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ABSTRACT 

• Purpose – This chapter reports on a rapidly growing trend in data analysis – analytic 
comparisons between baseline models and explanatory models. Baseline models estimate 
values for the dependent variable in the absence of hypothesized causal effects. Thus, the 
baseline models discussed in this chapter differ from the baseline models commonly used 
in sequential regression analyses. 

Baseline modeling entails iteration: (1) Researchers develop baseline models to capture 
key patterns in the empirical data that are independent of the hypothesized effects. (2) 
They compare these patterns with the patterns implied by their explanatory models. (3) 
They use the derived insights to improve their explanatory models. (4) They iterate by 
comparing their improved explanatory models with modified baseline models. 

• Methodology/approach – The chapter draws on methodological literature in economics, 
applied psychology, and the philosophy of science to point out fundamental features of 
baseline modeling. Examples come from research in international business and 
management, emerging market economies, and developing countries. 

• Findings – Baseline modeling offers substantial advantages for theory development. 
Although analytic comparisons with baseline models originated in some research fields as 
early as the 1960s, they have not been widely discussed or applied in international 
management. 

• Practical implications – Baseline modeling takes a more inductive and iterative approach 
to modeling and theory development.  

• Originality/value of paper – Because baseline modeling holds substantial potential, 
international-management scholars should explore its opportunities for advancing 
scientific progress. 
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INTRODUCTION 

This chapter describes the methodology of baseline modeling and its advantages for the 
analysis of empirical data and theory development. Baseline modeling is a rather new 
methodology that has begun to spread rapidly. In the social sciences, empirical studies that 
applied baseline modeling first appeared around 1960, the earliest users being economists 
and political scientists. Usage remained infrequent until the latter part of the 1990s, and 
then began to grow at exponential rates. Figure 1 compares three fields of studies in terms 
of the numbers of papers that involved some form of baseline modeling. Studies of 
emerging market economies have been the most frequent users, followed by studies of 
developing countries. So far, few studies in international management have used baseline 
modeling. 

[Insert  Figure 1 here] 

Baseline modeling has received increasing attention throughout the social and biological 
sciences. In various research fields, baseline modeling began to grow more popular as early 
as 1980 and as late as 2000. In many research fields, baseline modeling shifted into 
exponential growth during the 2000s. Bioecologists played an important early role in 
exploring the usefulness of baseline modeling. Although baseline modeling remains far 
from being a dominant methodology, it is occurring often enough to deserve discussion in 
all methodology training. 

It appears that international-management researchers have made much less use of baseline 
modeling than have researchers in other fields. Thus, one goal of this chapter is the 
bringing of this methodology to the attention of researchers in international business and 
management. The chapter suggests reasons for the methodology’s growing popularity and 
describes its use in other fields. 

While research that has used baseline modeling mainly discusses what specific models the 
researchers considered and what inferences they drew, it often does not state the 
philosophies that such thinking embodies. However, baseline modeling raises more general 
methodological issues related to the nature of scientific inquiries and how researchers 
develop theories. Among the scholars who have discussed these more general implications, 
the economist George C. Archibald has expressed especially relevant ideas. Most of these 
ideas are discussed in the discussion section of this chapter, but the next section describes 
how Archibald’s ideas evolved from model testing to model comparison. Then the ensuing 
sections outlines how baseline models facilitate model comparison and describe the types 
of baseline models that researchers have used in studies of international management, 
developing countries and emerging market economies. The chapter concludes by outlining 
the potential of baseline modeling for enabling more fruitful inductive approaches to 
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theory development -- approaches that international-management researchers should 
consider for future studies. 

WHY ARCHIBALD LOST FAITH IN POPPER’S IDEAS 

Baseline modeling is a product of many social and biological scientists who have struggled 
with the meaning and validity of their work over the last half century. One of these was a 
Scottish economist, George Christopher Archibald (1926-1996), whose mental voyage 
profoundly changed his beliefs about scientific knowledge and research achievements 
(Lipsey, 1996). In the early 1960s, Archibald subscribed to the ideas of Karl Popper (1959), 
who had argued that a proposition is not scientifically meaningful unless it is empirically 
falsifiable. Thus, for a theoretical statement to be “scientific", researchers must be able, at 
least in principle, to find evidence that the statement is false. If there is no possible way to 
find or produce such evidence, the statement does not deserve to be classified as 
“scientific.” 

