3-14-2014

Spring Tillage Pitfalls

Mahdi Al-Kaisi

Iowa State University, malkaisi@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/cropnews

Part of the Agricultural Science Commons, Agriculture Commons, Agronomy and Crop Sciences Commons, and the Soil Science Commons

Recommended Citation

http://lib.dr.iastate.edu/cropnews/16

The Iowa State University Digital Repository provides access to Integrated Crop Management News for historical purposes only. Users are hereby notified that the content may be inaccurate, out of date, incomplete and/or may not meet the needs and requirements of the user. Users should make their own assessment of the information and whether it is suitable for their intended purpose. For current information on integrated crop management from Iowa State University Extension and Outreach, please visit https://crops.extension.iastate.edu/.
Spring Tillage Pitfalls

Abstract
Generally, springtime is not an ideal time for conducting tillage because of potential negative soil and agronomic outcomes associated with tillage in wet conditions. These soil and agronomic problems are linked together in affecting yield. Here are some of the reasons to avoid spring tillage.

Keywords
Agronomy

Disciplines
Agricultural Science | Agriculture | Agronomy and Crop Sciences | Soil Science

This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/cropnews/16
Spring Tillage Pitfalls

By Mahdi Al-Kaisi, Professor, Department of Agronomy

Generally, springtime is not an ideal time for conducting tillage because of potential negative soil and agronomic outcomes associated with tillage in wet conditions. These soil and agronomic problems are linked together in affecting yield. Here are some of the reasons to avoid spring tillage:

1. Increase in soil compaction and damage to soil structure as a result of tilling in wet conditions. This will reduce soil porosity and air and water movement in the soil profile.
2. Tilling wet soil will not be very effective in fracturing soil, if that is the objective of tilling in mind, because tilling in wet conditions will compact soil and create large soil clods.
3. Such conditions will create a soil environment with poor seed bed conditions and will reduce the seed-to-soil contact, if that is the purpose of tilling the soil.
4. These poor soil conditions can lead to poor development of root systems, such as rootless corn, during early growth stages.
5. Later in the season, the root system growth will be restricted due to soil compacted layers, leading to a deformed root system concentrated at a shallow depth.
6. This will reduce the use of sub-soil moisture, which will be a deterrent to yield, especially during drought conditions in the growing season.
7. Another problem associated with wet spring tillage is the potential of Potassium (K) soil compaction-induced deficiency.
8. Finally, all this will translate to yield reduction, which can be in the range of 10-20 percent, depending on the severity of soil damage and soil compaction.
9. In addition to the agronomic and soil problems above, there will be
environmental and soil health damages:

a. Generally, fresh-tilled soils are susceptible to soil erosion, especially in the spring when significant surface runoff can occur with snow melt on a deep frozen soil, and the possibility of high intensity rain in the spring.

b. Tilling soils in general is damaging to soil health, which includes destroying soil structure, as I mentioned above, reducing water penetration and sub-soil recharge, and loss of soil organic matter and nutrients along with sediments to waterways.

My recommendation is to be very careful with tillage this spring for the above reasons and to minimize the use of tillage. Also, watch for soil moisture and be careful not to enter the field if the drainage tiles are still running, which means the soil is above field capacity. That is the worst condition for soil compaction. This is true for all springtime operations, whether you are tilling the soil or applying fertilizers. You need to inspect the field and make sure that soil moisture is at or below field capacity by the simple test of taking a handful of soil and squeezing it in your palm; if you notice a trace of moisture on your palm, it is too wet to enter the field.

Mahdi Al-Kaisi is a professor of agronomy with research and extension responsibilities in soil management and environmental soil science. He can be reached at malkaisi@iastate.edu or 515-294-8304.

This article was published originally on 3/14/2014. The information contained within the article may or may not be up to date depending on when you are accessing the information.

Links to this material are strongly encouraged. This article may be republished without further permission if it is published as written and includes credit to the author, Integrated Crop Management News and Iowa State University Extension. Prior permission from the author is required if this article is republished in any other manner.

Copyright ©2014 Iowa State University Extension | Iowa State University
Contact us | For Staff | Nondiscrimination and Information Disclosures | CMS Admin
Last Updated 3/14/2014