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The FSRC method is investigated in the context of day-ahead stochastic reli-
ability unit commitment (SRUC) with uncertain load and variable generation
resources. In restructured wholesale electricity markets, reliability unit com-
mitment problems are solved in the afternoon of the day before the target
day, after the day-ahead market based on demand bids and supply offers have
cleared, based on the system operator’s forecast of conditions on the target
day. In our case studies, we consider the variable generation resource, wind
energy, to be nondispatchable – that is, we subtract the amount of available
wind energy from the demand to yield net load to be satisfied by the ther-
mal generators. But the scenario reduction heuristic can easily be adapted for
models in which variable generation resources are dispatchable.

The contributions of this paper include the development and customization
of a heuristic scenario reduction method that not only considers probabilities
and distances among scenarios, but also follows the decision maker’s concerns
for reliability and economy. In case studies we find that more reliable com-
mitment of units, from the perspective of less shortage and lower scheduling
cost, can be obtained by optimizing against a subset of scenarios selected by
FSRC rather than by FFS. In addition, numerical results for a rolling horizon
SRUC show that FSRC keeps the solution time manageable while maintaining
solution quality even when the reduction of the scenario set is substantial.

The rest of the paper is organized as follows. Section 2 reviews related
literature of stochastic UC, in particular with high penetration of wind energy,
and scenario reduction. Section 3 formulates a compact two-stage stochastic
program for SRUC, the concrete counterpart of which is given in Appendix A.
Section 4 introduces a generic procedure of FSRC, its customization strategies
and an approach for evaluating the sets of selected scenarios. Section 5 reports
numerical results of investigations of applying FSRC to independent daily
SRUC and rolling horizon SRUC over selected days based on data collected
from an Independent System Operator in the U.S. Finally, Section 6 concludes
this paper.

2 Literature review

Motivated by the uncertainties associated with variable generation as its pen-
etration in power systems has increased, much attention recently has been
devoted to applying stochastic programming in unit commitment. For in-
stance, Bouffard et al. formulated a two-stage stochastic program for security-
constrained unit commitment to address market-clearing in [8], and Bouffard
and Galiana [9] analyzed the impact of wind energy penetration on reserve
requirements in a small-scale model. Morales et al. used stochastic program-
ming to co-optimize energy and reserve in an electricity pool with significant
wind penetration [10]. Tuohy et al. investigated the benefits of using stochas-
tic UC to account for high penetration of wind energy [11]. The formulation
in [12] allows explicit modeling of uncertain resources, and investigates the
effect of reserve requirement in UC with penetration of wind energy from the
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perspective of an Independent System Operator, but the computational tests
used only a small number of scenarios. An alternative formulation obtained
by distinguishing the commitment of slow-start and fast-start generators as
first- and second-stage decisions, respectively, is given in [7], and [6] uses a
similar formulation but extends it to multiple areas separated by transmission
constraints. The economic effects of forecast accuracy on wind and uncertainty
bounds have been analyzed by integrating a numerical weather prediction mod-
el into stochastic UC/ED in [13]. Römisch and Vigerske summarized several
techniques in stochastic programming applied to UC [14]. While many of these
studies employed stochastic UC models to investigate broader issues, such as
the economic and reliability effects of incorporating large amounts of variable
generation, our work is aimed at implementing stochastic unit commitment
for daily use by system operators in their resource adequacy assessments.

In this context, the limited time available for computing a unit commit-
ment schedule necessitates parsimony in the scenario set. The computation
time strongly depends on the number of scenarios even if a decomposition
method, such as Benders decomposition [15], Lagrangian relaxation [16,17],
or a progressive hedging algorithm [1] is applied. The size of the Bender-
s master problem will increase dramatically if many scenarios are included.
Progressive hedging requires some heuristic strategies to improve convergence
if integer decision variables appear in the first-stage, as mentioned in [18]. Slow
convergence may occur as the number of scenarios dramatically increases in
Lagrangian relaxation algorithm. Therefore, reducing the number of scenarios
while closely approximating the stochastic processes of uncertain parameters
becomes an attractive way to alleviate the computational burden.

An intuitive way to reduce the number of scenarios is to cluster them
in specified periods according to their parameters, and represent scenarios
in the same cluster by their expected values [19–22]. Sampling a subset of
scenarios is another common approach [23]. Deletion of scenarios in [24] relies
on an expected value of perfect information (EVPI) criterion. An importance
sampling approach attempts to select scenarios according to their probability
of occurrence and impact on operating cost [6]. Other deletion rules include
purely heuristic or ad hoc rules, as in [25,26] and ones that preserve the first
and second order moments of the original scenarios [27].

A well-known line of research has developed scenario reduction methods to
achieve stability in the objective function with respect to the scenarios used.
The forward selection (FS) and backward reduction (BR) heuristics were de-
veloped in [3] to identify a subset of scenarios with minimal distance from the
original set according to a mass transportation metric. Reference [4] proposed
variants of methods in [3], including fast forward selection (FFS), which is
more efficient in selection than FS and yields a reduced set more similar in
distribution to the original set than BR does when the reduction is substan-
tial. While both [3] and [4] derived scenario reduction method according to the
upper bound of Fortet-Mourier metrics instead of the metrics themselves, [28]
refined a scenario reduction method for two-stage stochastic programs rigor-
ously based on Fortet-Mourier metrics. These methods were further extended
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to chance constrained and mixed-integer two-stage stochastic programs in [29],
which are stated with respected to cell discrepancy (or the Kolmogorov met-
ric), while [30] extended the work in [29] with a certain polyhedral discrepancy.
Further extensions to multi-stage stochastic programs were made in [31–34].
Because of the encouraging numerical results reported in [3,4], these methods
have been applied widely in power systems studies such as [11,35–39].

Although the stability-based scenario reduction methods mentioned above
have sound theoretical background, several recent works intend to improve
these methods by applying the true distances between scenario trees, the nest
distance [40,41], instead of its lower bound, the Kantorovich distance, of the
multi-stage stochastic programs. In addition, practical concerns have also been
raised concerning their use in stochastic unit commitment for large-scale inte-
gration of renewable energy. The modeler cannot explicitly identify scenarios
that may impose significant influences on the performance of the unit commit-
ment schedules, and scenarios selected by these methods may not be consistent
with the moments of wind power time series [7,6]. In addition, [5] reported
that FFS seemed not to dominate random sampling when reducing sets of
scenarios to represent significant wind energy penetration. To select scenarios
that reflect the decision maker’s concern in SRUC, it is plausible to apply a
heuristic scenario reduction method designed for a two-stage stochastic gener-
ation expansion planning in [42]. The heuristic method in [42] incorporates the
impact of scenarios on first-stage decisions, as well as forward selection based
on probability metrics from [3,4]. However, directly employing the scenario
reduction approach in [42] in SRUC would be computationally prohibitive be-
cause it measures scenario impacts by solving a mixed integer program for each
scenario in the original set. To achieve tractable computation in the scenari-
o reduction procedure itself, this paper proposes a related heuristic scenario
reduction method, FSRC, which improves the computational efficiency of i-
dentifying scenarios with similar impacts on decisions. Moreover, FSRC also
tracks the decision maker’s concern for reliability in SRUC. Details of the
FSRC method are provided in Section 4.

3 Two-stage stochastic reliability unit commitment model

The SRUC problem aims to identify a UC schedule that minimizes startup
and shutdown costs as well as expected generation cost and penalties on load
and reserve imbalances while satisfying operational restrictions over all sce-
narios. In this section, a compact two-stage SRUC model is given in (1) - (5),
and its concrete counterpart, which extends the deterministic model in [43],
is provided in the Appendix. It is a two-stage stochastic program with rela-
tively complete recourse provided by including slack variables in the energy
balance and reserve requirement constraints. Scenarios represent different pos-
sible time series for load and renewable generation over the scheduling horizon.
Uncertainties not explicitly modeled by the scenarios, such as generator and
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transmission line contingencies, are managed by including operating reserve
requirements.

f(S) = min
x
cᵀx+Q(x,S) (1)

s.t. Ax = b (2)

x binary (3)

where

Q(x,S) = ES [Q(x, s)] (4)

Q(x, s) = min
ys
{qᵀs ys|Wys = hs − Tsx} (5)

The objective function (1) includes two parts: cᵀx, the costs related to
commitment, x, of units; and Q(x,S), the expected value over a given set of
scenarios in the second stage including optimal generation cost and penalties
on load and reserve requirement imbalances given unit commitments in the
first-stage, as shown in (4). Formula (2) describes the feasible region of x,
following minimum up- and down-time constraints. Formula (5) minimizes
generation cost and penalties on load and reserve requirement imbalances,
qᵀs ys, after realizing each scenario given the commitment of units. Energy
balance, transmission, and ramp rate constraints as well as generation level
limitations, etc., related to every concrete scenario are also summarized in
the feasible region described by (5). Model (1) - (5) gives the general form of
SRUC, and the proposed scenario reduction method, FSRC, will be devised
upon the general form. Because FSRC is expected to follow a decision maker’s
concern during the power system generation, such as shortage or excess on
supply side, some details of the objective function, energy balance and reserve
requirement constraints are given in (6) - (11), for the convenience in describing
the customization of FSRC. Definitions of the following notation are listed in
Appendix A.

