe, Wheat Net Imports (1000 MT)
WHSMNHR4	High-Income E. Asia, Wheat Net Imports (1000 MT)
WHSMNSU	USSR, Wheat Net Imports (MMT)
WHUXNCA	Canada, Wheat Net Exports (mil. MT)
DM173	Dummy Variable: 1 in 1973, 0 otherwise
DM174	Dummy Variable: 1 in 1974, 0 otherwise
DM175	Dummy Variable: 1 in 1975, 0 otherwise
DM176	Dummy Variable: 1 in 1976, 0 otherwise
DM179	Dummy Variable: 1 in 1979, 0 otherwise
DM180	Dummy Variable: 1 in 1980, 0 otherwise
DM182	Dummy Variable: 1 in 1982, 0 otherwise
DM17072	Dummy Variable: 1 from 1970-72, 0 otherwise
DM1387	Dummy Variable: 1 from 1983-87, 0 otherwise
DM152S86	Dummy Variable: 1 in 1985, 2 beginning in 1986, 0 otherwise
DM1582	Dummy Variable: 1 in 1982 and after, 0 otherwise
DMWHESD	Dummy Variable: 1 when wheat yields are 1 standard deviation above trend yield, -1 when below, 0 otherwise
TREND	Calendar Year
TRND6683	Trend from 1966-83: 1 in 1966, ..., 18 in 1983 and after
USCATNF	U.S., Cattle on Feed, 13 States, 3rd Quarter (mil.)
USCE	U.S., Real Personal Consumption Expenditures (bil. 1982 dollars)
CPIUS	U.S., Consumer Price Index (1975 = 100)
USCORPF	U.S., Corn Market Price (US $/bu.)
USGCAU	U.S., Grain Consuming Animal Units, Crop Year Basis (million dairy cow equivalents)
Table 1. Continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USNPT</td>
<td>U.S., Population Including Overseas Armed Forces (mil.)</td>
</tr>
<tr>
<td>USPWJM</td>
<td>U.S., Wholesale Producer Price Index, June-May Year (1967 = 100)</td>
</tr>
<tr>
<td>USWHBAF</td>
<td>U.S., Wheat Base Area, Adjusted for CRP, next year (mil. ac.)</td>
</tr>
<tr>
<td>USWHCC</td>
<td>U.S., Wheat CCC Stocks (mil. bu.)</td>
</tr>
<tr>
<td>USWHFOR</td>
<td>U.S., Wheat FOR Stocks, Including Special Storage (mil. bu.)</td>
</tr>
<tr>
<td>USWHIT</td>
<td>U.S., Wheat Imports (mil. MT)</td>
</tr>
<tr>
<td>USWHelon</td>
<td>U.S., Wheat Nine-Month Loan Stocks (mil. bu.)</td>
</tr>
<tr>
<td>USWHPLRF</td>
<td>U.S., Percentage of Base Acres Participants Can Plant (%)</td>
</tr>
<tr>
<td>USWHPNRF</td>
<td>U.S., Expected Wheat Participant Net Returns, next year (US $/ac.)</td>
</tr>
<tr>
<td>USWHETGF</td>
<td>U.S., Wheat Target Price, next year (US $/bu.)</td>
</tr>
<tr>
<td>USWHEVCF</td>
<td>U.S., Wheat Variable Costs (US $/ac.)</td>
</tr>
<tr>
<td>USWHYDGF</td>
<td>U.S., Wheat Trend Yield, next year (bu./ac.)</td>
</tr>
<tr>
<td>WHSMNRW</td>
<td>Rest of the World, Wheat Net Imports (mil. MT)</td>
</tr>
</tbody>
</table>
R-square values. The supply side is modeled by estimating the participation rate and nonparticipant acreage. Total wheat area planted is equal to nonparticipant planted area plus participant planted area, where the latter is equal to the participation rate times the wheat base area times percent of base acres participants can plant. Acreage harvested as percentage of acreage planted is determined endogenously. Wheat yield is endogenously estimated. Wheat production is determined as area harvested times yield.

The expected participation rate (Eq. 1.1) is estimated as a function of expected participant net returns minus nonparticipant net returns and a series of dummy variables for years with no government land-idling programs. The positive coefficients for the variable—the difference between the participant and nonparticipant net returns—indicate that more farmers will participate in the government program if expected participant net returns are higher than expected nonparticipant net returns; that is, the program benefits are higher. The nonparticipant wheat acreage in the next year (Eq. 1.2) is estimated as a function of the base acres of participants times participation rate and the expected nonparticipant net return. The participant base acres has the coefficient -0.9, which indicates enrollment of an additional acre in the government program will reduce the nonprogram acres by less than one. As expected, the nonparticipant net returns have a positive effect on the wheat acreage planted by nonparticipants. The acreage harvested as percentage of acreage planted (Eq. 1.4) is estimated to reflect the impacts of weather factors and also wheat price changes. Wheat yield (Eq. 1.5) is endogenously
determined as a function of real target price, base acreage set aside by participants, trend, and a dummy variable. The coefficient of target price is positive with the elasticity of 0.1, which indicates a ten percent increase in the real target price will lead to one percent increase in the yield. The base acreage set aside by participants has a positive coefficient because farmers increase the use of other inputs on the base acreage planted to increase the per acre yield. The trend variable is included to reflect the technology. The dummy variable, DMWHESD, captures the weather effect on yield. It takes the value one when actual yields are more than one standard deviation from trend yield and minus one when actual yields are less than one standard deviation from trend yield.

On the demand side, wheat feed use, food use, seed use, and stock demand are estimated separately. The explanatory variables in the feed use equation (Eq. 1.9) include own (real wheat price) and cross (real corn price) prices. Since wheat is an input in the livestock sector, the number of cattle on feed plus grain-consuming animal units is also included in the equation to reflect the demand for wheat in livestock production. Estimated coefficients show that wheat and corn are substitutes. The calculated own price elasticities of feed use is -1.28. An increase in cattle on feed will significantly increase the wheat feed use. A dummy variable for the period 1983 to 1987 represents the unexpected increase in wheat feeding which occurred during that period.

Per capita food use (Eq. 1.10) is estimated, and the aggregate food use is the product of food use per capita and the population. The estimated results show that per capita wheat consumption has the expected
negative own-price effect with elasticity of -0.03, and positive income
elasticity of 0.28. Wheat seed use is estimated as a function of acreage
planted and time trend (Eq. 1.12).

The final component of wheat demand is the free stocks demand. The estimation is based on the stock demand specification in the previous section. The explanatory variables are the current farm price, current and expected production, and government stocks. Results show that the elasticity of current farm price is -0.88, and the free stock level is very sensitive to changes in wheat production. The coefficient of -0.546 on FOR, CCC, and nine-month loan stocks indicates that a one-bushel increase in these stocks will reduce the free stocks by about one-half bushel.

In addition to the above equations, a price linkage equation (Eq. 1.15) linking the export (Gulf port) price to the domestic wheat farm price is estimated. In Equation 1.13 the world wheat market is cleared by equating world excess demand to U.S. exports which is the excess supply of the U.S. wheat market. The U.S. market is cleared at the price which equates U.S. supplies to U.S. domestic demand plus exports.

Canada Wheat Submodel

Federal government controls on the wheat industry of Canada make the choice of economic variables to model the industry rather difficult. The following description of the industry, particularly the marketing arrangements, is intended to highlight the special features of the Canadian wheat sector. The description is based largely upon Spriggs
(1981) and Bailey (1987). The estimated equations are reported in Table 2.

The marketing system is crucial to choosing the appropriate price variable of the area response function because it determines the returns to producers and their expectations of prices. Growers sell their grain either to the Canadian Wheat Board (CWB) for export or domestic food use or to the off-board market for feed use. If sold to the CWB, producers receive an initial payment, which may be adjusted later by a final payment to yield a realized price. All producers selling to the board receive the same price for the season, regardless of when they market the grain. The final price is based on the return from domestic and export sales. The CWB also operates a delivery quota system to spread deliveries evenly from harvest to harvest and thus to help prevent overloading the distribution system.

The off-board market is free and competitive and producers receive full payment for their grain on delivery. Wheat for food and industrial use is sold by the CWB to mills at the "mill price." Until 1979 the mill price was set independently of the market; since then the price has been set equal to the export price within a bounded range. Wheat for feed use is sold primarily through the off-board market. The CWB supplies wheat to the off-board market when prices in this market rise above U.S. feed prices. Thus the price of U.S. feed grains in Montreal acts as a ceiling for Canadian feed wheat prices.

Due to this segmentation of the Canadian wheat market, no single price can clearly represent what producers respond to in an aggregate area
Table 2. Structural parameter estimates of the Canada wheat submodel

(2.1) Expected Area Harvested

\[WHAHHCae = 2.060 + 0.419 \times WHAHHCa + 3.000 \times (WHGPICAEB/AGPICAEB) \]
\[
= 2.060 + 0.419 \times WHAHHCa + 3.000 \times (WHGPICAEB/AGPICAEB) + 4.849 \times (WHGPICAEB/RSPM1CA) - 0.168 \times WHCOTA - 3.233 \times D69 + 0.961 \times (D84 + D85)
\]
\[R^2 = 0.97 \quad DW = 2.13 \]

(2.2) Area Harvested

\[WHAHHCa = \text{LAG}(WHAHHCae) \]

(2.3) Production

\[WHSPRCA = WHYHHCA \times WHAHHCa \]

(2.4) Food Use

\[WHUHTCA = 1.345 - 0.0003 \times (WHGPICAEB/NARDDCA) + 0.002 \times (NANFDCA/NARDDCA) - 0.083 \times D84 \]
\[R^2 = 0.91 \quad DW = 2.23 \]
Table 2. Continued

(2.5) Feed Use

\[
WHUFCECA = 0.370 - 0.013 \times WHPOBCA + 0.034 \times CKPMKCA \\
\quad (0.81) \quad (-1.21) \quad (3.31) \\
\quad [-0.60] \quad [1.32]
\]

\[
+ 0.006 \times BAPOBCA1 - 0.007 \times LAG(WHGPICAE) \\
\quad (0.65) \quad (-1.82) \\
\quad [0.22] \quad [-0.38]
\]

\[
+ 0.039 \times LAG(WHCOTCA) \\
\quad (2.35) \\
\quad [219.63]
\]

\[R^2 = 0.61 \quad \text{DW} = 2.00\]

(2.6) Seed Use

\[
WHUSECA = -0.005 + 0.092 \times WHAHHCAE \\
\quad (-0.15) \quad (33.83) \\
\quad [1.00]
\]

\[R^2 = 0.99 \quad \text{DW} = 1.74\]

(2.7) Stocks

\[
WHCOTCA = 0.827 + 0.606 \times LAG(WHCOTCA) - 0.021 \times WHPXEC\]

\[
\quad (0.20) \quad (4.40) \quad (-1.75) \\
\quad [0.61] \quad [-0.25]
\]

\[
+ 0.327 \times WHSPRCA + 6.43 \times (D67 + D68 + D69) \\
\quad (2.53) \quad (4.42) \\
\quad [0.48]
\]

\[R^2 = 0.92 \quad \text{DW} = 1.95\]

(2.8) Wheat Export Price

\[
WHPXEC\!A = -7.217 + 1.141 \times (WHPG\!P\!U90 \times NIMEUCA) \\
\quad (-0.84) \quad (20.10) \quad [1.06]
\]

\[\quad -32.772 \times D73 \ \quad (-2.30)\]

\[R^2 = 0.96 \quad \text{DW} = 1.45\]
Table 2. Continued

(2.9) Wheat Expected Initial Price

\[
\text{WHGPICAE} = 5.662 + 0.759 \times \text{LAG(WHGPICAE)} + 0.167 \times \text{WHPXECA}
\]

\[
\begin{array}{llll}
(0.76) & (5.53) & (1.74) & [0.23] \\
\end{array}
\]

\[-32.294 \times D85 \]

\[
(-2.49)
\]

\[
R^2 = 0.94 \quad DW = 1.90
\]

(2.10) Wheat Off-Board Price

\[
\text{WHPOBCA} = 71.785 + 0.271 \times \text{LAG(WHGPICAE)}
\]

\[
(3.48) \quad (2.38) \quad [0.31]
\]

\[-2.123 \times [\text{LAG(WHOTCO)} + \text{WHSPRCA}] \]

\[
(-3.58) \quad [-0.70]
\]

\[+ 0.424 \times \text{WHPXECA} \]

\[
(4.93) \quad [0.67]
\]

\[
R^2 = 0.98 \quad DW = 2.33
\]

(2.11) Wheat Domestic Mill Price

\[
\text{WHGPMCA} = \text{MAX} [183.72, \text{MIN}(257.12, \text{WHPXECA})]
\]

(2.12) Barley Expected Initial Price

\[
\text{BAGPICAE} = 6.045 + 0.438 \times \text{LAG(BAGPICAE)}
\]

\[
(0.79) \quad (2.20) \quad [0.44]
\]

\[+ 16.218 \times (\text{CORPF} \times \text{NIMEUCA}) - 27.536 \times D85 \]

\[
(2.66) \quad (-2.21) \quad [0.51]
\]

\[
R^2 = 0.86 \quad DW = 1.83
\]
Table 2. Continued

(2.13) Barley Off-Board Price

\[BAPOBCAl = -5.040 + 38.482 \times (BARPF \times NIMEUCA) \]
\[(-0.91) \quad (15.96) \]
\[[1.07] \]
\[R^2 = 0.94 \quad DW = 1.45 \]