Popper’s ideas about falsification induced Archibald to challenge the theories about perfect 
competition and monopolistic competition on the ground that proponents of these theories 
refuse to accept discrepancies between theory and observation as evidence that the 
theories are wrong. He (1961, pp. 4-5) argued, “If we accept the new methodology, and 
propose to judge a hypothesis by the correspondence of its predictions with facts, and if 
one (or more) of its predictions does not correspond, can we say anything but "the 
hypothesis is refuted? (Popper, 1959, p. 33)” 

However, Archibald continued to wrestle with the usefulness of Popper's ideas, and he 
gradually came to see Popper’s ideas as an unrealistic basis for scientific progress 
(Archibald, 1967). For example, he perceived that some statements in economic theories 
are worthy of empirical investigation even though researchers have no way to prove these 
statements are false. In addition, he recognized that empirical studies make somewhat 
ambiguous tests of theories because they entail measurement errors and sampling errors. 
The measured values of variables are never exactly the same as the abstract theoretical 
concepts they are supposed to represent, which creates the possibility that a theoretical 
statement may be true but measurement errors make it appear false, or vice versa. When 
the available data are samples as opposed to complete populations, observed events may 
differ from those not observed. Past events may differ from future events. Furthermore, 
theories have many dimensions, such as their elegance, parsimony, generality, usefulness 
for prediction, or time horizon. As a result, a theory may perform excellently on dimensions 
A and B, but poorly on dimensions C and D, whereas an alternative theory may perform 
excellently on dimensions A and C, but poorly on dimensions B and D . 

In 1967, Archibald published a seminal article "Refutation or comparison?" that presents 
his insights about the limitations and opportunities of empirical investigations. Archibald’s 
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reformulation has two central properties: Firstly, in place of Popper’s sharply dichotomous 
classification of theoretical statements as true or false, Archibald characterized truth 
probabilistically. A theoretical statement has a probability of being true. Secondly, instead 
of theoretical statements being testable, Archibald characterized them as comparable. One 
theoretical statement can be compared with another in terms of the probabilities that they 
are true. He (1967, p. 293) said, “I suggest . . . that we call a statement—or hypothesis—
scientific if we may, at least in principle, compare its probable truth or falsity with that of 
another statement by appeal to observation (reference to facts).“ 

BASELINE MODELING 

This notion that researchers should compare theories instead of testing them is Archibald’s 
signal insight, and he was an early and thoughtful advocate. However, Archibald is by no 
means the originator of comparing theories and his article has not been widely cited. Other 
social scientists were having similar thoughts about methodology during the 1960s. 
Economists and political scientists began comparing their explanatory theories with 
baseline models several years before Archibald’s article appeared in print (Ando and 
Modigliani, 1963; Arrow, Chenery, Minhas, and Solow, 1961; Boness, 1964; Deutsch, 1960; 
Savage and Deutsch, 1960). In 1968 and 1969, a debate among agricultural economists 
ended with mutual agreement that comparing theories is more useful than testing null 
hypotheses (Johnson, 1968, 1969; Lianos, 1969; Wise and Yotopoulos, 1968; Yotopoulos 
and Wise, 1969a, 1969b). 

Recent users of baseline modeling say little about their reasons for adopting this 
methodology; presumably they are adopting it because they have seen it in published work 
and they found it informative. Early users, on the other hand, justified their use of this 
methodology. They usually explained that they found comparisons with baseline models to 
offer more challenge for their explanatory theories than did tests of null hypotheses and 
that comparisons with their specific baseline models offered better guidance for future 
research and theory development. 

Baseline models 

Baseline modeling entails comparisons between an explanatory model and a baseline 
model. However, ‘baseline model’ has been a developing concept with fuzzy boundaries. 
The character of baseline models has changed a bit over time as researchers have 
developed more sophistication and as baseline modeling has migrated to different fields of 
research. Consequently, researchers have used the term ‘baseline model’ in diverse ways, 
and researchers have used other terms – especially ‘naïve model’ and ‘null model’ – to 
denote the entities that other researchers have called baseline models. 
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Although the term ‘baseline model’ implies comparison with an alternative that is more 
complex than a no-effect hypothesis, the terms ‘naïve model’ and ‘null model’ better 
indicate the kinds of models that researchers have used as baselines so far. Some of 
baseline models have described studied phenomena as inertial. The models say that 
current situations are very likely to continue unchanged, or that current trends are very 
likely to persist, or that people’s behavior adheres to stable traditions and norms. Other 
baseline models have described studied phenomena as utterly random. They say that 
resources or activities have frequency distributions that exhibit statistical independence or 
that situations change randomly over time. The researchers have explained that they used 
such baseline models because they wanted to find out whether their explanatory models 
actually said something that requires real understanding of causal processes. Biologists, 
who have standardized on the label ‘null model’, have engaged in lively debate about the 
degree to which a null model should take account of the properties of observed data 
(Gotelli and Graves, 1996). 

The idea that a baseline model should not describe causal processes in detail has appeared 
in many subfields throughout the biological and social sciences. This idea may have spread 
widely because behavioral studies of decision making and perceptual biases made most 
researchers conscious of their humanity – their attributional biases, their propensities to 
search for confirmatory data, their blind spots generated by their hypotheses and theories, 
and their retrospective sensemaking (Beach, 1966; Calhoun and Starbuck, 2003; Erev and 
Barron, 2005; Hansen, 1980; Kahneman and Tversky, 1973; Lichtenstein, Fischhoff, and 
Phillips 1982; Phillips, Hays, and Edwards 1966; Slovic, 1991). Use of a non-causal baseline 
model is a way for researchers to demonstrate to themselves as well as others that they are 
trying to guard against self-deception and hubris. 