Objective function

min
∑
t∈T

∑
g∈G

cugt(vgt) +
∑
s∈S

ξsζs (6)

The first term of (6) is a piecewise linear function corresponding to cᵀx in
(1) and represents the total startup, shutdown, and no-load costs of committed
units over all periods. Notation cugt denotes a cost function, which is related to
binary variable vgt, the status of generator g in period t. The second term is the
counterpart of Q(x), where ξs is the scenario probability and ζs is the objective
value upon realization of a specific scenario s in the second stage, consisting
of piecewise linear generation cost, cpgts, computed from the generation levels
pgts for each unit g in each period t, as well as penalties on imbalances in load
satisfaction and reserve requirements, as described in (7):
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ζs =
∑
t∈T

∑
g∈G

cpgts(pgts) +
∑
t∈T

∑
b∈B

(
Γ+
α α

+
bts + Γ−α α

−
bts

)
+
∑
t∈T

(
Γ+
β β

+
ts + Γ−β β

−
ts

)
.

(7)
Here, Γ+

α and Γ−α are penalties set on shortage and excess in supply, i.e. α+
bts

and α−bts, respectively. Similarly, Γ+
β and Γ−β are penalties on shortage and

excess in required reserve, β+
ts and β−ts.

Note that (7) requires as much demand for energy to be satisfied as possible.
Energy balance and reserve requirement constraints are described in (8)-(9)
and (10)-(11), respectively.

Energy balance at each bus:∑
g∈G(b)

pgts +
∑

`∈LI(b)

ω`ts −
∑

`∈LO(b)

ω`ts

+ α+
bts − α

−
bts = dbts,∀b ∈ B,∀t ∈ T ,∀s ∈ S (8)

α+
bts, α

−
bts ≥ 0,∀b ∈ B,∀t ∈ T ,∀s ∈ S (9)

The time units are chosen so that generated power and energy share the
same numerical value in each period for each unit, i.e. an hour is the basic
time period in this paper. Formula (8) states that for each bus b, a shortage
α+
bts will result if the sum of energy amounts provided by each unit at that

bus, pgts, and net energy transmitted to that bus on each line, ω`ts, is less
than load dbts in period t in scenario s; or excess, α−bts, will occur if the sum
is greater than the load. In this paper, the scenario-specific parameters dbts
represent net load computed by subtracting nondispatchable variable energy
generation from load. With the increasing penetration of distributed variable
generation, such as residential solar panels, uncertainty in the net load served
by utilities and system operators will continue to increase. However, many
operators are now able to dispatch wind and utility-scale solar plants. To
model dispatchable variable generation, right-hand-sides of those generation
limit constraints would also vary by scenario, as described in the Appendix.

Reserve requirements:∑
g∈G

p̄gts+β
+
ts − β−ts =

∑
b∈B

dbts +Rt,∀t ∈ T ,∀s ∈ S (10)

β+
ts, β

−
ts ≥ 0,∀t ∈ T ,∀s ∈ S (11)

In formula (10), the reserve requirement, Rt, in each hour of the scheduling
horizon requires that some spare capacity be available if needed to maintain
reliability in case of contingencies that are not modeled in scenarios; e.g., out-
ages of generators or transmission lines. The difference between the maximum
available generation level p̄gts and actual generation level pgts represents the
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contribution of unit g to meeting the reserve requirement in period t in sce-
nario s. Similar to (8), slack variables, β+

ts and β−ts, are introduced in (10),
representing possible shortage and excess in the reserve requirement.

A motivation of employing stochastic programming in unit commitment is
to determine an economical quantity of implicit reserves rather than explicitly
requiring a fixed amount of reserve capacity to be available in case of errors
in forecasting net load. In the absence of storage capabilities, physics requires
that total generation equal total net load, so strictly speaking, “shortage”
would mean shedding some load and “excess” would mean curtailing some
generation. Practically, small positive values of the slack and surplus variables
might simply result in tolerable short-term violations of capacity constraints or
negotiated temporary reductions in consumption. Very risk-averse operators
might prefer to include some fixed reserve constraints in the stochastic program
to avoid either consequence, as in [12]. Besides providing relatively complete
recourse, we use the slack and surplus variables to evaluate, against the whole
set of scenarios, the quality of the unit commitment schedules obtained by
solving with a subset of scenarios, as described in Section 4.3.

Details of other operational constraints, including transmission constraints,
ramp rate constraints, etc., are described in Appendix A.

4 Scenario Reduction

A large number of scenarios may be generated to represent stochastic process-
es for the multiple uncertain parameters in a stochastic program. To reduce
the computational effort for solving the stochastic mixed integer program, it
is natural to explore methods to approximate a large number of generated
scenarios with a modest-sized subset of scenarios, while keeping their main
features. Our scenario reduction heuristic is developed in this section.

4.1 Forward Selection in Recourse Clusters (FSRC)

Widely used methods for scenario reduction are based on probability metrics.
Among these, the fast forward selection (FFS) method is often applied to
select a subset of scenarios S ′ from the original set S, because numerical
results in [4] indicate that the forward selection (FS) heuristic yields a more
similar reduced distribution than the alternative, backward reduction, and
FFS provides significant speedup over the original FS heuristic. The distance
between a subset S ′ of the prescribed size and the remaining scenarios S\S ′ can
be computed by solving a mass transportation problem. Because identifying
an optimal reduced set is a hard combinatorial problem, the FFS heuristic was
developed as a tractable way to select one scenario at a time. For details on
FFS refer to [4].

Although forward selection is originated from stability analysis and, thus,
indirectly considers the optimization objective, it accounts directly for only the

This is a manuscript of an article from Computational Management Science (2014): 
 The final publication is available at Springer via http://dx.doi.org/ 10.1007/s10287-014-0220-z. Posted with permission.



Solution Sensitivity-Based Scenario Reduction for Stochastic Unit Commitment 9

scenario parameters and corresponding probabilities {ξs}. It does not directly
consider the possible influences of scenarios on the decision variables or their
costs. We conjecture that better performance could be achieved by consider-
ing these impacts in the selection process. Therefore, we propose a heuristic
scenario reduction method, FSRC, which not only considers distances between
selected scenarios and the deleted scenarios, but also directly measures influ-
ences from scenarios on decisions and costs.

Before introducing the FSRC algorithm, we discuss how to measure sce-
nario impacts on decisions. A solution sensitivity index is created from decision
variables or part of the objective function which could quantify differences a-
mong scenarios. For instance, in a UC problem, a scenario subproblem could
be solved to identify the optimal hourly on/off status of each unit through the
whole scheduling horizon assuming perfect information; thus, these decision
variables could be considered as a solution sensitivity index. However, if there
are hundreds of generators in the scheduling problem, considering the whole
commitment decision vector would be unwieldy, and may allow features of s-
cenarios to be blurred because of the inherent difficulties in high dimensional
data analysis. Instead, total cost could serve to distinguish among scenarios
because higher demand often results in higher generation cost. Because these
characteristics of scenarios are calculated from the first-stage decision x and
second-stage decision ys, a series of functions Fi(x, ys), i = 1, · · · ,m can be
created to map x and ys to the m features as long as a decision maker is in-
terested in. Further discussions on forming solution sensitivity indices will be
presented in section 4.2.2. For the purpose of reducing computational burden
while keeping solution quality of a stochastic program, the selected subset of
scenarios are expected to keep some features of the whole set of scenarios in
which a decision maker will be interested. Therefore, it is intuitive to assign
scenarios with similar characteristics which measured by solution sensitivi-
ty indices into the same group, and select a presentative scenario from each
group. The following will discuss a scenario reduction algorithm which follows
the idea.