(2.14) Rapeseed Price

\[RSPM1CA = 55.981 + 45.907 \times (SOYPF \times NIMEUCA) \]
\[(-4.35) \quad (28.94) \]
\[[1.05] \]
\[+ 14.614 \times \left(\frac{SOPMKU9}{SOMPM44D} \right) - 54.679 \times D80 \]
\[(4.13) \quad (-3.45) \]
\[[0.18] \]
\[R^2 = 0.99 \quad DW = 1.94 \]

(2.15) Average Producer Price of Chickens

\[CKPMKCA = 14.059 + 0.174 \times WHPOBCA + 12.244 \times (CORPF \times NIMEUCA) \]
\[(3.25) \quad (1.66) \quad (2.43) \]
\[[0.22] \quad [0.38] \]
\[+ 0.95 \times (SOMPM44D \times NIMEUCA) + 11.751 \times (D84 + D85) \]
\[(2.61) \quad (2.35) \]
\[[0.21] \]
\[R^2 = 0.96 \quad DW = 1.88 \]

(2.16) Net Exports

\[WHUXNCA = WHSPRCA + LAG(WHCOTCA) - WHUHTCA - WHUFeca - WHUSECA \]
\[- WHCOTCA \]

Endogenous Variables

BAGPICA = Canada, Expected Barley CWB Initial Price (CAN $/MT)
BAPOBCAl = Canada, Barley Off-Board Price (CAN $/MT)
CKPMKCA = Canada, Chicken Average Producer Price (CAN $/kg.)
Table 2. Continued

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSPM1CA</td>
<td>Canada, Canola, Rapeseed Export Price (CAN $/MT)</td>
</tr>
<tr>
<td>WHAAHCA</td>
<td>Canada, Wheat Area Harvested (ha.)</td>
</tr>
<tr>
<td>WHAHHCAE</td>
<td>Canada, Expected Wheat Area Harvested (ha.)</td>
</tr>
<tr>
<td>WHCOTCA</td>
<td>Canada, Wheat Inventories (mil. MT)</td>
</tr>
<tr>
<td>WHGPMCA</td>
<td>Canada, Expected Wheat CWB Initial Price (CAN $/MT)</td>
</tr>
<tr>
<td>WHGPICAE</td>
<td>Canada, Wheat Domestic Mill Rate (CAN $/MT)</td>
</tr>
<tr>
<td>WHPFU90</td>
<td>U.S., Wheat Export Price (US $/MT)</td>
</tr>
<tr>
<td>WHPOBCA</td>
<td>Canada, Wheat Off-Board Price (CAN $/MT)</td>
</tr>
<tr>
<td>WHPXEC</td>
<td>Canada, Wheat Export Unit Value (CAN $/MT)</td>
</tr>
<tr>
<td>WHPFRCA</td>
<td>Canada, Wheat Production (mil. MT)</td>
</tr>
<tr>
<td>WHUFECA</td>
<td>Canada, Wheat Feed Use (mil. MT)</td>
</tr>
<tr>
<td>WHUHTCA</td>
<td>Canada, Wheat Food Use (mil. MT)</td>
</tr>
<tr>
<td>WHUSECA</td>
<td>Canada, Wheat Seed Use (mil. MT)</td>
</tr>
<tr>
<td>WHUXNCA</td>
<td>Canada, Wheat Net Exports (mil. MT)</td>
</tr>
</tbody>
</table>

Exogenous Variables

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BARPF</td>
<td>U.S., Barley Farm Price (US $/bu.)</td>
</tr>
<tr>
<td>CORPF</td>
<td>U.S., Corn Farm Price (US $/bu.)</td>
</tr>
<tr>
<td>D67</td>
<td>Dummy Variable: 1 in 1967, 0 otherwise</td>
</tr>
<tr>
<td>D68</td>
<td>Dummy Variable: 1 in 1968, 0 otherwise</td>
</tr>
<tr>
<td>D69</td>
<td>Dummy Variable: 1 in 1969, 0 otherwise</td>
</tr>
<tr>
<td>D73</td>
<td>Dummy Variable: 1 in 1973, 0 otherwise</td>
</tr>
<tr>
<td>D80</td>
<td>Dummy Variable: 1 in 1980, 0 otherwise</td>
</tr>
<tr>
<td>D84</td>
<td>Dummy Variable: 1 in 1984, 0 otherwise</td>
</tr>
<tr>
<td>D85</td>
<td>Dummy Variable: 1 in 1985, 0 otherwise</td>
</tr>
<tr>
<td>NANPDCA</td>
<td>Canada, Nominal GNP (bil. CAN $)</td>
</tr>
<tr>
<td>NARDDCA</td>
<td>Canada, GNP Deflator (1980 = 1.0)</td>
</tr>
<tr>
<td>NIMEUCA</td>
<td>Canada, Exchange Rate (CAN $/US $)</td>
</tr>
<tr>
<td>SOMPM44D</td>
<td>U.S., Soybean Meal Price (US $/MT)</td>
</tr>
<tr>
<td>SOPMKU9</td>
<td>U.S., Soybean Oil Price (US $/MT)</td>
</tr>
<tr>
<td>SOYPF</td>
<td>U.S., Soybean Farm Price (US $/bu.)</td>
</tr>
<tr>
<td>WHYHHCA</td>
<td>Canada, Wheat Yield (MT/ha.)</td>
</tr>
</tbody>
</table>
equation. As a result various prices have been used in past analyses to represent the supply response price variable. For example, Capel (1968) used the CWB international wheat agreement price, while Meilke (1976) incorporated the initial and final payments by the CWB as separate explanatory variables. In the latest analysis Spriggs (1981) used the off-board price, based on the model developed by Jolly and Martin (1978), which shows that for a producer with a profit maximizing objective the supply response price is the expected off-board price whether quotas are binding or not.

Because the majority of Canadian wheat is marketed through the CWB, the price chosen for this analysis is the CWB initial price for the coming crop year. Barley and canola are identified as substitute crops in wheat production, therefore, the expected wheat area harvested is specified as a function of the ratios of the announced (expected) CWB wheat initial price to the expected barley price, and to the current canola market price. Assuming that Canadian producers believe marketing quotas for the coming crop year will be more restrictive as carry-out stocks increase, area harvested is also specified to be a negative function of stocks. A dummy variable is included to account for the "Lower Inventories for Tomorrow" program that took wheat area out of production in 1970. To measure the short-run adjustment effects, a lagged variable is included in the equation. The estimated results show that all coefficients have expected signs and are highly significant.

The current wheat production is specified to be a product of wheat area harvested and yield per acre, where wheat area harvested is the lagged expected area harvested and yield is exogenously determined.
Wheat consumption is separated into food use, feed use, and seed use. Food use is conventionally specified as a function of the real domestic mill price and real GNP (both are deflated by the GNP deflator). However, no close substitutes for wheat in consumption are identified. The result shows that wheat price effect is insignificant in consumption, but the real income is an important determinant. The own-price elasticity and income elasticity are -0.03 and 0.32, respectively.

Feed use is specified as a negative function of the off-board price and a positive function of the average price received for chickens. Barley is identified as a close substitute of wheat in feed use. The estimated own-price elasticity and cross-price elasticity (barley) are -0.60 and 0.22, respectively. Initial prices and lagged inventories are also included as explanatory variables on the supposition that as the initial price increases, wheat producers who are also hog producers will deliver to the CWB rather than feed their wheat, but as farm inventories increase they will market their wheat through hogs. All estimated coefficients have the assumed signs. Seed use is specified as a function of the expected area harvested.

The final component of wheat demand is stocks. The explanatory factors of the stock level are the export price, current production, and beginning stocks. A dummy variable for years 1966 to 1969 is also included to account for the unusually high level of stocks during this period.

Price linkages are specified in Equations 2.8 to 2.14. The Canadian export price is linked to the U.S. export price in Canadian dollars, and a
dummy variable is included to account for the unprecedented commodity price increases in 1973. The expected initial price is specified as a function of the export price and the current initial price (the lagged expected initial price). Inclusion of the current initial price as an explanatory variable is based on the assumption that as it is an administratively set price it will tend to be sticky over time. The off-board price is specified to be a function of the export price, opening supplies, and the current initial price. The domestic mill price is obtained according to the administrative formula.

Price of close substitutes of wheat are endogenized in the model. The expected initial price of barley is specified as a function of the current barley initial price and the U.S. corn average price received by farmers in Canadian dollars. The off-board price of barley is a function of the U.S. barley farm price in Canadian dollars. The Canadian canola export price is specified to be a function of the U.S. soybean average price received by farmers in Canadian dollars, and the ratio of U.S. soybean oil price and U.S. soybean meal price. A dummy variable for the U.S. soybean embargo in 1980 is also included. The average producer price for chicken is specified as a function of wheat off-board price, the U.S. corn farm price in Canadian dollars, and the U.S. soybean meal price in Canadian dollars.

Australia Wheat Submodel

The wheat industry of Australia is controlled almost entirely by the Australian Wheat Board (AWB). However, unlike Canada, the AWB is
responsible for handling all the wheat. Growers receive a series of payments (usually two) for wheat delivered to the board. The total payment is based on total returns from domestic and export sales of a particular pool of grain and the provisions of the wheat stabilization program prevailing at the time.

Australia had a series of six five-year stabilization programs during the period 1948-1980. Details of these programs were obtained from various issues of the Yearbook of the Commonwealth of Australia. The first five plans (1948-1973/74) were basically similar and involved guaranteed payments and quantities and an export tax. Under these five plans all wheat delivered to the AWB was pooled and resold either to domestic mills at the home consumption price or exported at world prices. The gross return to the grower was determined as an average of returns from domestic and export sales. The provisions of a stabilization fund required either a markup or markdown of this average return. The stabilization program allowed a guaranteed quantity and price. If the average returns from export sales exceeded the guaranteed price, then an export tax was paid into the fund; otherwise, payments were made out of the fund to raise the export return to the level of the guaranteed price, which was based on cost of production.

Under the sixth plan, beginning 1974-1975, the guaranteed price was replaced by a stabilization price (SP), which was based on world prices. As before, if the per unit export returns exceeded SP, growers would pay a tax, generally equal to the price difference. When export returns fell short of SP the difference was paid out of the stabilization fund to growers without any quantity limits on total exports.
Australian area harvested is estimated as a function of wheat real farm price, sorghum real farm price, sheep numbers, and lagged area harvested. Sheep numbers in Australia have a significant negative effect upon wheat acreage. This can be explained by the fact that sheep grazing competes with wheat production for land in Australia. Table 3 presents estimates of the Australia wheat model. The coefficient of the wheat real farm price variable is insignificant and inelastic. The lagged dependent variable and sheep numbers are significant.

On the demand side, food and feed use are exogenous in the model. All stocks are held by the AWB, whose main objective is to assure adequate supplies to the domestic market. Any surpluses after this obligation has been met are exported. Stock demand is specified in this analysis as a function of production, lagged dependent variable (the beginning stock level), and two dummy variables for 1969 and 1980.

Price transmission between the U.S. Gulf port price and the Australia export price is high, with an elasticity of 0.98, and the wheat farm price is linked to the wheat export price. The sorghum farm price is endogenized and linked to the U.S. sorghum farm price in Australian dollars, with an elasticity of 1.07. Sheep numbers are endogenized as a function of lagged real wool price, real wheat farm price, real sorghum price, and lagged dependent variable. Finally, net export is derived as a residual of domestic supply and demand.

Argentina Wheat Submodel

Argentina is one of the important wheat exporting countries in the world. In recent years, Argentina has accounted for about 8 percent of
Table 3. Structural parameter estimates of the Australia wheat submodel

(3.1) Area Harvested

\[
WHAHHAU = 6.759 + 0.654 \times LAG(WHAHHAU) \\
(3.00) (7.25) \\
+ 0.0001 \times LAG(WHPFMAU) / LAG(NARDDAU) \\
(1.54) [0.18] \\
- 0.00009 \times LAG(SGPFMAU) / LAG(NARDDAU) \\
(-0.81) [-0.10] \\
- 2.546 \times D70 - 1.898 \times D74 + 1.244 \times D83 \\
(-3.93) (-2.53) (2.11) \\
- 0.025 \times LAG(SHCOTAU) \\
(-2.49) [-2.83] \\
\]

\[R^2 = 0.94 \quad DW = 2.65\]

(3.2) Production

\[
WHSPRAU = WHYHHAU \times WHAHHAU
\]

(3.3) Stocks

\[
WHCOTAU = -3.378 + 0.370 \times LAG(WHCOTAU) \\
(-6.04) (5.56) \\
+ 0.431 \times WHSPRAU + 3.757 \times (D68 + D69) \\
(11.22) (7.07) [1.45] \\
- 1.823 \times D86 \\
(-2.42) \\
\]

\[R^2 = 0.94 \quad DW = 1.77\]
Table 3. Continued

(3.4) Export Price

\[
\text{WHPEXAU} = 4.059 + 0.973 \times \text{(WHPGPR90 \times NIMEUAU)} \\
(0.67) \quad (17.87) \quad [0.98]
\]

\[
- 22.919 \times (\text{D84} + \text{D85} + \text{D86}) + 23.400 \times \text{D82} \\
(-3.09) \quad (2.38)
\]

\[R^2 = 0.97 \quad \text{DW} = 1.35\]

(3.5) Wheat Price Linkage

\[
\text{WHPFMAU} = -135.299 + 100.531 \times \text{WHPEXAU} \\
(-0.40) \quad (38.49) \quad [1.05]
\]

\[
-3271.930 \times (\text{D72} + \text{D73}) - 1604.54 \times \text{D77} \\
(-8.24) \quad (-2.94)
\]

\[R^2 = 0.99 \quad \text{DW} = 2.31\]

