Atomic arrangement of Al-Rh-Cu decagonal quasicrystal investigated by Cs-corrected scanning transmission electron microscopy

Kunio Yubuta
Tohoku University, yubuta@imr.tohoku.ac.jp

Akira Yasuhara
JEOL Ltd., ayasuhar@jeol.co.jp

Kazuki Yamamoto
Nara Women's University, kazuki.yamamoto@cc.nara-wu.ac.jp

Kenji Hiraga
Tohoku University, hiraga@imr.tohoku.ac.jp

Follow this and additional works at: https://lib.dr.iastate.edu/aperiodic2018

Part of the [Chemistry Commons](https://lib.dr.iastate.edu/aperiodic2018), and the [Materials Science and Engineering Commons](https://lib.dr.iastate.edu/aperiodic2018)

This Poster Presentation is brought to you for free and open access by the Conferences and Symposia at Iowa State University Digital Repository. It has been accepted for inclusion in Aperiodic 2018 (“9th Conference on Aperiodic Crystals”) by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Atomic arrangement of Al-Rh-Cu decagonal quasicrystal investigated by Cs-corrected scanning transmission electron microscopy

K. Yubuta1, A. Yasuhara2, K. Yamamoto3, K. Hiraga1

1 Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
2 EM Application Group, EM Business Unit, JEOL Ltd., Tokyo 196-8558, Japan
3 Department of Physics, Nara Women’s University, Nara 630-8506, Japan

yubuta@imr.tohoku.ac.jp

Recent Cs-corrected STEM has an enough resolution to reproduce separately individual transition-metal atoms in projected structures of DQCs along the periodic axis, and so arrangements of transition-metal atoms can be directly determined from observed HAADF-STEM images. By spherical aberration (Cs)-corrected high-angle annular detector dark-field (HAADF)- and annular bright-field (ABF)-scanning transmission electron microscopy (STEM), the atomic arrangement of an Al-Rh-Cu decagonal quasicrystal (DQC) formed with two quasiperiodic planes along the periodic axis in an Al$_{63}$Rh$_{18.5}$Cu$_{18.5}$ alloy has been investigated [1].

Heavy atoms of Rh, and mixed sites (MSs) of Al and Cu atoms projected along the periodic axis can be clearly represented as separate bright dots in observed HAADF-STEM images, and consequently arrangements of Rh atoms and MSs on the two quasiperiodic planes can be directly determined from those of bright dots in the observed HAADF-STEM image in Fig. 1(a).

Figure 1. HAADF-STEM (a) and ABF-STEM (b) images of the Al-Rh-Cu DQC, taken with the incident beam parallel to the periodic axis. In (a), one can see concentric circles of bright dots with 1.2 nm and 2 nm in diameter, as indicated by small and large white circles, respectively, which are drawn in a size larger so that arrangements of bright dots in those circles can be easily seen. In (b), ring contrasts indicated by a small circle are observed. The ring contrasts are arranged with a constant interval of 0.66 nm, and large clusters formed with ten ring contrasts arranged by ten-fold rotational symmetry are observed at some places, as indicated by a large circle.
The Rh atoms are arranged in pentagonal tiling formed with pentagonal and star-shaped pentagonal tiles with an edge-length of 0.76 nm, and also MSs with a pentagonal arrangement are located in the pentagonal tiles with definite orientations. The star-shaped pentagonal tiles in the pentagonal tiling are arranged in τ^2 (τ: golden ratio)-inflated pentagonal tiling with a bond-length of 2 nm.

From arrangements of Rh atoms placed in pentagonal tilings with a bond-length of 2 nm, which are generated by the projection of a five-dimensional hyper-cubic lattice, occupation domains in the perpendicular space are derived. Al atoms as well as Rh atoms and MSs are represented as dark dots in an observed ABF-STEM image as shown in Fig.1(b).

Observed ABF- and HAADF-STEM images clearly show the existence of bond-orientational order (BOO) for the atomic arrangement [2-4]. The present model of the Al-Rh-Cu DQC is basically different from the structure proposed by single-crystal X-ray diffraction [5], in respect of the presence of the 0.76 nm pentagonal tiling of Rh atoms and MSs of Al and Cu atoms.

Acknowledgement

This work was supported by JST CREST Grant No. JPMJCR1322.