For a large mixed-integer program, solving the subproblem for each sce-
nario may be too computationally intensive in itself. Instead, we find a feasible
first-stage decision vector and then solve a dispatch linear program for each
scenario. The corresponding optimal second stage decisions and costs are em-
ployed to reveal characteristics of scenarios.

Suppose the prescribed cardinality of selected scenario set S ′ is n. For a
two-stage stochastic program (1) - (5) with relatively complete recourse, a
generic FSRC method is given below.

Algorithm 1 Forward Selection in Recourse Clusters (FSRC):

1. Evaluate: For each s ∈ S, identify an optimal y∗s , given a feasible solution
x̂ of Ax = b, by solving

Q(x̂, s) = min
ys
{qᵀs ys|Wys = hs − Tsx̂} (12)
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2. Summarize: Define solution sensitivity indices

N s = [F1(x̂, y∗s ),F2(x̂, y∗s ), · · · ,Fm(x̂, y∗s )]

for s ∈ S.
3. Cluster: Scale Fi, i = 1, · · · ,m into similar magnitudes, denoted as F̂i, i =

1, · · · ,m. Assign weight ωi to each F̂i, i = 1, · · · ,m, and compile them as

V s = [ω1F̂1(x̂, y∗s ), ω2F̂2(x̂, y∗s ), · · · , ωmF̂m(x̂, y∗s )].

Form n clusters on {V s} by the k-means method using an appropriate
norm, and create the corresponding n clusters in S;

4. Select: Use FFS to select one scenario from each cluster of the original
scenarios.

The above algorithm presents the general process of FSRC. Because charac-
terization of scenario impact on decision variables is often problem-dependent,
it is necessary to customize FSRC for different applications. The customization
specifies how to identify solution sensitivity indices, and then create clusters
accordingly. Discussion on customization strategies of FSRC for the SRUC
problem follows.

4.2 Customization strategies of FSRC

4.2.1 Assessment of scenarios

It is essential to evaluate similarities among scenarios in the FSRC method.
One intuitive way is to find an optimal UC strategy and corresponding opti-
mal dispatch for each scenario, and then make comparisons among them as
in [42]. However, this strategy will suffer from expensive computation time
when each scenario subproblem is a large MIP. Instead, measurement of the
relative performance of given first-stage decisions in the second stage for each
scenario may suffice to distinguish among scenarios. Because the net load is
the only uncertain parameter in this model, qs and Ts in the general form (1)
- (5) become scenario-independent q and T , respectively. The generation cost,
excesses, and shortages will reveal how hard it is to satisfy net loads in each
scenario with the given UC strategy, and therefore directly distinguish among
scenarios.

Customization of the Evaluate Step in FSRC:

1. Find an optimal solution x̄∗ of the expected value problem

min
x,y

cᵀx+ qᵀy (13)

s.t. Ax = b (14)

Tx+Wy = h̄ (15)

xbinary (16)

where h̄ = E[hs].
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2. Obtain optimal values of second-stage decisions, y∗s , by solving a scenario
subproblem (17) for each s ∈ S given x̄∗:

Q(x̄∗, s) = min
ys
{qᵀys|Wys = hs − T x̄∗} . (17)

4.2.2 Definition of solution sensitivity indices: total cumulation (TC)

Creating solution sensitivity indices follows after solving the sequence of ED
problems. As in the common practice of solving a deterministic unit commit-
ment problem with an expected net load forecast, realization of higher net
loads may require higher utilization of expensive generating units and, as a
direct consequence, higher production cost and possible shortages will be re-
alized; with lower net loads, lower generation levels and production cost will
result along with possible excess generation. Therefore, we use the hourly gen-
eration cost of each generator and load imbalances throughout the scheduling
horizon to distinguish load levels among scenarios, and serve as the elemen-
tary entries to create solution sensitivity indices. To avoid high dimensional
data analysis, total generation cost, total excess and total shortage form the
corresponding solution sensitivity indices.

Once solution sensitivity indices have been created, a clustering algorithm
is applied to identify scenarios with similar sensitivity index values. Due to
different effects of excess and shortage on power systems, they are weighted d-
ifferently in the clustering procedure. The excess generation could be alleviated
by de-committing generators; e.g., curtailing renewable energy generation, and
charging storage devices, such as batteries and pumped-storage hydro plants.
Shortage will require more electric power to be transmitted from other areas
or even load curtailment, which could impose high costs. Therefore, shortage
is assigned a higher weight in the clustering procedure.

The customization strategy of the scenario reduction method is summa-
rized as follows.

Strategy 1 (TC)

Customization of the Summarize step in FSRC:

1. Define

F1(x̄, y∗s ) :=
∑
t∈T

∑
g∈G

cpgts(p̄
∗
gts),

the total cumulative generation cost through the whole scheduling horizon
over all generators for s ∈ S;

2. Define

F2(x̄, y∗s ) :=
∑
t∈T

∑
b∈B

ᾱ∗−bts,

and
F3(x̄, y∗s ) :=

∑
t∈T

∑
b∈B

ᾱ∗+bts

.

where p̄∗gts, ᾱ
∗−
bts and ᾱ∗+bts are from y∗s .
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Customization of the Cluster Step in FSRC:

1. Scale each scenario generation cost to the average generation cost over all
scenarios, as

F̂1 := |S|
∑
t∈T

∑
g∈G

cpgts(p̄
∗
gts)

/∑
s∈S

∑
t∈T

∑
g∈G

cpgts(p̄
∗
gts),∀s ∈ S;

2. Obtain the average value Λ̄ of nonzero load imbalances over all scenarios

Λ̄ =

∑
s∈S

∑
t∈T

∑
b∈B

(
ᾱ∗+bts + ᾱ∗−bts

)
|A+|+ |A−|

,

where A+ = {ᾱ∗+bts|ᾱ
∗+
bts > 0} and A− = {ᾱ∗−bts|ᾱ

∗−
bts > 0}. Then scale F2 and

F3 as

F̂2 :=
∑
t∈T

∑
b∈B

ᾱ∗−bts

/
Λ̄, ∀s ∈ S

F̂3 :=
∑
t∈T

∑
b∈B

ᾱ∗+bts

/
Λ̄, ∀s ∈ S;

3. Using weights for the scaled production cost and load imbalances, form the
solution sensitivity index vector Vs = [wcF̂1, w+F̂2, w−F̂3].

4. Use the L2 norm in the k-means method.

If a reserve requirement Rt is specified in each hour t of the scheduling hori-
zon, the solution sensitivity indices for each scenario can be extended to include
total excess and total shortage in reserve requirement as well, to be weighted
differently in the clustering process. Although transmission constraints are not
included in the following case study, the proposed scenario reduction procedure
can be extended to that case by grouping buses in specified zones together,
and using cumulated shortage, excess and generation cost over each group as
solution sensitivity indices. The dimension of Vs increases accordingly.

4.2.3 Pre-categorization of scenarios in clustering (PC)

In the creation of solution sensitivity indices, scaled load imbalance of a sce-
nario not only shows imbalance comparisons to other scenarios, but also indi-
cates whether a UC strategy provides sufficient generation capacity. It could
be possible to provide better scenario clusters by pre-categorizing scenarios
by emphasizing directions of imbalance; i.e., existence of shortage or excess.
All scenarios can be grouped into four categories: only shortage existing, on-
ly excess existing, no imbalance existing and existences of both shortage and
excess, denoted as Mi, with i ∈ C = {+,−, o,±}, respectively.

Following this categorization, it is necessary to identify the number of
scenarios to be selected from each category. In this paper, we aim to match
the frequency with which each category occurs in the whole scenario set. For
each category Mi, let εi =

∑
s∈Mi

ξs be the total probability of scenarios in
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categoryMi. The following model assigns a number of selected scenarios, out
of n total, to each category.

min
zi

∑
i∈C

|zi − n · εi| (18)

s.t.
∑
i∈C

zi = n (19)

zi ≥ 1,∀i ∈ J (20)

zi ∈ Z+
0 ,∀i ∈ C (21)

where zi denotes the number of selected scenarios from category Mi and
J = {i ∈ C|εi > 0} represents the categories represented in the original sce-
nario set. Formula (20) requires that at least one scenario is selected from every
nonempty category, which avoids ignoring categories with small probabilities,
and in a certain way takes into account extreme scenarios. This strategy can
be applied to customize the Cluster step in FSRC.