(3.6) Consumer Price

\[
\text{WPHFCAU} = 2.960 + 0.011 \times \text{WHPFMAU} - 48.913 \times (\text{D73} + \text{D74}) \\
(0.49) \quad (21.69) \quad (-6.39) \quad [1.03]
\]

\[
-35.036 \times (\text{D78} + \text{D79}) + 33.472 \times \text{D83} \\
(-4.46) \quad (3.07)
\]

\[R^2 = 0.98 \quad \text{DW} = 2.10\]

(3.7) Sorghum Price Linkage

\[
\text{SGPFMAU} = -301.650 + 5099.850 \times (\text{SORPF \times NIMEUAU}) \\
(24.54) \quad [1.07]
\]

\[
-2691.540 \times (\text{D83} + \text{D84} + \text{D85}) + 1342.000 \times \text{D86} \\
(-6.07) \quad (2.72)
\]

\[R^2 = 0.98 \quad \text{DW} = 2.03\]
Table 3. Continued

(3.8) Sheep Numbers

\[
SHCOTAU = 17.194 + 0.813 \times \text{LAG}(SHCOTAU)
\]
\[
(1.03) \quad (8.28)
\]
\[
- 0.0008 \times \text{LAG}(SGPFMAU/NARDDAU)
\]
\[
(-0.67) \quad [-0.06]
\]
\[
+ 0.137 \times \text{LAG}[\text{LAG}(GWPFMAC/NARDDAU)]
\]
\[
(2.76) \quad [0.23]
\]
\[
+ 0.062 \times \text{LAG}(GWPFMAU/NARDDAU)
\]
\[
(2.17) \quad [0.10]
\]
\[
- 0.002 \times \text{LAG}(WHFFMAU/NARDDAU)
\]
\[
(-1.62) \quad [-0.21]
\]
\[
+ 10.221 \times (D84 + D85)
\]
\[
(2.17)
\]
\[
R^2 = 0.91 \quad \text{DW} = 2.16
\]

(3.9) Greasy-Wool Price

\[
GWPFMAU = 83.912 - 0.409 \times \text{LAG}(SHCOTAU)
\]
\[
(1.36) \quad (-1.14)
\]
\[
+ 318.458 \times (\text{COLFAU} \times \text{NIMEUAU})
\]
\[
(8.10) \quad [0.75]
\]
\[
+ 91.326 \times \text{D72} + 55.256 \times \text{D81}
\]
\[
(5.62) \quad (2.94)
\]
\[
+ 48.206 \times \text{D73} + 52.869 \times \text{D86}
\]
\[
(2.78) \quad (2.85)
\]
\[
+ 1.020 \times (\text{LTARCRUD} \times \text{NIMEUAU})
\]
\[
(1.38) \quad [0.08]
\]
\[
R^2 = 0.98 \quad \text{DW} = 2.00
\]
(3.10) Net Exports

\[
W_{\text{SMNAU}} = W_{\text{UDTAU}} + W_{\text{COTAU}} - W_{\text{SPRAU}} - \text{LAG}(W_{\text{COTAU}})
\]

Endogenous Variables

- \(W_{\text{PFMAU}}\): Australia, Greasy-wool Producer Price (cents/kg.)
- \(W_{\text{GFMAU}}\): Australia, Sorghum Farm Price (cents/ton)
- \(W_{\text{COTAU}}\): Australia, Sheep Numbers (millions)
- \(W_{\text{AHHAU}}\): Australia, Wheat Area Harvested (mil. ha.)
- \(W_{\text{COTAU}}\): Australia, Wheat Ending Stocks (MMT)
- \(W_{\text{PEXAU}}\): Australia, Wheat Export Price (AUS $/MT)
- \(W_{\text{MPMAU}}\): Australia, Wheat Farm Price (AUS $/MT)
- \(W_{\text{PGPU90}}\): U.S., Wheat Export Price, fob Gulf Port (US $/MT)
- \(W_{\text{PCHAU}}\): Australia, Wheat Home Consumption Price (AUS $/MT)
- \(W_{\text{SMNAU}}\): Australia, Wheat Net Exports (MMT)
- \(W_{\text{SPRAU}}\): Australia, Wheat Production (MMT)

Exogenous Variables

- \(C_{\text{OLFAU}}\): American Upland Cotton Price
- \(D_{68}\): Dummy Variable: 1 in 1968, 0 otherwise
- \(D_{69}\): Dummy Variable: 1 in 1969, 0 otherwise
- \(D_{70}\): Dummy Variable: 1 in 1970, 0 otherwise
- \(D_{72}\): Dummy Variable: 1 in 1972, 0 otherwise
- \(D_{73}\): Dummy Variable: 1 in 1973, 0 otherwise
- \(D_{74}\): Dummy Variable: 1 in 1974, 0 otherwise
- \(D_{77}\): Dummy Variable: 1 in 1977, 0 otherwise
- \(D_{78}\): Dummy Variable: 1 in 1978, 0 otherwise
- \(D_{79}\): Dummy Variable: 1 in 1979, 0 otherwise
- \(D_{81}\): Dummy Variable: 1 in 1981, 0 otherwise
- \(D_{82}\): Dummy Variable: 1 in 1982, 0 otherwise
- \(D_{83}\): Dummy Variable: 1 in 1983, 0 otherwise
- \(D_{84}\): Dummy Variable: 1 in 1984, 0 otherwise
- \(D_{85}\): Dummy Variable: 1 in 1985, 0 otherwise
- \(D_{86}\): Dummy Variable: 1 in 1986, 0 otherwise
- \(L_{\text{TARCRUD}}\): Light Arabian Crude Oil Price (US $/bbl.)
- \(N_{\text{RDAU}}\): Australian GNP Deflator
- \(N_{\text{MEEUAU}}\): Exchange Rate (AUS $/US $)
- \(S_{\text{OPF}}\): U.S., Sorghum Farm Price ($/bu.)
- \(W_{\text{UDTAU}}\): Australia, Wheat Total Domestic Use (MMT)
- \(W_{\text{YHAU}}\): Australia, Wheat Yield (MT/ha)
world wheat exports. Since 1982, more than 60 percent of production has been exported. Most of the domestic wheat use is consumed as food; only a limited amount is used for feed.

Equations 4.1-4.7 in Table 4 present the estimated results of the Argentina wheat submodel. Wheat area harvested has a positive relationship with lagged wheat real farm price. The estimated short-run supply elasticity with respect to price is 0.51. Sorghum real farm price is used as a competing crop price in the acreage equation. Four dummy variables account for years in which favorable or adverse weather affected wheat area. Equation 4.2 represents total production as acreage harvested times yield per hectare.

In the Argentinean submodel, net exports are estimated as a function of production and wheat real farm price. The elasticity of exports with respect to wheat price is -0.17. Dummy variables for 1979 and 1984 are included to reflect the government policy actions in wheat exports in those years.

The real farm price of wheat in Argentina has a positive relationship with the U.S. wheat price (in terms of domestic currency), and has a negative relationship with the inflation rate in Argentina. The calculated price transmission elasticity is 0.43, indicating that only a portion of changes in U.S. prices is transmitted to farmers in Argentina. Dummy variables for years 1973, 1974, and 1975 are used to capture the effect of high export taxes and domestic price controls. The dummy variable for 1980 is used to reflect the U.S. grain embargo to the Soviet Union. Similarly, a price linkage equation for real farm price of sorghum is also estimated.
Table 4. Structural parameter estimates of the Argentina wheat submodel

(4.1) Area Harvested

\[
\text{WHAHAR} = 1331.710 + 0.506 \times \text{LAG(WHAHAR)}
\]

\[
+ 7.821 \times \text{LAG(WHPFMARR)} - 1695.310 \times (D70 + D77)
\]

\[
R^2 = 0.90 \quad \text{DW} = 2.12
\]

(4.2) Production

\[
\text{WHSPRAR} = \text{WHYHAR} \times \text{WHAHAR}
\]

(4.3) Net Exports

\[
\text{WHSMNAR} = 4221.29 - 0.884 \times \text{WHSPRAR} - 1.905 \times \text{WHPFMARR}
\]

\[
R^2 = 0.98 \quad \text{DW} = 2.36
\]

(4.4) Sorghum Price Linkage

\[
\text{SGPFMARR} = 166.593 + 13.883 \times (\text{SORPF} \times \text{NIMECARF/WPI80AR}) \times 10000
\]

\[
- 12.300 \times [\text{WPI80AR - LAG(WPI80AR)}] / \text{LAG(WPI80AR)}
\]

\[
R^2 = 0.81 \quad \text{DW} = 2.34
\]
Table 4. Continued

(4.5) Wheat Price Linkage

\[\text{WHPFMARR} = 239.884 + 13.509 \times (\text{USWHEPF} \times \text{NIMECARF}/\text{WPI80AR}) \times 1000 \]
\[\text{WHPFMARR} = 239.884 + 13.509 \times (\text{USWHEPF} \times \text{NIMECARF}/\text{WPI80AR}) \times 1000 \]
\[(5.05) \quad (2.77) \quad \text{[0.43]} \]
\[- 17.143 \times \text{[WPI80AR - LAG(WPI80AR)]/LAG(WPI80AR)} \]
\[(-4.93) \quad \text{[-0.10]} \]
\[- 130.853 \times (\text{D73 + D75}) - 192.142 \times \text{D74} \]
\[(-3.65) \quad (-4.32) \]
\[+ 78.999 \times \text{D77} + 85.845 \times \text{D80} \]
\[(2.65) \quad (2.87) \]
\[R^2 = 0.85 \quad \text{DW} = 2.06 \]

(4.6) Domestic Use

\[\text{WHUDTAR} = \text{WHSPRAR} + \text{LAG(WHCOTAR)} + \text{WHSMNAR} - \text{WHCOTAR} \]

Endogenous Variables

- CECOTAR = Argentina, Cattle numbers (mil. head)
- SGPFMARR = Argentina, Sorghum Real Farm Price (1980 Australes/MT)
- USWHEFF = U.S., Wheat Farm Price (US $/bu.)
- WHAHHR = Argentina, Wheat Area Harvested (1000 ha.)
- WHPFMARR = Argentina, Wheat Real Farm Price (1980 Australes/MT)
- WHSMNAR = Argentina, Wheat Net Exports (1000 MT)
- WHSPRAR = Argentina, Wheat Production (1000 MT)
- WHUDTAR = Argentina, Wheat Total Domestic Use (1000 MT)

Exogenous Variables

- D70 = Dummy Variable: 1 in 1970, 0 otherwise
- D73 = Dummy Variable: 1 in 1973, 0 otherwise
- D74 = Dummy Variable: 1 in 1974, 0 otherwise
- D75 = Dummy Variable: 1 in 1975, 0 otherwise
- D76 = Dummy Variable: 1 in 1976, 0 otherwise
- D77 = Dummy Variable: 1 in 1977, 0 otherwise
- D79 = Dummy Variable: 1 in 1979, 0 otherwise
- D80 = Dummy Variable: 1 in 1980, 0 otherwise
Table 4. Continued

D82 = Dummy Variable: 1 in 1982, 0 otherwise
D83 = Dummy Variable: 1 in 1983, 0 otherwise
D84 = Dummy Variable: 1 in 1984, 0 otherwise
NARPDAR = Argentina, Real GDP (1000 1980 Australes)
NIMECARF = Argentina, Real Exchange Rate (1980 Australes/$)
SORPF = U.S. Sorghum Farm Price ($/bu.)
WHCOTAR = Argentina, Wheat Ending Stocks (1000 MT)
WHYHHRAR = Argentina, Wheat Yield (MT/ha.)
WPI80AR = Argentina, Wholesale Price Index (1980 = 100)
Equation 4.6 gives the estimated results for cattle numbers in Argentina. The domestic wheat use is determined as a residual; i.e., total supply minus export and stock demands.

The European Community Wheat Submodel

The Common Agricultural Policy of the EC allows domestic grain prices to vary between the target price and the intervention price. Target prices indicate price levels desired in the most grain-deficient region (Duisburg), but there is no commitment to enforce these prices. In fact, market prices are equivalent to the target price only when production falls short of domestic demand. In this situation prices are determined by import prices. Grain imports, however, are allowed only at the threshold price, which is the import price set high enough to guarantee the target price in Duisburg. The difference between the import price (Rotterdam) and the threshold price is a levy on imports. High internal EC prices relative to world prices require export subsidies. This has been the case for wheat in recent years. Koester estimates that between 1969 and 1973 the high price support policy of the EC resulted in an additional 4 million tons of wheat produced and reduced wheat utilization by 4.6 million tons.

The three important EC policy prices--target, intervention, and threshold--are determined annually and affect the actual market prices. The intervention price is a floor price and as a matter of policy is set high enough to maintain actual market prices at relatively high levels. The threshold price is a ceiling price. The comparison of the three policy prices and the producer price reveals that the producer price was
well below the intervention price in a number of years. Although the producer price may be low, actual producer receipts are higher due to subsidies. Without any data on subsidy payments the appropriate price variable to use in an area equation becomes obscured.

Table 5 gives the estimates of EC structural parameters. Wheat area harvested is specified as a function of its lagged value, soft wheat real intervention price, and Durum wheat real intervention price. Dummy variables for 1975, 1977, 1980, and 1984 are included in the equation to account for unexplained changes in area in these years. The statistical fit of the equation is satisfactory. The area harvested responds to own-price (for both soft wheat and durum wheat price) with an elasticity of 0.19.

On the demand side, feed use is specified as a function of soft wheat real threshold price, corn real threshold price, and poultry production. All estimated coefficients have expected signs and are highly significant. The own-price elasticity is -1.32 and the substitute-price elasticity is 1.19. As in the conventional specification, wheat food use is a function of its own price and real income. The estimated own-price and income elasticities are -0.07 and 0.05, respectively.

