New insights into the FLPergic complements of parasitic nematodes: Informing deorphanisation approaches

Thumbnail Image
Date
2014-06-01
Authors
McCoy, Ciaran
Atkinson, Louise
Zamanian, Mostafa
McVeigh, Paul
Day, Timothy
Kimber, Michael
Marks, Nikki
Maule, Aaron
Mousley, Angela
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Kimber, Michael
Department Chair
Research Projects
Organizational Units
Organizational Unit
Biomedical Sciences

The Department of Biomedical Sciences aims to provide knowledge of anatomy and physiology in order to understand the mechanisms and treatment of animal diseases. Additionally, it seeks to teach the understanding of drug-action for rational drug-therapy, as well as toxicology, pharmacodynamics, and clinical drug administration.

History
The Department of Biomedical Sciences was formed in 1999 as a merger of the Department of Veterinary Anatomy and the Department of Veterinary Physiology and Pharmacology.

Dates of Existence
1999–present

Related Units

  • College of Veterinary Medicine (parent college)
  • Department of Veterinary Anatomy (predecessor, 1997)
  • Department of Veterinary Physiology and Pharmacology (predecessor, 1997)

Journal Issue
Is Version Of
Versions
Series
Department
Biomedical Sciences
Abstract

FMRFamide-like peptide (FLP) receptors are appealing as putative anthelmintic targets. To date, 31 flp-encoding genes have been identified in Caenorhabditis elegans and thirteen FLP-activated G-protein coupled receptors (FLP-GPCRs) have been reported. The lack of knowledge on FLPs and FLP-GPCRs in parasites impedes their functional characterisation and chemotherapeutic exploitation. Using homology-based BLAST searches and phylogenetic analyses this study describes the identification of putative flpand flp-GPCR gene homologues in 17 nematode parasites providing the first pan-phylum genome-based overview of the FLPergic complement. These data will facilitate FLP-receptor deorphanisation efforts in the quest for novel control targets for nematode parasites.

Comments

This article is from EuPA Open Proteomics 3 (2014): 262–272, doi:10.1016/j.euprot.2014.04.002. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Wed Jan 01 00:00:00 UTC 2014
Collections