Fig. 1 summarizes the scenario reduction procedure of the customized F-
SRC method. Note that pre-categorization of scenarios is an optional step
during the cluster phase.

Fig. 1 Scenario reduction procedure of customized FSRC method

4.3 Evaluation of selected scenarios

Instead of comparing similarity in the distributions between selected scenarios
and the whole set of scenarios, we evaluate selected sets of scenarios by inves-
tigating the performance of the resulting UC schedules against the whole set
of scenarios, similar to [44].

For a scenario subset S ′ ⊆ S, the evaluation procedure is given as:

1. Find f(S ′) as in (1) and a corresponding optimal first-stage decision vector
x′. Extract v′gt from x′.
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2. Evaluate Q(x′,S) as in (4), and obtain p′gts, α
′+
bts and α′−bts, ∀g ∈ G,∀t ∈

T ,∀s ∈ S
3. Find f(S) and a corresponding optimal x∗. Extract v∗gt from x∗, and obtain

p∗gts, α
∗+
bts and α∗−bts, ∀g ∈ G,∀t ∈ T , s ∈ S simultaneously.

4. Compare x′ to x∗, and performance measures U(S ′) to U(S), Φ(S|S ′) to
Φ(S|S), Ψ+(S|S ′) to Ψ+(S|S) and Ψ−(S|S ′) to Ψ−(S|S).

Definitions of U(S ′), Φ(S|S ′), Ψ+(S|S ′) and Ψ−(S|S ′) follow:

Commitment cost
U(S ′) =

∑
t∈T

∑
g∈G

cugt(v
′
gt) (22)

Expected generation cost against scenario set S

Φ(S|S ′) =
∑
s∈S

∑
t∈T

∑
g∈G

ξsc
p
gts(p

′
gts) (23)

Expected shortage and excess against scenario set S

Ψ+(S|S ′) =
∑
s∈S

∑
t∈T

∑
b∈B

ξsα
′+
bts (24)

Ψ−(S|S ′) =
∑
s∈S

∑
t∈T

∑
b∈B

ξsα
′−
bts (25)

The measures U(S), Φ(S|S), Ψ+(S|S) and Ψ−(S|S) are obtained by sub-
stituting v∗gt, p

∗
gts, α

∗+
bts and α∗−bts in (22) - (25).

5 Case studies

The customized FSRC methods are applied to test systems down-sampled
from the Independent System Operator of New England (ISO-NE). All 8 load
zones in ISO-NE were treated as a single bus in the case studies. To focus on
uncertainty associated with net load, outages of transmission and thermal units
were not modeled in the case studies, and the associated reserve requirements
were also omitted. This section is organized as follows. Section 5.1 briefly
describes how net load scenarios were generated. To compare results between
FSRC and FFS, we solved single-day SRUC problems on a sample of days
from each season as reported in Section 5.2. Section 5.3 further investigates the
quality of the scenario sets obtained by FSRC by solving SRUC on a rolling
basis for both the selected scenarios and the whole set of original scenarios
throughout a week, and comparing their solutions. All case studies of SRUC
were solved in their extensive forms by PySP [45,46] using CPLEX in Windows
on a Dell desktop with 8GB memory.

Because of the RAM limitation, subsets of 50 generators are selected from
the whole fleet of over 300 generators for the single-day SRUC problems, and 20
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generators for SRUC on a rolling horizon basis, to keep computation manage-
able. In addition, the 10 highest probability wind energy scenarios are selected
from 50 wind energy scenarios to cross with 8 load scenarios which have been
generated as described in [47], forming 80 hourly net load scenarios. The net
load scenarios were scaled down to match the reduced generation capacity in
both case studies. As discussed in Section 4.2, penalties on shortage and excess
were initially set to 107$/MWh and 105$/MWh respectively, which are four
and two, respectively, orders of magnitude larger than the marginal cost of the
most expensive unit, to avoid shortage and excess and emphasize the negative
impacts of shortage. In addition, the weights wc, w+ and w− were set to 0.3,
0.4 and 0.3, respectively, to strengthen the emphasis on shortage in clustering.

5.1 Scenario generation

Load scenario generation in this paper started from a historical database of
day-ahead hourly weather forecast and corresponding actual hourly load se-
quences in 2011 in ISO-NE [48]. Date ranges were identified first to group days
according to similarity of the relationship between hourly weather and load,
forming “seasons.” This identification of seasons accounted for ad hoc char-
acterizations such as diurnal lighting patterns, heating vs. cooling by using
air conditioning, and sociological factors including holiday lighting and school
being in session or not. In each season, transformations were performed to
aggregate data across days of the week and geographic zones. Days in each
season were then segmented according to temperature forecast bands. The
relationship between hourly loads and weather forecast variables over a day
were approximated by a nonparametric regression function and distributions
of hourly residuals were approximated as well. Having identified the regres-
sion functions and hourly error distributions for each hour in each segment,
scenarios were generated as follows, for a given day D:

1. Identify the season to which day D belongs and the segment to which its
weather forecast generated on day D − 1 belongs.

2. Apply the approximated regression function to the weather forecast to get
a time-series forecast, and generate the desired number of load scenarios
by approximating the distributions of the forecast errors.

3. Invert the transformations to match the day of the week and geographic
zone.

For details of this load scenario generation process refer to [47].

Hourly wind scenarios were obtained from a commercial vendor [49] accord-
ing to an analogue method [50]. These scenarios were designed to represent a
future representing 20% penetration of wind energy in the eastern U.S. in 2024
[51]. Generated load scenarios for 2011 were scaled by the 2.27% increase per
year as assumed in [51] to approximate demand levels in 2024. Wind energy
was assumed to be nondispatchable, and thereby considered as negative load
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16 Yonghan Feng, Sarah M. Ryan

in this paper. The net load scenarios representing demands in model (31)-
(56) were obtained by subtracting wind energy from load in crossed sets of
scenarios.

5.2 Independent daily SRUC

A regular summer week, ranging from 2011-07-10 to 2011-07-16, is selected to
test customized FSRC in independent daily SRUC first, and several days are
randomly selected from other seasons for testing as well. In independent daily
SRUC, the initial status of each generating unit on day D is independent from
its status in the last period on day D− 1. The initial conditions are identified
by solving an ED problem for the initial period in which each unit is set on and
demand is the expected value for that period over all scenarios. All units for
which generation levels are higher than corresponding minimum output, P g,
will be set on, and initial generation levels will be the values derived from the
expected value ED problem. To investigate how FSRC performs, subsets of 10,
20, 30, 40, 50 and 60 scenarios are selected from the total 80 net load scenarios
by customized FSRC and FFS methods separately. For illustration, the whole
set of net load scenarios on day 2011-07-11 are displayed in Fig. 2, and 20
scenarios selected by FFS on the same day are shown in Fig. 3. Assessment of
selected scenarios follows the procedure described in Section 4.3.
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Fig. 2 80 net load scenarios on 2011-07-11

Section 5.2.1 provides numerical results of reduced scenarios resulting from
solution sensitivity indices created by TC. Section 5.2.2 displays scenario re-
duction effects of FSRC when the optional PC step is included.
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Fig. 3 20 selected scenarios by FFS on 2011-07-11

5.2.1 Independent daily SRUC: applying TC

The subset of 20 scenarios on 2011-07-11 selected by FSRC with strategy TC is
displayed in Fig. 4. Comparisons between Figs. 3 and 4 suggest that scenarios
selected by applying TC in FSRC have a wider range than those from FFS ,
which may indicate that more extreme situations have been retained by FSRC.
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Fig. 4 20 selected scenarios by FSRC: TC on 2011-07-11

For the convenience of describing the comparisons on scenarios which are
selected by different methods, S ′FFS denotes the subset of scenarios selected
by FFS, and S ′FSRC the subset of scenarios selected by FSRC through the rest
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of the paper. Notations S ′FSRC:TC and S ′FSRC:TC+PC further distinguish the
two variants of FSRC.