The stock demand equation is specified as a function of production, lagged stocks, and dummy variables. Poultry production is endogenized and estimated in the model. The explanatory variables are real income and corn threshold price.

Four price equations are endogenously estimated. The EC soymeal price is linked to U.S. soymeal price in ECU. Since the EC does not
Table 5. Structural parameter estimates of the EC wheat submodel

(5.1) Area Harvested

\[
\text{WHAAHHE}_2 = 11028.000 + 0.090 \times \text{LAG(WHAAHHE}_2) \\
(5.84) \quad (0.69) \\
[0.09]
\]

\[
+ 5.675 \times \text{(WSPIEO/NARDDEO)} - 1012.360 \times \text{D75} \\
(2.10) \quad (-4.23) \\
[0.09]
\]

\[
- 1628.680 \times \text{D77} + 4.460 \times \text{(WHPIEO/NARDDEO)} \\
(-6.33) \quad (2.10) \\
[0.10]
\]

\[
+ 1440.310 \times \text{SHIFT80} + 436.916 \times \text{D84} \\
(5.54) \quad (1.90) \\
\text{R}^2 = 0.95 \quad \text{DW = 2.39}
\]

(5.2) Production

\[
\text{WHSPRE}_2 = \text{WHAAHHE}_2 \times \text{WHYHHE}_2
\]

(5.3) Feed Use

\[
\text{WHUFEE}_2 = 3793.300 + 3.639 \times \text{PYSPRE}_2 - 67.552 \times \text{WSPTHEO/NARDDEO} \\
(1.0) \quad (6.82) \quad (-2.64) \\
[1.08] \quad [-1.32]
\]

\[
+ 67.983 \times \text{COPTHEO/NARDDEO} + 3133.450 \times \text{(D73 + D74)} \\
(2.53) \quad (7.88) \\
[1.19]
\]

\[
- 7033.33 \times \text{SHIFT73} + 6339.810 \times \text{D83} + 8584.330 \times \text{(D84 + D85)} \\
(-21.41) \quad (12.66) \quad (21.82)
\]

\text{R}^2 = 0.99 \quad \text{DW = 2.56}
Table 5. Continued

(5.4) Food Use

\[
\text{WHUHTE}_2 = 36879.700 + 0.8333 \times \frac{\text{NANPDE2}}{\text{NARDDEO}} - 1766.190 \times (D72 + D73) \\
\quad (19.73) \quad (1.34) \quad (-6.17) \\
\quad [0.05]
\]

\[
- 1545.030 \times (D82 + D83) + 1354.270 \times D77 \\
\quad (-4.96) \quad (3.01)
\]

\[
- 937.456 \times \text{SHIFT73} + 905.860 \times D85 - 8.919 \\
\quad (-2.24) \quad (-2.06) \quad (-3.18) \\
\quad [-0.07]
\]

* \text{WSPTHEO}/\text{NARDDEO}

\[R^2 = 0.89 \quad \text{DW} = 1.86\]

(5.5) Stocks

\[
\text{WHCOTE}_2 = -5192.500 + 0.113 \times \text{LAG(WHCOTE2)} - 3872.290 \times D83 \\
\quad (1.38) \quad (-4.44) \quad [0.11]
\]

\[
+ 3017.66 \times (D67 + D68) + 0.258 \times \text{WHSPRE2} \\
\quad (4.52) \quad (12.23) \quad [1.35]
\]

\[
+ 1914.710 \times (D74 + D75 + D76) \\
\quad (3.45)
\]

\[R^2 = 0.94 \quad \text{DW} = 2.37\]

(5.6) Poultry Production

\[
\text{PYSPRE2} = 1375.180 + 1.655 \times \frac{\text{NANPDE2}}{\text{NARDDEO}} - 4.465 \times \text{COPTHEO}/\text{NARDDEO} \\
\quad (2.40) \quad (11.23) \quad (-4.77) \quad [-0.27]
\]

\[
+ 654.949 \times \text{SHIFT80} \\
\quad (6.73)
\]

\[R^2 = 0.99 \quad \text{DW} = 2.09\]
Table 5. Continued

(5.7) Soymeal Price

\[\text{SMPFME0} = 15.910 + 1.130 \times \text{SOMPM} \times \text{NIMEUE0} \]
\[(2.72) \quad (28.29) \quad [0.91] \]

\[R^2 = 0.98 \quad \text{DW} = 2.59 \]

(5.8) Soft Wheat Intervention Price

\[\text{WSPIE0} = 119.981 - 0.083 \times \text{LAG(WSPIE0)} \]
\[(20.45) \quad (-1.32) \]

\[- \text{LAG(WHGPFG90)} \times \text{LAG(NIMEUE0)} - 0.001 \times \text{LAG(WHCOE2)} \]
\[(-1.98) \]

\[+ 57.363 \times \text{LAG(NARDEDE)} + 17.764 \times D75 \]
\[(9.52) \quad (2.91) \quad [0.92] \]

\[+ 12.570 \times (D82 + D83) \]
\[(3.12) \]

\[R^2 = 0.97 \quad \text{DW} = 1.17 \]

(5.9) Soft Wheat Threshold Price

\[\text{WSPTHE0} = -76.747 + 1.687 \times \text{WSPIE0} + 22.107 \times \text{SHIFT76} \]
\[(-17.17) \quad (47.07) \quad (13.11) \quad [1.35] \]

\[- 14.926 \times D75 + 18.410 \times D86 \]
\[(-6.49) \quad (8.99) \]

\[R^2 = 0.999 \quad \text{DW} = 1.00 \]

(5.10) Corn Threshold Price

\[\text{COPTHE0} = -16.156 + 1.336 \times \text{COPIE0} + 16.939 \times D86 \]
\[(6.30) \quad (71.64) \quad (5.88) \quad [1.09] \]

\[R^2 = 0.997 \quad \text{DW} = 0.49 \]
Table 5. Continued

(5.11) Net Exports

\[
WHSMNE2 = WHUHTE2 + WHUFEE2 + WHCOTE2 - WHSPRE2 - LAG(WHCOTE2)
\]

Endogenous Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPTHE0</td>
<td>EC, Corn Threshold Price (ECU/MT)</td>
</tr>
<tr>
<td>PYSPRE2</td>
<td>EC, Poultry Production (1000 MT)</td>
</tr>
<tr>
<td>SYMPFME0</td>
<td>EC, Soymeal Price (ECU/MT)</td>
</tr>
<tr>
<td>WHAHHHE2</td>
<td>EC, Wheat Area Harvested (1000/ha.)</td>
</tr>
<tr>
<td>WHCOTE2</td>
<td>EC, Wheat Ending Stocks (1000 MT)</td>
</tr>
<tr>
<td>WHPGFU90</td>
<td>U.S., U.S. Gulf Port Price ($/MT)</td>
</tr>
<tr>
<td>WHSMNE2</td>
<td>EC, Wheat Net Imports (1000 MT)</td>
</tr>
<tr>
<td>WHSPRE2</td>
<td>EC, Wheat Production (1000 MT)</td>
</tr>
<tr>
<td>WHUFEE2</td>
<td>EC, Wheat Feed Use (1000 MT)</td>
</tr>
<tr>
<td>WHUHTE2</td>
<td>EC, Wheat Food Use (1000 MT)</td>
</tr>
<tr>
<td>WSPIE0</td>
<td>EC, Soft Wheat Intervention Price (ECU/MT)</td>
</tr>
<tr>
<td>WSPTHE0</td>
<td>EC, Soft Wheat Threshold Price (ECU/MT)</td>
</tr>
</tbody>
</table>

Exogenous Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPIE0</td>
<td>EC, Corn Intervention Price (ECU/MT)</td>
</tr>
<tr>
<td>D67</td>
<td>Dummy Variable: 1 in 1967, 0 otherwise</td>
</tr>
<tr>
<td>D68</td>
<td>Dummy Variable: 1 in 1968, 0 otherwise</td>
</tr>
<tr>
<td>D72</td>
<td>Dummy Variable: 1 in 1972, 0 otherwise</td>
</tr>
<tr>
<td>D73</td>
<td>Dummy Variable: 1 in 1973, 0 otherwise</td>
</tr>
<tr>
<td>D74</td>
<td>Dummy Variable: 1 in 1974, 0 otherwise</td>
</tr>
<tr>
<td>D75</td>
<td>Dummy Variable: 1 in 1975, 0 otherwise</td>
</tr>
<tr>
<td>D76</td>
<td>Dummy Variable: 1 in 1976, 0 otherwise</td>
</tr>
<tr>
<td>D77</td>
<td>Dummy Variable: 1 in 1977, 0 otherwise</td>
</tr>
<tr>
<td>D82</td>
<td>Dummy Variable: 1 in 1982, 0 otherwise</td>
</tr>
<tr>
<td>D83</td>
<td>Dummy Variable: 1 in 1983, 0 otherwise</td>
</tr>
<tr>
<td>D84</td>
<td>Dummy Variable: 1 in 1984, 0 otherwise</td>
</tr>
<tr>
<td>D85</td>
<td>Dummy Variable: 1 in 1985, 0 otherwise</td>
</tr>
<tr>
<td>D86</td>
<td>Dummy Variable: 1 in 1986, 0 otherwise</td>
</tr>
<tr>
<td>NANPDE2</td>
<td>EC, Nominal GDP in ECU (Bil. ECU)</td>
</tr>
<tr>
<td>NARRDE0</td>
<td>EC, GDP Deflator (1980 = 1)</td>
</tr>
<tr>
<td>NIMEUE0</td>
<td>EC, Exchange Rate (ECU/$)</td>
</tr>
<tr>
<td>SHIFT73</td>
<td>Dummy Variable: 1 in 1973, 0 otherwise</td>
</tr>
<tr>
<td>SHIFT76</td>
<td>Dummy Variable: 1 in 1976, 0 otherwise</td>
</tr>
<tr>
<td>SHIFT80</td>
<td>Dummy Variable: 1 in 1980, 0 otherwise</td>
</tr>
<tr>
<td>SOMPM</td>
<td>U.S., Soymeal Price ($/ton)</td>
</tr>
<tr>
<td>WHPIE0</td>
<td>EC, Durum Wheat Intervention Price (ECU/MT)</td>
</tr>
<tr>
<td>WHYHHE2</td>
<td>EC, Wheat Yield (MT/ha.)</td>
</tr>
</tbody>
</table>
pursue any restrictive trade policies in soymeal trade, the price-transmission elasticity is close to one. The soft wheat intervention price is linked to the difference between lagged intervention and Gulf port prices. The other explanatory variables in this equation are stocks and inflation. Because of the price fixing policy of the EC, the price-transmission elasticity is close to zero. The soft wheat and corn threshold prices are linked to their respective intervention prices. Finally, wheat net exports are derived as the residual of supply and demand.

India Wheat Submodel

A main feature of the Indian grain market is its segmentation into concessional and commercial markets. The government buys grain from growers, monopolizes imports, and is able to channel wheat to low-income consumers at a subsidized price using the stockpiles. The two important policy prices of grain are, therefore, the procurement price (the price at which the government buys the grain) and the resale price (the price at which the government sells the grain to ration card holders). Krishna and Chhibber (1983) estimated that since the late 1970s the government has handled only about 10 percent of total available grain, defined as the sum of production, net imports, and change in government stocks. Until 1966 imports were the main source for concessional sales. Between 1967 and 1972 the Green Revolution enabled the government to procure enough domestic wheat to increase stocks and eliminate imports as a source for concessional sales.
Although the system of grain procurement by the government varies from year to year and from region to region, it is reported that "for wheat, the details of variations in purchase systems have little significance, because Punjab and Haryana states, which contributed 60 to 90 percent of all-India procurement in the decade 1967-1977 ... have purchased most of their grain in the open market at the prevailing price, with right of preemptive purchase exercised by government agents only occasionally" (Krishna and Chhibber 1983, 15). There is, therefore, little difference between the procurement price and the market price for wheat. This suggests that farmers do not necessarily face a dual market, as consumers do.

Equations estimated for the Indian wheat market are presented in Table 6. The real gross return for wheat in the area equation is significant with the elasticity of 0.25. The substitute crop (sorghum) real gross return is also significant, with elasticity of -0.10.

On the demand side, it is estimated that during the period 1961-1978 the public system provided an average of 29 percent of wheat consumed. This large volume of concessional sales, together with wide variations in the subsidized price relative to the producer price, implies a dual market as modeled by Krishna and Chhibber. A single demand equation is estimated in this model because the data are not disaggregated according to the various domestic markets. The food demand equation has significant coefficients for own price and income. The own-price elasticity of demand is -0.38 and income elasticity is 0.76.

Stock demand is also estimated as a component of this model. The beginning level and the current crop year production are two major
Table 6. Structural parameter estimates of the India wheat submodel

(6.1) Area Harvested

\[
\text{WHAHHIN} = 3.494 + 0.694 \times \text{LAG(WHAHHIN)} \\
(1.52) \quad (12.12) \quad [0.69] \\
+ 0.002 \times \text{LAG(WHPFMIN)/LAG(NARDDIN)} \times \text{LAG(WHYHHIN)} \\
(5.22) \quad [0.25] \\
- 0.003 \times \text{LAG(SGPFMIN)/LAG(NARDDIN)} \times \text{LAG(SCYHHIN)} \\
(-2.65) \quad [-0.10] \\
- 1.322 \times \text{D75} + 1.515 \times (\text{D83} + \text{D84}) \\
(-3.06) \quad (4.51) \\
R^2 = 0.99 \quad \text{DW} = 2.53
\]

(6.2) Production

\[
\text{WHSPRIN} = \text{WHAHHIN} \times \text{WHYHHIN}
\]

(6.3) Domestic Use

\[
\text{WHUDTIN} = 18.886 - 0.007 \times (\text{WHPFMIN/NARDDIN}) \\
(3.49) \quad (-4.27) \quad [-0.38] \\
+ 0.020 \times (\text{NANPDIN/NARDDIN}) \\
(7.96) \quad [0.76] \\
R^2 = 0.97 \quad \text{DW} = 1.66
\]
Table 6. Continued

(6.4) Stocks

\[\text{WHCOTIN} = -1.0006 + 0.634 \times \text{LAG(WHCOTIN)} + 0.160 \times \text{WHSPRIN} \]
\[(-1.19) \] \[(6.26) \]
\[[0.63] \]
\[(4.19) \]
\[[0.65] \]
\[- 3.343 \times (D78 + D79 + D80) - 2.57 \times (D72 + D73 + D74) \]
\[(-5.00) \]
\[(-3.80) \]
\[+ 3.173 \times (D75 + D76) \]
\[(3.97) \]
\[R^2 = 0.95 \]
\[DW = 2.44 \]

(6.5) Wheat Farm Price

\[\text{WHPFMIN} = 738.940 + 0.160 \times \text{LAG(WHPFMIN)} \]
\[(5.12) \]
\[(1.23) \]
\[- 351.621 \times \text{LAG(WHSPRIN)}/\text{LAG(WHUDTIN)} \]
\[(-2.02) \]
\[+ 0.541 \times \text{WHPGPU90} \times \text{NIMEUIN} \]
\[(6.91) \]
\[[0.51] \]
\[R^2 = 0.94 \]
\[DW = 2.28 \]

(6.6) Exports

\[\text{WHSMNIN} = \text{WHUDTIN} + \text{WHCOTIN} - \text{WHSPRIN} - \text{LAG(WHCOTIN)} \]

Endogenous Variables

\[\text{WHAHHIN} = \text{India, Wheat Area Harvested (mil/ha.)} \]
\[\text{WHCOTIN} = \text{India, Wheat Ending (Stocks/MMT)} \]
\[\text{WHPFMIN} = \text{India, Wheat Producer Price (Rupees/MMT)} \]
\[\text{WHPGPU90} = \text{U.S., Wheat Gulf Port ($/MT)} \]
\[\text{WHSMNIN} = \text{India, Wheat Net Imports (MMT)} \]
\[\text{WHSPRIN} = \text{India, Wheat Production (MMT)} \]
\[\text{WHUDTIN} = \text{India, Wheat Domestic Use (MMT)} \]
Table 6. Continued

Exogenous Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D72</td>
<td>Dummy Variable: 1 in 1972, 0 otherwise</td>
</tr>
<tr>
<td>D73</td>
<td>Dummy Variable: 1 in 1973, 0 otherwise</td>
</tr>
<tr>
<td>D74</td>
<td>Dummy Variable: 1 in 1974, 0 otherwise</td>
</tr>
<tr>
<td>D75</td>
<td>Dummy Variable: 1 in 1975, 0 otherwise</td>
</tr>
<tr>
<td>D76</td>
<td>Dummy Variable: 1 in 1976, 0 otherwise</td>
</tr>
<tr>
<td>D78</td>
<td>Dummy Variable: 1 in 1978, 0 otherwise</td>
</tr>
<tr>
<td>D79</td>
<td>Dummy Variable: 1 in 1979, 0 otherwise</td>
</tr>
<tr>
<td>D80</td>
<td>Dummy Variable: 1 in 1980, 0 otherwise</td>
</tr>
<tr>
<td>D83</td>
<td>Dummy Variable: 1 in 1983, 0 otherwise</td>
</tr>
<tr>
<td>D84</td>
<td>Dummy Variable: 1 in 1984, 0 otherwise</td>
</tr>
<tr>
<td>NANPDIN</td>
<td>India, GDP (billion rupees)</td>
</tr>
<tr>
<td>NARDDIN</td>
<td>India, GDP Deflation (1980 = 1.0)</td>
</tr>
<tr>
<td>NIMEUIN</td>
<td>India, Exchange Rate (Rupees/$)</td>
</tr>
<tr>
<td>SGPFMIN</td>
<td>India, Sorghum Producer Price (Rupees/MT)</td>
</tr>
<tr>
<td>SGYHHIN</td>
<td>India, Sorghum Yield (MT/ha)</td>
</tr>
<tr>
<td>WHYHHIN</td>
<td>India, Wheat Yield (MT/ha)</td>
</tr>
</tbody>
</table>
determinants of the ending stock level. The wheat farm price is linked to U.S. Gulf port price. The price-transmission elasticity is only 0.51 because of the government's intervention in the wheat pricing policy.

Japan Wheat Submodel

Historically, wheat production in Japan declined over the period 1955 to 1971. This was due to a decline in the "cropping ratio," which is the ratio of crop area to cultivated area. The decline in the cropping ratio is said to be a result of the successful competition of the nonagricultural sector for available labor, reflected in the decline in agricultural labor from 19.3 million in 1955 to 13.1 million in 1974 (Sanderson 1978). The trend suggests a decline in the importance of wheat as a cash crop internally and therefore an increased reliance on wheat imports.

The general agricultural price policy in Japan is to maintain high support prices for basic crops (including wheat). The government purchases wheat from farmers at a high support price and, together with imported wheat, resells to consumers at a lower price. The resale price until 1974 was considered a weighted average of the support price and the import price. During the abnormally high world prices of 1974-1975 the government selling price showed only a moderate increase from previous levels. In fact, the resale price was below the import price in those years, amounting to a subsidy instead of a tax on imports.

The estimated equations for the Japanese wheat model are reported in Table 7. The resale price and income are significant in the food demand
Table 7. Structural parameter estimates of the Japan wheat submodel

(7.1) Food Use
\[
\text{WHFODJP} = 4.887 - 0.005 \times \text{WHRESPJP} + 0.008 \times \text{INCRTJP}
\]
\[
(12.73) (-2.75) (5.80)
\]
\[
\text{R}^2 = 0.95 \quad \text{DW} = 1.50
\]

(7.2) Resale Price
\[
\text{WHRESPJP} = 114.112 + 0.270 \times (\text{RGULFUS}/\text{REXJAPA}) - 44.155 \times \text{DUM7380}
\]
\[
(9.13) (3.32) (-6.60)
\]
\[
\text{R}^2 = 0.84 \quad \text{DW} = 1.87
\]

(7.3) Net Imports
\[
\text{NETMJP} = \text{WHFODJP} + \text{WHFEDJP} + \text{WHESTJP} - \text{WHPGNJP} - \text{LAG(WHESTJP)}
\]

Endogenous Variables
- \text{NETMJP} = Japan, Wheat Net Imports (MMT)
- \text{RGULFUS} = U.S., Real Wheat Gulf Port Price, fob (US $/MT)
- \text{WHFODJP} = Japan, Wheat Food Use (MMT)
- \text{WHRESPJP} = Japan, Wheat Resale Price (1000 Yen/MT)

Exogenous Variables
- \text{DUM7380} = Dummy Variable to Reflect the Shift in the Relative Levels of the Resale and International Price: 1 from 1973-80, 0 otherwise.
- \text{INCRTJP} = Japan, Real Income (Bil. 1975 yen)
- \text{REXJAPA} = Exchange Rate (US $/Yen, 1975 = 1.0)
- \text{WHESTJP} = Japan, Wheat Ending Stocks (MMT)
- \text{WHFEDJP} = Japan, Wheat Feed Use (MMT)
- \text{WHPGNJP} = Japan, Wheat Production (MMT)
equation. The resale food price and income elasticities of food demand are -0.12 and 0.22, respectively.

Because the government sets both producer and consumer prices, both prices can be exogenous. The resale price is determined in part by the import price therefore, it is linked to the U.S. price. The price transmission elasticity is 0.28. A dummy variable is included to explain the shift in the relative levels of the resale and international prices.

Centrally Planned Economies Wheat Submodel

Regions included in the centrally planned economies submodel are the USSR, China, and Eastern Europe (Table 8). For the USSR, imports and stock changes are endogenously estimated. Domestic use is the residual. Production is exogenous. The explanatory variables in the import demand equation are the ratio of U.S. Gulf port price to light Arabian crude oil price, wheat production, and dummy variables. Since the Soviet Union is an exporter of crude oil, the higher crude oil price has a positive effect on wheat imports. The Soviet Union's wheat imports respond to world price with an elasticity of -0.79. As one would expect, wheat production has a negative effect on wheat imports. In the stock change equation, the important explanatory variable is production changes from year to year. Domestic use is total supply (production plus imports) minus stocks.

For China, wheat acreage and domestic use are endogenously estimated. Area harvested is estimated as a function of support price of grains of which wheat is a component, lagged dependent variable, and a number of dummy variables. Both lagged dependent and grain prices are significant
Table 8. Structural parameter estimates for the CPE wheat submodel

USSR

(8.1) **Imports**

\[
\text{WHSMNSU} = 21.890 - 0.338 \times \text{WHPGPU90/LTARCRUD} - 0.141 \times \text{WHSPRSU} \\
(4.24) \quad (-7.08) \quad (-2.76) \\
(\text{[0.79]} \quad \text{[1.60]} \\
+ 15.915 \times \text{D72} + 9.959 \times \text{SHIFTO80} + 7.191 \times \text{D84} \\
(5.81) \quad (6.08) \quad (2.46) \\
\]

\[R^2 = 0.95 \quad \text{DW} = 1.85\]

(8.2) **Stocks**

\[
\text{WHSTCHSU} = 0.598 - 15.277 \times (\text{D69} + \text{D70}) + 7.071 \times (\text{D83} + \text{D84}) \\
(0.55) \quad (-4.64) \quad (2.13) \\
+ 0.372 \times [\text{WHSPRSU} - \text{LAG(WHSPRSU)}] \\
(6.81) \\
(0.41) \\
\]

\[R^2 = 0.81 \quad \text{DW} = 1.91\]

(8.3) **Domestic Use**

\[
\text{WHUDTSU} = \text{WHSPRSU} + \text{WHSMNSU} - \text{WHSTCHSU} \\
\]

CHINA

(8.4) **Area Harvested**

\[
\text{WHAHHCN} = 6.690 + 0.681 \times \text{LAG(WHAHHCN)} - 1.266 \times (\text{D81} + \text{D82}) \\
(4.23) \quad (8.99) \quad (-4.45) \\
- 1.199 \times \text{D68} + 1.050 \times (\text{D76} + \text{D78}) + 0.008 \times \text{LAG(GRPFMCN)} \\
(-3.58) \quad (3.83) \quad (3.41) \\
- 0.990 \times \text{D85} \\
(-2.60) \\
\]

\[R^2 = 0.98 \quad \text{DW} = 1.64\]
Table 8. Continued

(8.5) Production

\[\text{WHSPRCN} = \text{WHAHHCN} \times \text{WHYHHCN} \]

(8.6) Domestic Use

\[\begin{align*}
\text{WHUDTCN} &= -63.127 + 0.830 \times \text{WHSPRCN} + 13.875 \times \text{LAG(NANYNCN)} \\
&\quad - 5.648 \times D85 + 3.839 \times D80 \\
&\quad (-2.25) \quad (1.60)
\end{align*} \]

\[R^2 = 0.99 \quad \text{DW} = 0.99 \]

(8.7) Imports

\[\text{WHSMNCN} = \text{WHUDTCN} - \text{WHSPRCN} \]

EASTERN EUROPE

(8.8) Area Harvested

\[\text{WHAHHE8} = \text{WHSPRE8} / \text{WHYHHE8} \]

(8.9) Production

\[\begin{align*}
\text{WHSPRE8} &= 2.170 + 9.567 \times \text{WHYHHE8} - 3.882 \times D81 - 2.749 \times D82 \\
&\quad (1.33) \quad (18.53) \quad (-3.29) \quad (-2.28)
\end{align*} \]

\[R^2 = 0.96 \quad \text{DW} = 1.64 \]

(8.10) Total Domestic Use

\[\begin{align*}
\text{WHUDTE8} &= 11.697 + 0.625 \times \text{WHSPRE8} + 3.381 \times \text{NARPDIE8} \\
&\quad (5.32) \quad (5.33) \quad (1.15) \\
&\quad [0.57] \quad [0.09]
\end{align*} \]

\[R^2 = 0.88 \quad \text{DW} = 1.11 \]
Table 8. Continued

(8.11) Imports

\[\text{WHSMNE8} = \text{WHUDTE8} + \text{WHSTCHE8} - \text{WHSPRE8} \]

Endogenous Variables

- **WHAHHCN**: China, Wheat Area Harvested (mil/ha.)
- **WHAHHE8**: E. Europe, Wheat Area Harvested (mil/ha.)
- **WHPGPU90**: U.S., Wheat Gulf Port Price, fob ($/MT)
- **WHSMNCN**: China, Wheat Net Imports (MMT)
- **WHSMNE8**: E. Europe, Wheat Net Imports (MMT)
- **WHSMNSU**: USSR, Wheat Net Imports (MMT)
- **WHSPRCN**: China, Wheat Production (MMT)
- **WHSPRE8**: E. Europe, Wheat Production (MMT)
- **WHSTCHSU**: USSR, Change in Stocks (MMT)
- **WHUDTCN**: China, Wheat Total Domestic Use (MMT)
- **WHUDTE8**: E. Europe, Wheat Total Domestic Use (MMT)
- **WHUDTSU**: USSR, Wheat Total Domestic Use (MMT)

Exogenous Variables

- **D68**: Dummy Variable: 1 in 1968, 0 otherwise
- **D69**: Dummy Variable: 1 in 1969, 0 otherwise
- **D70**: Dummy Variable: 1 in 1970, 0 otherwise
- **D72**: Dummy Variable: 1 in 1972, 0 otherwise
- **D76**: Dummy Variable: 1 in 1976, 0 otherwise
- **D78**: Dummy Variable: 1 in 1978, 0 otherwise
- **D80**: Dummy Variable: 1 in 1980, 0 otherwise
- **D81**: Dummy Variable: 1 in 1981, 0 otherwise
- **D82**: Dummy Variable: 1 in 1982, 0 otherwise
- **D83**: Dummy Variable: 1 in 1983, 0 otherwise
- **D84**: Dummy Variable: 1 in 1984, 0 otherwise
- **D85**: Dummy Variable: 1 in 1985, 0 otherwise
- **GRPFMCN**: China, Aggregate Grain Price
- **LTARCRUD**: Light Arabian Crude Oil Price (US $/bbl.)
- **NANYNCN**: China, Net Material Product Produced (Bil 1980 Yuan)
- **NARPDIE8**: E. Europe, Real GDP Index (1980 = 1.0)
- **SHIFT80**: Dummy Variable: 1 in 1980 and after, 0 otherwise
- **WHSPRSU**: USSR, Wheat Production (MMT)
- **WHSTCH8E8**: E. Europe, Change in Stocks (MMT)
- **WHYHHCN**: China, Wheat Yield (MT/ha)
- **WHYHHE8**: E. Europe, Wheat Yield (MT/ha)
and have positive effects on the acreage harvested. Domestic use is estimated as a function of production and income. Both production and income have positive effects on use; income elasticity is 1.4. Imports are given as total use minus production.