Scenario subsets S ′FFS and S ′FSRC:TC are evaluated following the proce-
dure in Section 4.3. Given the whole set of scenarios S, commitment cost,
U(S ′FFS) and U(S ′FSRC:TC), and expected generation costs, Φ(S|S ′FFS) and
Φ(S|S ′FSRC:TC), are accumulated through the week and displayed in Fig. 5 for
each cardinality, n, of the selected scenario sets. Deviations from the optimal
shortage, Ψ+(S|S ′FFS)− Ψ+(S|S) and Ψ+(S|S ′FSRC)− Ψ+(S|S), and excess,
Ψ−(S|S ′FFS)−Ψ−(S|S) and Ψ−(S|S ′FSRC)−Ψ−(S|S), of FFS and FSRC over
the summer week are displayed in Fig. 6 for each cardinality n, as well. Fig. 5
shows that, when evaluated over the whole scenario set, commitments from
FSRC with the TC strategy and FFS result in similar cost over the summer
week for each n. However, the FSRC method causes less expected shortage
while resulting in similar levels of excess, as shown in Fig. 6. Fig. 6 also il-
lustrates that the expected shortage, Ψ+(S|S ′FSRC), result from FSRC will
better approximate Ψ+(S|S) as cardinality n increases from 10 to 60.
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Fig. 5 Deviations from optimal commitment and generation cost of FSRC:TC and FFS
through the summer week for different cardinality n

5.2.2 Independent daily SRUC: applying TC and PC

Pre-categorizing scenarios before clustering is applied to customize FSRC in
this section. For comparison, 20 scenarios selected by FSRC with TC and PC
on 2011-07-11 are displayed in Fig. 7. Only minor differences can be observed
between the sets of selected scenarios shown in Fig. 4 and Fig.7.

Similar to Section 5.2.1, commitment cost, U(S′FFS) and U(S′FSRC:TC+PC),
expected generation cost, Φ(S|S ′FFS) and Φ(S|S ′FSRC:TC+PC), expected short-

This is a manuscript of an article from Computational Management Science (2014): 
 The final publication is available at Springer via http://dx.doi.org/ 10.1007/s10287-014-0220-z. Posted with permission.



Solution Sensitivity-Based Scenario Reduction for Stochastic Unit Commitment 19

10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

n selected scenarios

D
ev

ia
tio

n 
fr

om
 o

pt
im

al
 s

ho
rt

ag
e 

(M
W

h)

 

 

FFS
FSRC:TC

10 20 30 40 50 60
−20

0

20

40

60

80

n selected scenarios

D
ev

ia
tio

n 
fr

om
 o

pt
im

al
 e

xc
es

s 
(M

W
h)

 

 

FFS
FSRC:TC

Fig. 6 Deviation from optimal load imbalance of FSRC:TC from FFS through the summer
week for different cardinality n
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Fig. 7 Selected scenarios by FSRC: TC+PC on 2011-07-11

age, Ψ+(S|S ′FFS) and Ψ+(S|S ′FSRC:TC+PC), and expected excess, Ψ−(S|S ′FFS)
and Ψ−(S|S ′FSRC:TC+PC), are accumulated separately through the week, and
their comparisons are displayed in Figs. 8 and 9. From Fig. 8, applying TC and
PC in FSRC will also result in similar commitment and expected generation
cost to their counterparts from FFS for different n. But Fig. 9 shows that FSR-
C results in less shortage while yielding not much more excess generation. The
absolute value of the savings in excess, |Ψ−(S|S ′FFS)−Ψ−(S|S ′FSRC:TC+PC)|,
dominates the savings in shortage, |Ψ+(S|S ′FFS)−Ψ+(S|S ′FSRC:TC+PC)|, when
n = 30 in Fig. 9. Because there are nearly no differences in shortage, commit-
ment and expected generation cost between FFS and FSRC with TC and PC,
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the penalty on excess accounts for the higher total expected cost for customized
FSRC at this value of n.

10 20 30 40 50 60
−0.5

0

0.5

1

1.5

2

2.5

Number of selected scenarios n

E
xc

es
s 

fr
om

 o
pt

. c
om

m
it.

 &
 g

en
. c

os
t (

%
)

 

 

FFS
FSRC:TC+PC

Fig. 8 Deviations from optimal commitment and generation cost of FSRC:TC+PC and
FFS through the summer week for different cardinality n
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Fig. 9 Deviation from optimal load imbalance of FSRC:TC+PC from FFS through the
summer week for different cardinality n

According to these results, the FSRC methods result in less shortage and
more economical unit commitments than FFS if a small set of scenarios are
selected from the whole set, i.e. fewer than 25% of the whole set of scenarios
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are applied to get the UC strategy. The performances of FFS and FSRC are
more similar when the cardinality of the selected set is larger (bigger than
40% of the total sceanrios). To assess the performance of selected scenarios
especially when n is small, 20 scenarios were selected from the whole set in
randomly selected days in spring, fall and winter to run independent daily
SRUC. Fig. 10 shows the relative differences in commitment and expected
generation cost between FFS and FSRC:

U(S ′FFS) + Φ(S|S ′FFS)− U(S ′FSRC)− Φ(S|S ′FSRC)

U(S ′FFS) + Φ(S|S ′FFS)
× 100% (26)

for each selected day. The small percentages displayed indicate that scenarios
selected by both FSRC variants result in similar costs to those that result from
scenarios selected by FFS.
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Fig. 10 Savings in commitment and generation cost of customized FSRC methods from
FFS in evaluation

Fig. 11 and Fig. 12 contrast solutions optimized using scenarios selected by
FFS and FSRC by showing Ψ+(S|S ′FFS)− Ψ+(S|S ′FSRC) and Ψ−(S|S ′FFS)−
Ψ−(S|S ′FSRC), respectively. Fig. 11 illustrates that both of the FSRC variants
usually result in less shortage than FFS in the selected days, while providing
similar excess amounts on all but two days (in Fig. 12).

To investigate the sensitivity of FSRC to the penalty parameters used
in clustering, different pairs of these parameters were tested. These studies
were done for n = 20 because performance of FSRC differs more from FFS
when selecting smaller subsets. Fig. 13 displays expected savings in short-
age, Ψ+(S|S ′FFS) − Ψ+(S|S ′FSRC), and excess Ψ−(S|S ′FFS) − Ψ−(S|S ′FSRC)
of FSRC in the summer week which ranges from 2011-07-10 to 2011-07-16.
In Fig. 13, UC schedules obtained from both of the FSRC variants result in
lower levels of shortage than the schedule obtained from FFS. But applying
the TC strategy in FSRC often leads to more excess than applying both TC
and PC. In addition, using both TC and PC in FSRC by TC and PC can
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Fig. 11 Savings in shortage of FSRC from FFS in evaluations
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Fig. 12 Savings in excess of FSRC from FFS in evaluations

sometimes result in both directions of imbalance simultaneously. Overall, the
numerical results for the independent daily SRUC testing indicate that the F-
SRC methods can result in more economical and reliable schedules compared
to FFS.

5.3 Rolling horizon SRUC over a week

Rolling horizon SRUC is performed in the same summer week as tested in
Section 5.2. The rolling horizon procedure starts by solving SRUC over 36
hours on days D and D+ 1, where net load values in a scenario from hour 25
to hour 36 are duplicated from hour 1 to hour 12 in the same scenario. This
extension of the daily planning horizon avoids the shut-down of units toward
the end of the day that might otherwise occur due to end-of-study effects. The
commitment states of units at hour 24 on day D are adopted as initial states
of units on day D + 1, and the initial generation level (relevant to ramping
constraints) of each unit for day D + 1 is set to its expected generation over
all scenarios at hour 24 of day D. The next two sections describe the perfor-
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Fig. 13 Expected savings in load imbalance of FSRC methods from FFS for 20 selected
scenarios through different pairs of penalties

mance of the two variants of FSRC. The UC schedules obtained by optimizing
with the reduced sets are evaluated against all scenarios. As in Section 5.2,
for scenario subset S ′ ⊆ S, U(S ′), Φ(S|S ′), Ψ+(S|S ′) and Ψ−(S|S ′) are com-
pared to their counterparts if the whole set of scenarios S are used in SRUC.
Note that, to perform evaluation of selected scenarios in rolling basis SRUC,
T = {1, · · · , 24} for each day D in formulas (22) - (25). Table 1 shows the
commitment cost U(S), expected generation cost Φ(S|S), expected shortage
Ψ+(S|S) and excess Ψ−(S|S) evaluated for each day during the week, with
the total number of scenarios, |S| = 80, for each day.