For Eastern Europe, production and domestic use are endogenously estimated. Yield and two dummy variables are the explanatory variables in the production equation. Domestic use is estimated as a function of production and income. The income elasticity for domestic wheat use is 0.09.

Other Regions

Net imports equations are separately estimated for the four regions: Africa and the Middle East, high-income Eastern Asian countries, other Asian countries (excludes India), and other Western European countries (Table 9). The general specification of import demand equations is based on Equation 9 of the previous section. The explanatory variables in these net imports are the U.S. wheat farm price and the income level in each region. Dummy variables are also included in each equation to account for usual changes in imports in various years. All equations have a satisfactory fit, and the estimated coefficients are significant, with the expected signs.

Evaluation

The estimated model presented in the previous section appears to adequately reflect the structure of the world wheat market; however, the explanatory power of the model has not been fully investigated. This section reviews several measures of the model's explanatory power.
Table 9. Structural parameter estimates for the wheat submodel for other regions

AFRICA AND THE MIDDLE EAST

(9.1) Net Imports

\[\text{WHSMNF1} = 15412.100 + 8575.370 \times D84 + 12312.200 \times D85 \]
\[+ 477.588 \times \text{LTARCRUD} - 5801.280 \times \text{USWHEPF/USCORPF} \]
\[R^2 = 0.93 \quad \text{DW} = 2.14 \]

HIGH-INCOME EAST ASIA

(9.2) Net Imports

\[\text{WHSMNR4} = 1823.790 + 14.144 \times \text{NARPDR4} - 164.147 \times \text{USWHEPF} \]
\[- 527.320 \times (D77 + D78) - 470.882 \times (D81 + D82) \]
\[R^2 = 0.92 \quad \text{DW} = 1.80 \]

OTHER ASIA

(9.3) Net Imports

\[\text{WHSMNOAS} = 5481.410 + 39.545 \times \text{OASGOPS} - 842.532 \times \text{LAG(USWHEPF)} \]
\[- 2035.350 \times D70 + 1894.100 \times D74 + 1975.280 \times D77 \]
\[R^2 = 0.92 \quad \text{DW} = 2.51 \]
Table 9. Continued

OTHER WESTERN EUROPE

\[(9.4) \text{ Net Imports} \]

\[
\text{WHSMNOWE} = 1125.940 + 1174.51 * \text{D81} - 551.512 * \text{D84} \\
(7.46) \quad (5.16) \quad (-2.48)
\]

\[-429.015 \times \text{LAG(USWHEPF)} + 742.658 \times (D79 + D80) \\
(-8.09) \quad (4.53)
\]

\[\text{R}^2 = 0.89 \quad \quad \text{DW} = 2.15\]

Endogenous Variables

\begin{align*}
\text{USWHEPF} & = \text{U.S., Wheat Farm Price (US $/bu.)} \\
\text{WHSMNFE1} & = \text{Africa, Wheat Net Imports (1000 MT)} \\
\text{WHSMNOAS} & = \text{Other Asia, Wheat Net Imports (1000 MT)} \\
\text{WHSMNOWE} & = \text{Other W. Europe, Wheat Net Imports (1000 MT)} \\
\text{WHSMNR4} & = \text{High-Income E. Asia, Wheat Net Imports (1000 MT)}
\end{align*}

Exogenous Variable

\begin{align*}
\text{D70} & = \text{Dummy Variable: 1 in 1970, 0 otherwise} \\
\text{D74} & = \text{Dummy Variable: 1 in 1974, 0 otherwise} \\
\text{D77} & = \text{Dummy Variable: 1 in 1977, 0 otherwise} \\
\text{D78} & = \text{Dummy Variable: 1 in 1978, 0 otherwise} \\
\text{D79} & = \text{Dummy Variable: 1 in 1979, 0 otherwise} \\
\text{D80} & = \text{Dummy Variable: 1 in 1980, 0 otherwise} \\
\text{D81} & = \text{Dummy Variable: 1 in 1981, 0 otherwise} \\
\text{D82} & = \text{Dummy Variable: 1 in 1982, 0 otherwise} \\
\text{D84} & = \text{Dummy Variable: 1 in 1984, 0 otherwise} \\
\text{D85} & = \text{Dummy Variable: 1 in 1985, 0 otherwise} \\
\text{LTARCRUD} & = \text{Light Arabian Crude Oil Price (US $/bbl.)} \\
\text{NARPD4} & = \text{High-Income E. Asia, Real GDP (bil. 1980 dollar)} \\
\text{OASGDP} & = \text{Other Asia, Real GDP (bil. 1980 dollar)} \\
\text{USCORPF} & = \text{U.S., Corn Farm Price (US $/bu.)}
\end{align*}
The supply, demand, import demand, and price transmission elasticities are given in Tables 10-12. Performance of the model can be measured by the validity of its estimates, its ability to reproduce the actual data in a dynamic simulation, and its stability. In general, this model performs quite well.

In order to measure this model's ability to predict, a simulation of the model is run over the sample period (1967-1984). The simulation result is then compared with the actual data. Statistics measuring the model's fitting performance include root mean square (RMS) error, RMS percent error, and Theil's forecast statistics.

The RMS error measures an average error of the simulated values from the actual values. The size of RMS error is dependent upon the variable size. To eliminate this problem, RMS percent error is used instead. A useful simulation statistic related to the RMSE and applied to the evaluation of simulation results is Theil's inequality coefficient (U1). There are three different components of Theil's inequality coefficient: UM (bias error), UR (regression error), and UD (disturbance error). The bias proportion UM is an indication of systematic error, since it measures the extent to which the average values of the simulated and actual series deviate from each other. The regression proportion UR indicates the ability of the model to replicate the degree of variability in the variable of interest. The disturbance proportion UD measures the error remaining after deviations from average values and average variabilities have been accounted for. The perfect correlation of simulated values with actual values would imply the ideal distribution of inequality over the three sources as UM = UR = 0 and UD = 1.
Table 10. Summary of estimated domestic supply and demand elasticities from the wheat trade model (1982-1984)

<table>
<thead>
<tr>
<th>Region</th>
<th>Elasticiies with respect to nominal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wheat Price</td>
</tr>
<tr>
<td>U.S.</td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>0.280<sup>b</sup></td>
</tr>
<tr>
<td>Food demand</td>
<td>-0.022</td>
</tr>
<tr>
<td>Feed demand</td>
<td>-0.524</td>
</tr>
<tr>
<td>Stock demand</td>
<td>-0.148</td>
</tr>
<tr>
<td>Canada</td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>0.543<sup>a</sup></td>
</tr>
<tr>
<td>Food demand</td>
<td>-0.027</td>
</tr>
<tr>
<td>Feed demand</td>
<td>-0.851</td>
</tr>
<tr>
<td>Stock demand</td>
<td>-0.511</td>
</tr>
<tr>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>0.123<sup>b</sup></td>
</tr>
<tr>
<td>Argentina</td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>0.377<sup>b,c</sup></td>
</tr>
<tr>
<td>EC</td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>0.051</td>
</tr>
<tr>
<td>Food demand</td>
<td>-0.051</td>
</tr>
<tr>
<td>Feed demand</td>
<td>-0.675</td>
</tr>
<tr>
<td>India</td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>0.210<sup>b</sup></td>
</tr>
<tr>
<td>Total demand</td>
<td>-0.203</td>
</tr>
<tr>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td>Food demand</td>
<td>-0.074<sup>c</sup></td>
</tr>
<tr>
<td>China</td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>0.109</td>
</tr>
</tbody>
</table>

^aElasticity with respect to the expected initial price.
^bElasticity with respect to one period lagged price.
^cElasticity with respect to real price.
Table 11. Estimated import demand elasticities of other regions with respect to U.S. wheat price (1982-1984)

<table>
<thead>
<tr>
<th>Region</th>
<th>USWHEPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa and Middle East (WHSMNF1)</td>
<td>-0.267</td>
</tr>
<tr>
<td>High-Income E. Asia (WHSMNR4)</td>
<td>-0.159</td>
</tr>
<tr>
<td>Other Asia (WHSMNOAS)</td>
<td>-0.265(^a)</td>
</tr>
<tr>
<td>Other W. Europe (WHSMNOWE)</td>
<td>2.270(^a)</td>
</tr>
</tbody>
</table>

\(^a\)Elasticity with respect to one period lagged price.
Table 12. Price transmission elasticities of wheat prices of other regions with respect to U.S. wheat prices (1982-1984)

<table>
<thead>
<tr>
<th>Region</th>
<th>WHPGPU90</th>
<th>RGULFUS</th>
<th>USWHEPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheat export price</td>
<td></td>
<td>1.021(^a)</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheat export price</td>
<td></td>
<td>1.004(^a)</td>
<td></td>
</tr>
<tr>
<td>Argentina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheat farm price</td>
<td></td>
<td></td>
<td>0.506(^b)</td>
</tr>
<tr>
<td>India</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheat farm price</td>
<td></td>
<td></td>
<td>0.589(^a)</td>
</tr>
<tr>
<td>Japan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheat resale price</td>
<td></td>
<td></td>
<td>0.253(^b)</td>
</tr>
</tbody>
</table>

Note: Price transmission elasticities for the European Community, the centrally planned economies, and the rest of the world are zero.
\(^a\)Elasticity is evaluated in nominal terms.
\(^b\)Elasticity is evaluated in real terms.
Table 13 presents the RMS errors and RMS percent errors, and Table 14 presents Theil's forecast statistics. Most endogenous variables have very low RMS percent errors. Out of 75 endogenous variables, 56 variables have an RMS percent error of less than 20 percent. Variables with high RMS percent errors are USWHEPRF, WHSMNE2, WHSMNIN, WHSMNSU, WHSTCHSU, WHSMNE8, and WHSMNOWE. Some of these variables are of small magnitude; thus, any small error of prediction creates a high proportion of error when such error is compared to the small actual values. The export and import variables carry high RMS errors, because they are excess supplies and excess demands. Simulation errors from other domestic variables accumulate and are transferred to the export and import variables. As indicated above, however, most of the variables have a very low RMS percent error.

Theil's forecast errors of most simulation variables are from disturbance terms rather than from intercept or regression terms. As described above, for a good fit of the model the values of UM and UR should be close to zero and UD should be close to one. This is the case for most of the variables reported in Table 13. This shows that the model performs satisfactorily.

Uses of the Model

This section discusses the broader applicability of the model and identifies some of the reports and publications that were prepared by utilizing the model. Included is a description of the general experience in running the model.
Table 13. Root mean square error and root mean square percentage error from the dynamic simulation

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>RMS Error</th>
<th>RMS % Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGULFUS</td>
<td>17</td>
<td>23.828</td>
<td>21.296</td>
</tr>
<tr>
<td>USWHEAHF</td>
<td>17</td>
<td>4.447</td>
<td>7.223</td>
</tr>
<tr>
<td>USWHEAPF</td>
<td>17</td>
<td>4.983</td>
<td>7.074</td>
</tr>
<tr>
<td>USWHEES</td>
<td>17</td>
<td>124.380</td>
<td>22.105</td>
</tr>
<tr>
<td>USWHEEFE</td>
<td>17</td>
<td>57.744</td>
<td>42.834</td>
</tr>
<tr>
<td>USWHEEO</td>
<td>17</td>
<td>6.987</td>
<td>1.174</td>
</tr>
<tr>
<td>USWHEEPC</td>
<td>17</td>
<td>0.031</td>
<td>1.174</td>
</tr>
<tr>
<td>USWHEFRE</td>
<td>17</td>
<td>124.380</td>
<td>45.484</td>
</tr>
<tr>
<td>USWHENPF</td>
<td>17</td>
<td>14.959</td>
<td>41.743</td>
</tr>
<tr>
<td>USWHEPF</td>
<td>17</td>
<td>0.628</td>
<td>19.299</td>
</tr>
<tr>
<td>USWHEPHF</td>
<td>17</td>
<td>0.014</td>
<td>1.540</td>
</tr>
<tr>
<td>USWHEPRF</td>
<td>17</td>
<td>0.219</td>
<td>412.198</td>
</tr>
<tr>
<td>USWHEQP</td>
<td>17</td>
<td>161.100</td>
<td>7.988</td>
</tr>
<tr>
<td>USWHEQPF</td>
<td>17</td>
<td>170.120</td>
<td>8.300</td>
</tr>
<tr>
<td>USWHESD</td>
<td>17</td>
<td>6.809</td>
<td>8.076</td>
</tr>
<tr>
<td>USWHESMN</td>
<td>17</td>
<td>114.430</td>
<td>10.013</td>
</tr>
<tr>
<td>USWHESDF</td>
<td>17</td>
<td>0.717</td>
<td>2.217</td>
</tr>
<tr>
<td>WHPGPU90</td>
<td>17</td>
<td>27.213</td>
<td>18.025</td>
</tr>
<tr>
<td>BAGPICAFA</td>
<td>17</td>
<td>12.003</td>
<td>15.301</td>
</tr>
<tr>
<td>BAPOBCA1</td>
<td>17</td>
<td>8.449</td>
<td>11.828</td>
</tr>
<tr>
<td>CEPHMKCA</td>
<td>17</td>
<td>5.724</td>
<td>6.959</td>
</tr>
<tr>
<td>RSMICMA</td>
<td>17</td>
<td>13.677</td>
<td>7.095</td>
</tr>
<tr>
<td>WHAHICA</td>
<td>17</td>
<td>0.692</td>
<td>8.335</td>
</tr>
<tr>
<td>WHAHHCMAE</td>
<td>17</td>
<td>0.694</td>
<td>3.353</td>
</tr>
<tr>
<td>WCHOTCA</td>
<td>17</td>
<td>1.989</td>
<td>18.441</td>
</tr>
<tr>
<td>WHGPICAE</td>
<td>17</td>
<td>14.034</td>
<td>13.870</td>
</tr>
<tr>
<td>WHPBGCA</td>
<td>17</td>
<td>17.529</td>
<td>15.533</td>
</tr>
<tr>
<td>WHPXESA</td>
<td>17</td>
<td>34.321</td>
<td>19.360</td>
</tr>
<tr>
<td>WHSPRCA</td>
<td>17</td>
<td>1.258</td>
<td>8.350</td>
</tr>
<tr>
<td>WUFCEA</td>
<td>17</td>
<td>0.294</td>
<td>15.031</td>
</tr>
<tr>
<td>WHUHTCA</td>
<td>17</td>
<td>0.035</td>
<td>1.899</td>
</tr>
<tr>
<td>WUSECA</td>
<td>17</td>
<td>0.075</td>
<td>9.189</td>
</tr>
<tr>
<td>WHUXNCIA</td>
<td>17</td>
<td>1.509</td>
<td>11.614</td>
</tr>
<tr>
<td>GWFFMAU</td>
<td>17</td>
<td>13.780</td>
<td>13.462</td>
</tr>
<tr>
<td>SGFFMAU</td>
<td>17</td>
<td>431.190</td>
<td>6.194</td>
</tr>
<tr>
<td>SHCOTAU</td>
<td>17</td>
<td>20.206</td>
<td>13.311</td>
</tr>
<tr>
<td>WHAHHAU</td>
<td>17</td>
<td>1.209</td>
<td>12.999</td>
</tr>
<tr>
<td>WHCOTAU</td>
<td>17</td>
<td>0.754</td>
<td>25.073</td>
</tr>
<tr>
<td>WHPEKTAU</td>
<td>17</td>
<td>30.471</td>
<td>21.069</td>
</tr>
<tr>
<td>WHFFMAU</td>
<td>17</td>
<td>2936.350</td>
<td>21.322</td>
</tr>
<tr>
<td>WHPPCAU</td>
<td>17</td>
<td>34.872</td>
<td>27.459</td>
</tr>
<tr>
<td>WHSMAU</td>
<td>17</td>
<td>1.422</td>
<td>16.891</td>
</tr>
<tr>
<td>WHSPRAU</td>
<td>17</td>
<td>1.531</td>
<td>13.015</td>
</tr>
<tr>
<td>CECOTAR</td>
<td>17</td>
<td>0.964</td>
<td>1.734</td>
</tr>
<tr>
<td>SGFFMARR</td>
<td>17</td>
<td>16.368</td>
<td>6.424</td>
</tr>
</tbody>
</table>
Table 13. Continued

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>RMS Error</th>
<th>RMS % Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHAHHAR</td>
<td>17</td>
<td>345.420</td>
<td>7.702</td>
</tr>
<tr>
<td>WHPFMARR</td>
<td>17</td>
<td>27.011</td>
<td>8.161</td>
</tr>
<tr>
<td>WHSMNAR</td>
<td>17</td>
<td>638.470</td>
<td>33.426</td>
</tr>
<tr>
<td>WHSPRAR</td>
<td>17</td>
<td>564.130</td>
<td>7.708</td>
</tr>
<tr>
<td>WHUDTAR</td>
<td>17</td>
<td>346.470</td>
<td>7.935</td>
</tr>
<tr>
<td>COPTHETØ</td>
<td>17</td>
<td>2.523</td>
<td>1.533</td>
</tr>
<tr>
<td>PYSPRE2</td>
<td>17</td>
<td>88.333</td>
<td>2.126</td>
</tr>
<tr>
<td>SMPFMEO</td>
<td>17</td>
<td>8.000</td>
<td>4.806</td>
</tr>
<tr>
<td>WHAHHE2</td>
<td>17</td>
<td>138.680</td>
<td>0.869</td>
</tr>
<tr>
<td>WHCOTET2</td>
<td>17</td>
<td>702.400</td>
<td>7.720</td>
</tr>
<tr>
<td>WHSMN2E</td>
<td>17</td>
<td>1700.900</td>
<td>316.820</td>
</tr>
<tr>
<td>WHSFE2</td>
<td>17</td>
<td>472.350</td>
<td>0.869</td>
</tr>
<tr>
<td>WHUFEE2</td>
<td>17</td>
<td>934.00</td>
<td>7.264</td>
</tr>
<tr>
<td>WHUHTE2</td>
<td>17</td>
<td>270.220</td>
<td>0.765</td>
</tr>
<tr>
<td>WSPFØØ</td>
<td>17</td>
<td>3.531</td>
<td>2.497</td>
</tr>
<tr>
<td>WSPTHEØ</td>
<td>17</td>
<td>5.843</td>
<td>3.344</td>
</tr>
<tr>
<td>WAHHinin</td>
<td>17</td>
<td>0.805</td>
<td>4.230</td>
</tr>
<tr>
<td>WHCOTIN</td>
<td>17</td>
<td>0.814</td>
<td>13.816</td>
</tr>
<tr>
<td>WHFFMIN</td>
<td>17</td>
<td>146.660</td>
<td>12.265</td>
</tr>
<tr>
<td>WHSMNIN</td>
<td>17</td>
<td>1.600</td>
<td>507.100</td>
</tr>
<tr>
<td>WHSPRIN</td>
<td>17</td>
<td>1.068</td>
<td>4.163</td>
</tr>
<tr>
<td>WHUDTIN</td>
<td>17</td>
<td>1.503</td>
<td>5.355</td>
</tr>
<tr>
<td>NETMJJP</td>
<td>17</td>
<td>0.203</td>
<td>3.540</td>
</tr>
<tr>
<td>WHFOEJP</td>
<td>17</td>
<td>0.123</td>
<td>2.097</td>
</tr>
<tr>
<td>WHERSPJP</td>
<td>17</td>
<td>27.277</td>
<td>29.023</td>
</tr>
<tr>
<td>WHSMHSU</td>
<td>17</td>
<td>2.447</td>
<td>156.68</td>
</tr>
<tr>
<td>WHSTCHSU</td>
<td>17</td>
<td>3.850</td>
<td>119.020</td>
</tr>
<tr>
<td>WHUDTSU</td>
<td>17</td>
<td>4.620</td>
<td>4.740</td>
</tr>
<tr>
<td>WSHAHHCN</td>
<td>17</td>
<td>0.323</td>
<td>1.220</td>
</tr>
<tr>
<td>WHSMNCCN</td>
<td>17</td>
<td>1.809</td>
<td>50.663</td>
</tr>
<tr>
<td>WHSPRCN</td>
<td>17</td>
<td>0.483</td>
<td>1.220</td>
</tr>
<tr>
<td>WHUDTCN</td>
<td>17</td>
<td>1.848</td>
<td>4.015</td>
</tr>
<tr>
<td>WSHAHE8</td>
<td>17</td>
<td>0.362</td>
<td>3.695</td>
</tr>
<tr>
<td>WHSMNBE</td>
<td>17</td>
<td>1.459</td>
<td>62.553</td>
</tr>
<tr>
<td>WHSFRE8</td>
<td>17</td>
<td>1.081</td>
<td>3.695</td>
</tr>
<tr>
<td>WHUDTE8</td>
<td>17</td>
<td>1.393</td>
<td>4.256</td>
</tr>
<tr>
<td>WHSMNF1</td>
<td>17</td>
<td>1912.440</td>
<td>16.036</td>
</tr>
<tr>
<td>WHSMNOAS</td>
<td>17</td>
<td>736.210</td>
<td>10.548</td>
</tr>
<tr>
<td>WHSMNOWE</td>
<td>17</td>
<td>300.200</td>
<td>72.969</td>
</tr>
<tr>
<td>WHSMNR4</td>
<td>17</td>
<td>213.270</td>
<td>6.601</td>
</tr>
</tbody>
</table>
Table 14. Theil's forecast error measures