Table 1 Expected values of the all-scenarios based SRUC through a week

Date U(S) (K$) Φ(S|S) (K$) Ψ+(S|S) (MWh) Ψ−(S|S) (MWh)

2011-07-10 15 712 0 1288
2011-07-11 27 943 96 367
2011-07-12 32 873 13 341
2011-07-13 43 1522 318 37
2011-07-14 26 912 0 0
2011-07-15 32 1309 0 90
2011-07-16 43 1220 3 0
Total 216 7500 431 2124
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5.3.1 Rolling horizon SRUC: applying TC

Although the scheduling horizon used in the rolling horizon test includes 36
hours, solution sensitivity indices are computed over 24 hours to select sce-
narios for each day. Table 2 summarizes the evaluated daily commitment cost,
expected generation cost, and expected load imbalance through the summer
week when the cardinality of selected scenarios n = 40. Compared to results
from the commitment schedule optimized over all scenarios, entries in Table 2
correspond closely to those in Table 1. Thus, applying TC only in FSRC can
yield an acceptable UC strategy even when half of the scenarios are ignored
in the optimization.

Table 2 Expected values of UC from TC with respect to all scenarios through a week,
n = 40

Date U(S′) (K$) Φ(S|S′) (K$) Ψ+(S|S′) (MWh) Ψ−(S|S′) (MWh)

7/10/2011 15 711 0 1289
7/11/2011 27 965 96 361
7/12/2011 31 873 15 335
7/13/2011 44 1531 318 36
7/14/2011 27 909 0 0
7/15/2011 31 1249 1 94
7/16/2011 43 1218 4 0
Total 217 7456 434 2115

5.3.2 Rolling horizon SRUC: applying TC and PC

Like Table 2, Table 3 shows the evaluation results of applying PC together
with TC in FSRC when the cardinality of selected scenarios n = 40. Similar
values to those in Table 1 support the use of this variant. Comparisons between
Tables 2 and 3 show that both FSRC variants result in similar commitment
costs and expected generation costs across the whole set of scenarios, but the
combination of TC and PC reduces the expected shortage slightly, and suffers
from a litter higher excess.

Another way to compare the results of different selected subsets is to exam-
ine the UC schedules directly rather than their evaluation against the whole
set of scenarios. Upon concatenating the unit commitment vectors over the
days in D, we have T = {1, 2, · · · , 168}. Equation (27) computes the optimal
committed capacity given scenario set S ′ ⊆ S.

φt(S ′) =
∑
g∈G

v′gtP̄g,∀t ∈ T . (27)

The amount of capacity committed in each hour summarizes the schedule.
Relative differences of φt(S ′FSRC:TC) and φt(S ′FSRC:TC+PC) to φt(S) through
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Table 3 Expected values of UC from TC+PC with respect to all scenarios through a week,
n = 40

Date U(S′) (K$) Φ(S|S′) (K$) Ψ+(S|S′) (MWh) Ψ−(S|S′) (MWh)

7/10/2011 15 712 0 1288
7/11/2011 26 972 96 360
7/12/2011 31 872 13 341
7/13/2011 44 1530 318 36
7/14/2011 27 909 0 0
7/15/2011 33 1243 0 95
7/16/2011 42 1216 4 0
Total 216 7454 432 2120

the week are displayed in Fig. 14. In most hours, both FSRC variants selecting
half of the total scenarios provide similar amounts of committed capacity as
the optimal schedule.
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Fig. 14 Relative differences in hourly capacity committed between half-scenarios based
rolling horizon SRUC and all-scenarios based rolling horizon SRUC

The quality of scenarios selected by FSRC is further investigated by run-
ning rolling horizon SRUC on smaller subsets of selected scenarios. Fig. 15
displays the performances of selected subsets S ′FSRC:TC and S ′FSRC:TC+PC

over days in D according to average hourly relative difference in committed
capacity:

Z(S ′) =
1

|T |
∑
t∈T

|φt(S ′)− φt(S)|
φt(S)

(28)

Either variant of FSRC, with or without PC, provides similar capacity
commitments to the optimal schedule, when the cardinality n ranges from 10
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to 40. As n increases, subset-based commitments are closer to optimal. Com-
paring the total expected shortage and excess amounts across all scenarios,
which are measured by W+(S|S ′) and W−(S|S ′) separately, provides another
view. Fig. 16 displays such comparisons for different cardinalities, and shows
that the FSRC variants result in schedules that perform similarly to the rolling
schedule optimized using all scenarios in most time, except for that FSRC with
PC strategy will lead to an obvious deviation in shortage when n = 10. Given
that about 90% scenarios (70 out of 80 net load scenarios) are ignored for the
SRUC, a relative difference around 90% seems to be not much worse for the
variant of FSRC with PC strategy. As cardinality n increases from 10, the
quality of UC strategy is dramatically improved for the variant of FSRC with
PC strategy. Unlike the FSRC variant with PC strategy, only applying TC
strategy in FSRC seems to be more reliable than the variant with additional
PC strategy. Fig. 16 also illustrates that subsets of scenarios from either vari-
ant of FSRC achieve to UC strategies which provide nearly the same expected
shortage and excess as those from the whole set of scenarios when cardinality
n is above 20.

W+(S|S ′) =
|Ψ+(S|S ′)− Ψ+(S|S)|

Ψ+(S|S)
(29)

W−(S|S ′) =
|Ψ−(S|S ′)− Ψ−(S|S)|

Ψ−(S|S)
(30)
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Fig. 15 Z(S′FSRC:TC) v.s. Z(S′FSRC:TC+PC) for different cardinality n

Different pairs of penalty settings on shortage and excess are set to con-
duct sensitivity investigations on customized FSRC for rolling horizon SRUC.
Fig. 17 shows that Z(S ′FSRC) does not differ much from Z(S) through dif-
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Fig. 16 Absolute relative differences in expected load imbalance for different car-
dinaltiy n: (a) W+(S|S′FSRC:TC) v.s. W+(S|S′FSRC:TC+PC), (b) W−(S|S′FSRC:TC) v.s.

W−(S|S′FSRC:TC+PC)

ferent penalty settings, and subplots in Fig. 18 show that Ψ+(S|S ′FSRC) and
Ψ−(S|S ′FSRC) are not very sensitive to particular values of the penalty factors.
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Fig. 17 Z(S′FSRC:TC) v.s. Z(S′FSRC:TC+PC) through different penalty settings
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Fig. 18 Relative differences in load imbalances through different penalty set-
tings: (a) W+(S|S′FSRC:TC) v.s. W+(S|S′FSRC:TC+PC), (b)W−(S|S′FSRC:TC) v.s.

W−(S|S′FSRC:TC+PC)

6 Conclusion

In this paper, a scenario reduction method based on solution sensitivity and
its customizations for stochastic unit commitment are presented. Numerical
investigations on FSRC through single-day and rolling horizon SRUC are per-
formed for a sample of days in a case study distilled from data for an indepen-
dent system operator in the U.S. Compared to the classical scenario reduction
method, FFS, the customized FSRC tracks aspects on which the decision mak-
er focuses, and thereby leads to more reliable unit commitment schedules. In
a rolling horizon study, UC schedules obtained with small subsets of scenar-
ios selected by the customized FSRC methods are similar to those found by
optimizing against the whole set of scenarios. The method uses somewhat ar-
tificial penalties on load imbalances but the results are not very sensitive to
the particular penalty values used. Tests in this paper were performed on the
extensive forms of the two-stage stochastic program, but FSRC could also be
used in conjunction with decomposition methods for more efficient solution.

FSRC can be extended easily to a stochastic unit commitment in which
variable generation is considered as dispatchable resource. All variable resource
generators in that case are considered as elements of G, and viewed as “always
on” units through the schedule horizon by fixing corresponding vgt = 1. The
same scenario evaluation procedure, summarization process and cluster tech-

This is a manuscript of an article from Computational Management Science (2014): 
 The final publication is available at Springer via http://dx.doi.org/ 10.1007/s10287-014-0220-z. Posted with permission.