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>MSE</th>
<th>Bias (UM)</th>
<th>Reg. (UR)</th>
<th>Dist. (UD)</th>
<th>Accuracy (U1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGULFUS</td>
<td>17</td>
<td>567.760</td>
<td>0.000</td>
<td>0.002</td>
<td>0.998</td>
<td>0.200</td>
</tr>
<tr>
<td>USWHERAHF</td>
<td>17</td>
<td>19.779</td>
<td>0.001</td>
<td>0.007</td>
<td>0.992</td>
<td>0.071</td>
</tr>
<tr>
<td>USWHERPFF</td>
<td>17</td>
<td>24.829</td>
<td>0.001</td>
<td>0.004</td>
<td>0.996</td>
<td>0.070</td>
</tr>
<tr>
<td>USWHEES</td>
<td>17</td>
<td>3334.360</td>
<td>0.008</td>
<td>0.010</td>
<td>0.982</td>
<td>0.293</td>
</tr>
<tr>
<td>USWHEFO</td>
<td>17</td>
<td>48.825</td>
<td>0.003</td>
<td>0.039</td>
<td>0.958</td>
<td>0.012</td>
</tr>
<tr>
<td>USWHEFPC</td>
<td>17</td>
<td>0.001</td>
<td>0.005</td>
<td>0.011</td>
<td>0.984</td>
<td>0.012</td>
</tr>
<tr>
<td>USWHEFE</td>
<td>17</td>
<td>15471.160</td>
<td>0.001</td>
<td>0.069</td>
<td>0.930</td>
<td>0.338</td>
</tr>
<tr>
<td>USWHEHPC</td>
<td>17</td>
<td>223.760</td>
<td>0.001</td>
<td>0.168</td>
<td>0.831</td>
<td>0.277</td>
</tr>
<tr>
<td>USWHEHF</td>
<td>17</td>
<td>223.760</td>
<td>0.001</td>
<td>0.168</td>
<td>0.831</td>
<td>0.277</td>
</tr>
<tr>
<td>USWHEPFF</td>
<td>17</td>
<td>0.394</td>
<td>0.009</td>
<td>0.274</td>
<td>0.717</td>
<td>0.207</td>
</tr>
<tr>
<td>USWHEPHF</td>
<td>17</td>
<td>0.0002</td>
<td>0.001</td>
<td>0.016</td>
<td>0.983</td>
<td>0.015</td>
</tr>
<tr>
<td>USWHEPRF</td>
<td>17</td>
<td>0.048</td>
<td>0.005</td>
<td>0.093</td>
<td>0.902</td>
<td>0.349</td>
</tr>
<tr>
<td>USWHQF</td>
<td>17</td>
<td>25953.680</td>
<td>0.013</td>
<td>0.052</td>
<td>0.934</td>
<td>0.078</td>
</tr>
<tr>
<td>USWHQPF</td>
<td>17</td>
<td>28941.510</td>
<td>0.001</td>
<td>0.006</td>
<td>0.993</td>
<td>0.081</td>
</tr>
<tr>
<td>USWHESD</td>
<td>17</td>
<td>46.367</td>
<td>0.001</td>
<td>0.001</td>
<td>0.998</td>
<td>0.078</td>
</tr>
<tr>
<td>USWHESHMN</td>
<td>17</td>
<td>13093.990</td>
<td>0.001</td>
<td>0.005</td>
<td>0.994</td>
<td>0.096</td>
</tr>
<tr>
<td>USWHEYDF</td>
<td>17</td>
<td>0.514</td>
<td>0.008</td>
<td>0.010</td>
<td>0.982</td>
<td>0.022</td>
</tr>
<tr>
<td>WHPGF9U0</td>
<td>17</td>
<td>740.570</td>
<td>0.004</td>
<td>0.286</td>
<td>0.710</td>
<td>0.200</td>
</tr>
<tr>
<td>BAGPICA</td>
<td>17</td>
<td>144.070</td>
<td>0.000</td>
<td>0.023</td>
<td>0.977</td>
<td>0.142</td>
</tr>
<tr>
<td>BAGPICA01</td>
<td>17</td>
<td>71.386</td>
<td>0.000</td>
<td>0.005</td>
<td>0.995</td>
<td>0.100</td>
</tr>
<tr>
<td>CKPMKMCA</td>
<td>17</td>
<td>32.767</td>
<td>0.058</td>
<td>0.000</td>
<td>0.941</td>
<td>0.069</td>
</tr>
<tr>
<td>RSPM1CA</td>
<td>17</td>
<td>187.070</td>
<td>0.086</td>
<td>0.003</td>
<td>0.912</td>
<td>0.049</td>
</tr>
<tr>
<td>WHAHCA</td>
<td>17</td>
<td>0.479</td>
<td>0.014</td>
<td>0.087</td>
<td>0.899</td>
<td>0.065</td>
</tr>
<tr>
<td>WHAHHCAC</td>
<td>17</td>
<td>0.482</td>
<td>0.012</td>
<td>0.085</td>
<td>0.903</td>
<td>0.065</td>
</tr>
<tr>
<td>WHCOTCA</td>
<td>17</td>
<td>3.956</td>
<td>0.054</td>
<td>0.004</td>
<td>0.942</td>
<td>0.142</td>
</tr>
<tr>
<td>WGPICA</td>
<td>17</td>
<td>196.960</td>
<td>0.016</td>
<td>0.066</td>
<td>0.919</td>
<td>0.115</td>
</tr>
<tr>
<td>WHPOBCA</td>
<td>17</td>
<td>307.250</td>
<td>0.009</td>
<td>0.182</td>
<td>0.810</td>
<td>0.164</td>
</tr>
<tr>
<td>WHPXCA</td>
<td>17</td>
<td>1177.900</td>
<td>0.017</td>
<td>0.375</td>
<td>0.608</td>
<td>0.205</td>
</tr>
<tr>
<td>WHPXRA</td>
<td>17</td>
<td>1.583</td>
<td>0.016</td>
<td>0.011</td>
<td>0.973</td>
<td>0.065</td>
</tr>
<tr>
<td>WHUFEC</td>
<td>17</td>
<td>0.087</td>
<td>0.049</td>
<td>0.459</td>
<td>0.492</td>
<td>0.141</td>
</tr>
<tr>
<td>WHUHTCA</td>
<td>17</td>
<td>0.001</td>
<td>0.012</td>
<td>0.000</td>
<td>0.988</td>
<td>0.019</td>
</tr>
<tr>
<td>WHUSECA</td>
<td>17</td>
<td>0.006</td>
<td>0.009</td>
<td>0.044</td>
<td>0.948</td>
<td>0.077</td>
</tr>
<tr>
<td>WHUXNCA</td>
<td>17</td>
<td>2.278</td>
<td>0.031</td>
<td>0.122</td>
<td>0.847</td>
<td>0.101</td>
</tr>
<tr>
<td>GWPFMAU</td>
<td>17</td>
<td>189.890</td>
<td>0.002</td>
<td>0.000</td>
<td>0.998</td>
<td>0.068</td>
</tr>
<tr>
<td>SGPFMAU</td>
<td>17</td>
<td>185921</td>
<td>0.002</td>
<td>0.010</td>
<td>0.988</td>
<td>0.047</td>
</tr>
<tr>
<td>SHCOTA</td>
<td>17</td>
<td>408.260</td>
<td>0.042</td>
<td>0.348</td>
<td>0.611</td>
<td>0.136</td>
</tr>
<tr>
<td>WHLAHJAI</td>
<td>17</td>
<td>1.462</td>
<td>0.193</td>
<td>0.004</td>
<td>0.804</td>
<td>0.121</td>
</tr>
<tr>
<td>WHCOTA</td>
<td>17</td>
<td>0.569</td>
<td>0.351</td>
<td>0.148</td>
<td>0.501</td>
<td>0.166</td>
</tr>
<tr>
<td>WHPXRA</td>
<td>17</td>
<td>928.46</td>
<td>0.011</td>
<td>0.425</td>
<td>0.563</td>
<td>0.243</td>
</tr>
<tr>
<td>WHPMAU</td>
<td>17</td>
<td>8622143</td>
<td>0.016</td>
<td>0.453</td>
<td>0.531</td>
<td>0.243</td>
</tr>
<tr>
<td>WHPHCAU</td>
<td>17</td>
<td>1216.050</td>
<td>0.018</td>
<td>0.553</td>
<td>0.429</td>
<td>0.267</td>
</tr>
<tr>
<td>WHSMHMAU</td>
<td>17</td>
<td>2.022</td>
<td>0.211</td>
<td>0.022</td>
<td>0.768</td>
<td>0.147</td>
</tr>
<tr>
<td>WHSPRAU</td>
<td>17</td>
<td>2.345</td>
<td>0.239</td>
<td>0.024</td>
<td>0.737</td>
<td>0.115</td>
</tr>
</tbody>
</table>
Table 14. Continued

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>MSE (UM)</th>
<th>Reg. (UR)</th>
<th>Dist. (UD)</th>
<th>Accuracy (U1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CECOTAR</td>
<td>17</td>
<td>0.929</td>
<td>0.000</td>
<td>0.123</td>
<td>0.876</td>
</tr>
<tr>
<td>SGFFHARR</td>
<td>17</td>
<td>267.920</td>
<td>0.001</td>
<td>0.002</td>
<td>0.997</td>
</tr>
<tr>
<td>WHAHNAR</td>
<td>17</td>
<td>119317</td>
<td>0.008</td>
<td>0.004</td>
<td>0.988</td>
</tr>
<tr>
<td>WHHFMARR</td>
<td>17</td>
<td>729.590</td>
<td>0.002</td>
<td>0.258</td>
<td>0.740</td>
</tr>
<tr>
<td>WHSMNARR</td>
<td>17</td>
<td>407638</td>
<td>0.000</td>
<td>0.003</td>
<td>0.997</td>
</tr>
<tr>
<td>WHSPRAR</td>
<td>17</td>
<td>318247</td>
<td>0.010</td>
<td>0.011</td>
<td>0.979</td>
</tr>
<tr>
<td>WHUDTAR</td>
<td>17</td>
<td>120042</td>
<td>0.026</td>
<td>0.155</td>
<td>0.819</td>
</tr>
<tr>
<td>COPTHEO</td>
<td>17</td>
<td>6.365</td>
<td>0.004</td>
<td>0.030</td>
<td>0.966</td>
</tr>
<tr>
<td>PYSPRE2</td>
<td>17</td>
<td>7802.750</td>
<td>0.000</td>
<td>0.026</td>
<td>0.973</td>
</tr>
<tr>
<td>SMFFHEO</td>
<td>17</td>
<td>63.994</td>
<td>0.007</td>
<td>0.000</td>
<td>0.993</td>
</tr>
<tr>
<td>WHAHHE2</td>
<td>17</td>
<td>19233.250</td>
<td>0.000</td>
<td>0.002</td>
<td>0.997</td>
</tr>
<tr>
<td>WHCOTE2</td>
<td>17</td>
<td>493370</td>
<td>0.021</td>
<td>0.054</td>
<td>0.925</td>
</tr>
<tr>
<td>WHSMME2</td>
<td>17</td>
<td>2893075</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>WHSPRE2</td>
<td>17</td>
<td>223119</td>
<td>0.002</td>
<td>0.016</td>
<td>0.982</td>
</tr>
<tr>
<td>WUFEE2</td>
<td>17</td>
<td>872358</td>
<td>0.003</td>
<td>0.011</td>
<td>0.986</td>
</tr>
<tr>
<td>WHUHTE2</td>
<td>17</td>
<td>73019.530</td>
<td>0.000</td>
<td>0.003</td>
<td>0.997</td>
</tr>
<tr>
<td>WSPIBO</td>
<td>17</td>
<td>12.470</td>
<td>0.024</td>
<td>0.019</td>
<td>0.957</td>
</tr>
<tr>
<td>WSPTHE0</td>
<td>17</td>
<td>34.136</td>
<td>0.014</td>
<td>0.051</td>
<td>0.935</td>
</tr>
<tr>
<td>WHAHNIN</td>
<td>17</td>
<td>0.648</td>
<td>0.002</td>
<td>0.000</td>
<td>0.998</td>
</tr>
<tr>
<td>WHCOTIN</td>
<td>17</td>
<td>0.662</td>
<td>0.000</td>
<td>0.006</td>
<td>0.994</td>
</tr>
<tr>
<td>WHHFMNIN</td>
<td>17</td>
<td>21508.610</td>
<td>0.035</td>
<td>0.378</td>
<td>0.587</td>
</tr>
<tr>
<td>WHSMNIN</td>
<td>17</td>
<td>2.559</td>
<td>0.007</td>
<td>0.394</td>
<td>0.599</td>
</tr>
<tr>
<td>WHSPRIN</td>
<td>17</td>
<td>1.141</td>
<td>0.002</td>
<td>0.001</td>
<td>0.997</td>
</tr>
<tr>
<td>WHUDTIN</td>
<td>17</td>
<td>2.259</td>
<td>0.010</td>
<td>0.040</td>
<td>0.950</td>
</tr>
<tr>
<td>NETMJNP</td>
<td>17</td>
<td>0.041</td>
<td>0.263</td>
<td>0.018</td>
<td>0.719</td>
</tr>
<tr>
<td>WFPODPJ</td>
<td>17</td>
<td>0.015</td>
<td>0.280</td>
<td>0.171</td>
<td>0.549</td>
</tr>
<tr>
<td>WHRESJPJ</td>
<td>17</td>
<td>744.040</td>
<td>0.123</td>
<td>0.079</td>
<td>0.798</td>
</tr>
<tr>
<td>WHSMNSU</td>
<td>17</td>
<td>5.990</td>
<td>0.001</td>
<td>0.035</td>
<td>0.964</td>
</tr>
<tr>
<td>WHSTCHSU</td>
<td>17</td>
<td>14.823</td>
<td>0.006</td>
<td>0.012</td>
<td>0.982</td>
</tr>
<tr>
<td>WHWDTSU</td>
<td>17</td>
<td>21.344</td>
<td>0.007</td>
<td>0.227</td>
<td>0.767</td>
</tr>
<tr>
<td>WHAHICN</td>
<td>17</td>
<td>0.104</td>
<td>0.050</td>
<td>0.210</td>
<td>0.740</td>
</tr>
<tr>
<td>WHSMNCN</td>
<td>17</td>
<td>3.273</td>
<td>0.009</td>
<td>0.046</td>
<td>0.945</td>
</tr>
<tr>
<td>WHSPRCN</td>
<td>17</td>
<td>0.233</td>
<td>0.008</td>
<td>0.241</td>
<td>0.752</td>
</tr>
<tr>
<td>WHUDICN</td>
<td>17</td>
<td>3.416</td>
<td>0.013</td>
<td>0.053</td>
<td>0.933</td>
</tr>
<tr>
<td>WHAHHE8</td>
<td>17</td>
<td>0.131</td>
<td>0.001</td>
<td>0.001</td>
<td>0.998</td>
</tr>
<tr>
<td>WHSMNE8</td>
<td>17</td>
<td>2.128</td>
<td>0.010</td>
<td>0.067</td>
<td>0.924</td>
</tr>
<tr>
<td>WHSPRE8</td>
<td>17</td>
<td>1.168</td>
<td>0.002</td>
<td>0.008</td>
<td>0.990</td>
</tr>
<tr>
<td>WHUDTE8</td>
<td>17</td>
<td>1.940</td>
<td>0.012</td>
<td>0.000</td>
<td>0.988</td>
</tr>
<tr>
<td>WHSMNF1</td>
<td>17</td>
<td>3657444</td>
<td>0.001</td>
<td>0.165</td>
<td>0.834</td>
</tr>
<tr>
<td>WHSMNOAS</td>
<td>17</td>
<td>542012</td>
<td>0.033</td>
<td>0.013</td>
<td>0.955</td>
</tr>
<tr>
<td>WHSMNOWE</td>
<td>17</td>
<td>90122.640</td>
<td>0.000</td>
<td>0.067</td>
<td>0.933</td>
</tr>
<tr>
<td>WHSMNMR4</td>
<td>17</td>
<td>45484.080</td>
<td>0.001</td>
<td>0.004</td>
<td>0.995</td>
</tr>
</tbody>
</table>
As indicated in previous sections, FAPRI models are highly flexible: they function in a highly interactive environment but are also capable of being operated independently. SAS and AREMOS, an econometric package developed by The WEFA Group, are generally used for estimation. However, the simulation analyses are conducted on microcomputers using Lotus 1-2-3. One of the major advantages of using 1-2-3 for the simulation analysis is that it provides an opportunity for the analyst to examine the changes occurring in endogenous variables during the iterative process.

The wheat trade model, along with other commodity trade and domestic models, is used on a regular basis to generate ten-year projections of demand, supply, trade, prices, and other key agricultural variables in the United States and foreign countries. These projections serve as a baseline scenario for policy impact analyses. The models were used to analyze 1985 farm bill options during the debate as well as some cost-cutting alternatives that were proposed later in response to budget pressures. Scenarios were also evaluated on specific trade and policy issues. A selected list of publications from these studies is provided below:

77

References

FAO. FAO Trade Yearbook. Various years. Rome, Italy.

Food and Agricultural Policy Research Institute, University of Missouri-Columbia and Iowa State University. 1987. "FAPRI Ten-Year International Agricultural Outlook." FAPRI Staff Report #4-87.

Food and Agricultural Policy Research Institute, University of Missouri-Columbia and Iowa State University. 1988. "FAPRI Ten-Year International Agricultural Outlook." FAPRI Staff Report #1-88.