Solution Sensitivity-Based Scenario Reduction for Stochastic Unit Commitment 29

nique can be applied to select representative scenarios. We expect that in this
case, the excess amounts α−bts are likely to be much smaller overall in the UC
evaluation because the ability to curtail variable generation will reduce the
impact of underestimating wind power on the day ahead.

The proposed scenario reduction method, FSRC, can be further improved
by accounting for the nest distance, when selecting a representative scenari-
o from each scenarios cluster for a two-stage or multi-stage stochastic unit
commitment model. Similar to the version for the two-stage stochastic unit
commitment, a feasible UC strategy will be applied to evaluate scenarios, and
decisions at each stage will be elements to create solution sensitivity indices
in a multi-stage stochastic unit commitment. To avoid overly complicated so-
lution sensitivity indices as the number of stages increase, further research is
required to identify efficient ways to summarize multistage solution sensitivity.
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19. J. Dupačová, G. Consigli, and S.W. Wallace. Scenarios for multistage stochastic pro-
grams. Annals of operations research, 100(1):25–53, 2000.

20. A. Philpott, M. Craddock, and H. Waterer. Hydro-electric unit commitment subject to
uncertain demand. European Journal of Operational Research, 125(2):410–424, 2000.

21. J. M. Latorre, S. Cerisola, and A. Ramos. Clustering algorithms for scenario tree
generation: Application to natural hydro inflows. European Journal of Operational
Research, 181(3):1339–1353, 2007.
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30. R. Henrion, C. Küchler, and W. Römisch. Discrepancy distances and scenario reduction
in twostage stochastic mixed-integer programming. Journal of Industrial and Manage-
ment Optimization, 4(2):363–384, 2008.

31. H. Heitsch, W. Römisch, and C. Strugarek. Stability of multistage stochastic programs.
SIAM Journal on Optimization, 17(2):511–525, 2006.

32. H. Heitsch and W. Römisch. Scenario tree reduction for multistage stochastic programs.
Computational Management Science, 6(2):117–133, 2009.

33. H. Heitsch and W. Römisch. Scenario tree modeling for multistage stochastic programs.
Mathematical Programming, 118(2):371–406, 2009.

34. H. Heitsch and W. Römisch. Stability and scenario trees for multistage stochastic
programs. Stochastic Programming, pages 139–164, 2011.

35. L. Wu, M. Shahidehpour, and T. Li. Stochastic security-constrained unit commitment.
IEEE Transactions on Power Systems, 22(2):800–811, 2007.

36. J. Wang, M. Shahidehpour, and Z. Li. Security-constrained unit commitment with
volatile wind power generation. IEEE Transactions on Power Systems, 23(3):1319–
1327, 2008.

37. J.M. Morales, S. Pineda, A.J. Conejo, and M. Carrion. Scenario reduction for futures
market trading in electricity markets. IEEE Transactions on Power Systems, 24(2):878–
888, 2009.

This is a manuscript of an article from Computational Management Science (2014): 
 The final publication is available at Springer via http://dx.doi.org/ 10.1007/s10287-014-0220-z. Posted with permission.



Solution Sensitivity-Based Scenario Reduction for Stochastic Unit Commitment 31

38. N. Growe-Kuska, H. Heitsch, and W. Romisch. Scenario reduction and scenario tree
construction for power management problems. In IEEE Bologna Power Tech Conference
Proceedings, 2003.

39. S-E Fleten and S. W. Wallace. Delta-hedging a hydropower plant using stochastic
programming. In Optimization in the energy industry, pages 507–524. Springer, 2009.

40. Georg Ch. Pflug and Alois Pichler. A distance for multistage stochastic optimization
models. SIAM Journal on Optimization, 22(1):1–23, 2012.

41. Anna V Timonina. Multi-stage stochastic optimization: the distance between stochastic
scenario processes. Computational Management Science, pages 1–25, 2013.

42. Y. Feng and S. M. Ryan. Scenario construction and reduction applied to stochastic
power generation expansion planning. Computers & Operations Research, 40(1):9–23,
2013.

43. M. Carrión and J.M. Arroyo. A computationally efficient mixed-integer linear formula-
tion for the thermal unit commitment problem. IEEE Transactions on Power Systems,
21(3):1371–1378, 2006.

44. M. Kaut and S.W. Wallace. Evaluation of scenario-generation methods for stochastic
programming. Pacific Journal of Optimization, 3(2):257–271, 2007.

45. J-P Watson, D. Woodruff, and W. Hart. Pysp: modeling and solving stochastic programs
in python. Mathematical Programming Computation, 4(2):109–149, 2012.

46. Sandia National Laboratories. Pysp. https://software.sandia.gov/trac/coopr/wiki/PySP.
47. Y. Feng, I. Rios, S. Ryan, K. Spürkel, Watson J., R. Wets, and D Woodruff. Scalable

stochastic unit commitment - part 1: scenario generation. Under review.
48. ISO-NE. Hourly zonal information. http://www.iso-

ne.com/markets/hstdata/znl info/hourly/index.html.
49. 3TIER Inc. Private communication. http://www.3tier.com/en/.
50. W. Mahoney, K. Parks, G. Wiener, Y. Liu, W. Myers, J. Sun, L. Delle Monache, T. Hop-

son, D. Johnson, and S. E. Haupt. A wind power forecasting system to optimize grid
integration. IEEE Transactions on Sustainable Energy, 3(4):670 – 682, 2011.

51. D. Corbus, J. King, T. Mousseau, R. Zavadil, B. Heath, L. Hecker, J. Lawhorn, D. Os-
born, J. Smit, R. Hunt, et al. Eastern wind integration and transmission study. NREL
(http://www. nrel. gov/docs/fy09osti/46505. pdf), CP-550-46505, 2010.

This is a manuscript of an article from Computational Management Science (2014): 
 The final publication is available at Springer via http://dx.doi.org/ 10.1007/s10287-014-0220-z. Posted with permission.



32 Yonghan Feng, Sarah M. Ryan

A Concrete stochastic reliability unit commitment model

A.1 Notation

Sets and indices

B set of buses
G set of thermal units
L set of transmission lines, modeled as directed arcs
LI(b) set of transmission lines to bus b
LO(b) set of transmission lines from bus b
Kg set of time intervals of stairwise start-up cost function

of thermal unit g
S set of scenarios
T set of time periods
BF`, BT` buses located at the two ends of transmission line `,

representing the bus injecting power to and absorbing
power from line `, respectively

Parameters

ξs probability of scenario s
∆ru
g ramping-up limit of unit g (MW/h)

∆rd
g ramping-down limit of unit g (MW/h)

∆su
g start-up ramping limit of unit g (MW/h)

∆sd
g shut-down ramping limit of unit g (MW/h)

P̄g capacity of unit g (MW)
P g minimum power output of unit g (MW)
B` negative susceptance of line ` ∈ L
dbts net load at bus b in period t in scenario s (MWh)
F` maximum capacity of transmission line ` (MW)
H+
g , H

−
g time of unit g has been on, or off at the beginning of

scheduling
%gk startup cost of thermal unit g for time intervals q ∈

Kg ($)
Rt reserve requirement in period t (MWh)
TUg , T

D
g minimum up and down times of unit g

Γ+
α , Γ

−
α penalties on load imbalance ($/MWh)

Γ+
β , Γ

−
β penalties on reserve requirement imbalance ($/MWh)

J number of blocks of the piecewise linear generation
cost function of unit g

δjgts energy generated in block j of the piecewise linear
generation cost function of unit g in period t in sce-
nario s (MWh)

This is a manuscript of an article from Computational Management Science (2014): 
 The final publication is available at Springer via http://dx.doi.org/ 10.1007/s10287-014-0220-z. Posted with permission.



Solution Sensitivity-Based Scenario Reduction for Stochastic Unit Commitment 33

λjg slope of block j of the piecewise linear generation cost
function of unit g ($/MWh)

γjg upper limit of block j of the piecewise linear genera-
tion cost function (MWh)

ρg shutdown cost of unit g ($)
ag no-load cost of unit g ($)
cugt(·) commitment cost function of unit g in period t ($)
cpgts(·) generation cost function of unit g in period t in sce-

nario s ($)

Decision variables

vgt ∈ {0, 1} first-stage decision, binary variable, equal to 1 if unit
g is on in period t, and 0 otherwise

pgts ≥ 0 generation level of unit g in period t in scenario s for
g ∈ G (MW)

p̄gts ≥ 0 maximum available power generation for unit g in pe-
riod t in scenario s for g ∈ G (MW)

α+
bts, α

−
bts ≥ 0 auxiliary variables, representing shortage and excess

in load supply at bus b in period t in scenario s, re-
spectively (MWh)

β+
ts, β

−
ts ≥ 0 ancillary variables, representing shortage and excess

in reserve requirement in period t in scenario s
(MWh)

θbts phase angle at bus b in period t in scenario s (radians)
ω`ts line power of transmission line ` in period t in scenar-

ios s, unrestricted in sign because power can flow in
either directions on a line

A.2 Mathematical model

The full concrete formulation of SRUC extends the deterministic UC model in [43] to a two-
stage stochastic program. The commitments of thermal units are considered as first-stage
decisions. Second-stage decision variables include generation level of each unit, and corre-
sponding maximum available generation level. The following presents a two-stage stochastic
program by viewing each hour as a period.

A.2.1 Objective function

min
∑
t∈T

∑
g∈G

cugt(vgt) +
∑
s∈S

ξsζs (31)

The objective function (31) consists of two parts: the cost related to commitments of
units, like startup, shutdown and no-load costs; and the cost related to generation and
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penalties on load and reserve requirement imbalances, upon realization of a scenario in the
second stage, as shown in (32).

ζs =
∑
t∈T

∑
g∈G

cpgts(pgts) +
∑
t∈T

∑
b∈B

(
Γ+
α α

+
bts + Γ−α α

−
bts

)
+
∑
t∈T

(
Γ+
β β

+
ts + Γ−β β

−
ts

)
(32)

The goal of SRUC is to minimize total commitment cost, expected generation cost and
expected penalties on imbalances in generation and reserve. The following section presents
operational constraints.

A.2.2 Constraints

Energy balance at each bus:∑
g∈G(b)

pgts +
∑

`∈LI (b)

ω`ts −
∑

`∈LO(b)

ω`ts

+ α+
bts − α

−
bts = dbts, ∀b ∈ B, ∀t ∈ T , ∀s ∈ S (33)

Formula (33) describes the relationship between load demand and generated and net
transmitted energy for each bus.

Reserve requirements:∑
g∈G

p̄gts + β+
ts − β

−
ts =

∑
b∈B

dbts +Rt,∀t ∈ T , ∀s ∈ S (34)

Reserve requirements (34) maintain reliability if contingencies that are not modeled in
scenarios occur; e.g., outages of generators or transmission lines.

Line Power:

ω`ts = B`(θBF`ts − θBT`ts), ∀t ∈ T , ∀` ∈ L, ∀s ∈ S (35)

−F` ≤ ω`ts ≤ F`,∀t ∈ T ,∀` ∈ L, ∀s ∈ S (36)

Power flow in each transmission line is formulated and restricted in (35) and (36).
Formulation (35) is a linear, lossless DC approximation of the relationship between phase
angles and power flow on a transmission line.

Generation limits:

P gvgt ≤ pgts ≤ p̄gts ≤ P̄gvgt, ∀g ∈ G, ∀t ∈ T , ∀s ∈ S (37)

Available power generation level of a thermal unit depends on its operational status,
as in (37). The difference between maximum available generation level p̄gts and actual
generation level pgts indicates the contribution of unit g to the reserve requirement in period
t in scenario s. In addition, the maximum available generation level of a thermal unit in a
period is coupled by possible generation levels in preceding and succeeding periods.

Ramp rate limits:

p̄gts ≤ pg,t−1,s +∆rug vg,t−1 +∆sug (vgt − vg,t−1)

+ P̄g(1− vgt), ∀g ∈ G, ∀t ∈ T , ∀s ∈ S (38)

p̄gts ≤ P̄gvg,t+1

+∆sdg (vgt − vg,t+1), ∀g ∈ G,∀t = 1, · · · , |T | − 1 (39)

pg,t−1,s − pgts ≤ ∆rdg vgt +∆sdg (vg,t−1 − vgt)

+ P̄g(1− vg,t−1), ∀g ∈ G, ∀t ∈ T , ∀s ∈ S (40)

Formulas (38) - (40) represent maximum available changes in generation levels of each
unit between two consecutive periods.
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Minimum up-time constraints:

H+
g∑

t=1

(1− vgt) = 0, ∀g ∈ G (41)

t+TU
g −1∑
i=t

vgi ≥ (vgt − vg,t−1) , ∀g ∈ G, ∀t = H+
g + 1, · · · , |T | − TUg + 1 (42)

|T |∑
i=t

(vgi − vgt + vg,t−1) ≥ 0, ∀g ∈ G,∀t = |T | − TUg + 2, · · · , |T | (43)

Minimum down-time constraints:

H−
g∑

t=1

vgt = 1, ∀g ∈ G (44)

t+TD
g −1∑
i=t

(1− vgt) ≥ (vg,t−1 − vgt) ,∀g ∈ G,∀t = H−g + 1, · · · , |T | − TDg + 1 (45)

|T |∑
i=t

(1− vgi − vg,t−1 + vgt) ≥ 0, ∀g ∈ G, ∀t = |T | − TDg + 2, · · · , |T | (46)

Thermal units cannot be shut down (started up) immediately after being started up
(shut down), because these operations can only be performed under gradual change of tem-
perature, which translates to time periods. Formulas (41) - (46) use binary variables to
describe these restrictions on thermal units.

Commitment cost:

cugt(vgt) ≥ %gk

vgt − min(t−1,k)∑
i=1

vg,t−i

+ agvgt, ∀g ∈ G, ∀t ∈ T , ∀k ∈ Kg (47)

The start-up cost function is monotonically increasing along the time of a thermal unit
has been off. Stairwise start-up cost function is adopted and formulated in the first term of
(47), where Kg = {k1, · · · , kNg}, and %gki ≤ %gki+1

, i = 1, · · · ,Ng − 1. Notice that, %gk
includes shutdown cost in the case study. The second term is no-load cost of unit g which
will occur once a unit is committed.

Generation cost function:

cpgts(pgts) =

J∑
j=1

λjgδjgts,∀g ∈ G, ∀t ∈ T ,∀s ∈ S (48)

pgts = P g +
J∑
j=1

δjgts,∀g ∈ G,∀t ∈ T , ∀s ∈ S (49)

δ1gts ≤ γ1j − P g ,∀g ∈ G,∀t ∈ T ,∀s ∈ S (50)

δjgts ≤ γjg − γj−1,g , ∀g ∈ G, ∀t ∈ T , ∀s ∈ S, ∀j = 2, · · · , J − 1 (51)

δJgts ≤ P̄g − γJ−1,g ,∀g ∈ G, ∀t ∈ T ,∀s ∈ S (52)

δjgts ≥ 0, ∀g ∈ G,∀t ∈ T , ∀s ∈ S, ∀j = 1, · · · , J (53)

Equations (48)-(53) compute piecewise-linear generation costs.
A mixed integer linear program (MILP) extensive form of SRUC has been formulated

in (31) - (56) , with boundary defined for each decision variable, as follows.

This is a manuscript of an article from Computational Management Science (2014): 
 The final publication is available at Springer via http://dx.doi.org/ 10.1007/s10287-014-0220-z. Posted with permission.



36 Yonghan Feng, Sarah M. Ryan

A.2.3 Bounds

0 ≤ pgts ≤ P̄g , ∀g ∈ G, ∀t ∈ T , ∀s ∈ S (54)

0 ≤ p̄gts ≤ P̄g , ∀g ∈ G, ∀t ∈ T , ∀s ∈ S (55)

− π ≤ θbts ≤ π, ∀b ∈ B,∀t ∈ T , ∀s ∈ S (56)

This model can be easily extended to the situation in which variable generation, such
as wind, is viewed as dispatchable resource. Set G will include variable energy generators,
and dbts will represent load rather than net load. In formula (37), we can set vgt to 1 for
any variable energy generator g, and allow P̄g to vary by scenario. Then other constraints
will be suitable for variable energy generators.
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