Two other factors may also have contributed to the spreading popularity of simple baseline 
models that do not describe causal processes in detail. Firstly, the accumulating body of 
research findings has reinforced awareness that inertia is pervasive. For example, during 
the 1960s, four teams of economists undertook to produce models that could make short-
range forecasts about the US economy; the availability of computers and very large budgets 
allowed these economists to build models of great complexity. Later, Elliott (1973) 
compared these complex computer-simulation models with two naive models. Three of the 
simulation models turned out about as accurate as the naive model that said no change will 
occur over the next three months. The fourth and most accurate simulation model 
predicted about as accurately as the naive model that said "the trend over the last three 
months will continue through the next three months. 

Second, most researchers have studied statistics, which presents many examples of 
random events and stochastic processes, so researchers have become aware that random 
events can mimic causal events. For example, bioecologists plunged into a major 
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methodological debate during the 1980s, after Connor and Simberloff (1983, 1986) argued 
that conventional null-hypothesis tests have no value because interactions within 
ecological communities make simple no-effect null hypotheses very unrealistic. They 
proposed that bioecologists should replace null hypotheses with non-causal ‘null models’ 
that generated random distributions for studied variables. Connor and Simberloff (1983) 
showed that such a ‘null model’ could accurately describe the numbers of species pairs on 
each of the Galapagos Islands, a topic that had roused debate among bioecologists for 
decades. 

Advancements in computer software enable researchers to simulate the effects of different 
types of inertia and random processes with increasing ease. This development, however, 
has also encouraged researchers to use more complex baseline models. Later sections of 
this chapter discuss the pros and cons of making baseline models more complex, and 
possibly incorporating explicit causation into baseline models. However, it is clear that the 
originators of baseline modeling intentionally restricted explicit causation to their 
explanatory models, which they compared with non-causal baseline models. 

When a baseline model is not a baseline model 

It is important for researchers to understand that baseline modeling, as this chapter uses 
this term, is quite different from labeling the first calculation in a sequence of regression 
calculations as a ‘baseline model”. Many studies in international business and management 
make a series of increasingly complex regression calculations, which they call models, and 
they frequently apply the label ‘baseline model’ to the first calculation in such a sequence. 
Some of these ‘baseline models’ include only independent variables that the researchers 
describe as ‘control variables’; others include both ‘control variables’ and other variables. 
Researchers have every right to use the label baseline model as they wish, but these 
‘baseline models’ differ from those discussed in this chapter. 

The ‘baseline models’ in these regression sequences differ in five significant ways from the 
baseline models discussed in this chapter. First, researchers often do not explain why they 
categorize specific variables as ‘control variables’ and include them in a baseline model. 
Although researchers probably select control variables based on prior research and 
characteristics of the empirical setting, explanations for such selections are scarce. Second, 
researchers leave unclear whether the baseline variables have causal effects on dependent 
variables, but it often appears that some control variables have rather direct causal effects. 
Thirdly, researchers do not explain how the baseline variables interact with each other to 
constitute a coherent model. Fourthly, each calculation in a sequence recalculates the 
coefficients of the baseline variables, so the baseline model changes with each calculation. 
Fifthly, the comparisons between models on these calculation sequences are limited to 
binary statements about statistical significance.  
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In the kind of baseline modeling that this chapter discusses, a baseline model offers a single 
coherent explanation for the dependent variable(s). Each variable fits into the baseline 
model, and there are usually very few variables. The baseline model proposes an 
explanation for how the dependent variables might behave in the absence of explicit 
causation. The baseline model is stable; it does not change when researchers change their 
explanatory theory. Comparisons between baseline models and explanatory models should 
not be binary; they should be multidimensional and more continuous than discrete. 

There is also a more general issue of whether a regression analysis generates a theoretical 
model. Regression calculations can be very useful tools for inductive analyses. However, 
regression coefficients are subject to corrupting influences, such as collinearity among the 
independent variables and the effects of outliers. When researchers ignore such sources of 
corruption, regression coefficients are unreliable indicators of the importance of 
independent variables, and the significance levels associated with coefficient estimates are 
unreliable or irrelevant criteria for decisions about what variables and relationships to 
include in theories. Statistical significance is often a poor or deceptive indicator of 
theoretical or practical importance (Schwab, Abrahamson, Starbuck, and Fidler, 2011; 
Starbuck, 2006, p. 137). Probably the most important issue is conceptual coherence. Lists 
of statistically significant variables that emerge from series of regression calculations often 
lack an overall conceptual framework that warrants calling them a theory. 

The next section describes some common baseline models and provides illustrative 
examples of their applications. Schwab and Starbuck (2012) introduced a general 
framework that classified different types of baseline models, and this chapter extends these 
types. The next section highlights six types of baseline models that seem likely to prove 
useful in studies of international business and management. Researchers have used four of 
these types in international business and management studies. A literature search 
produced no examples of international business and management research applying the 
other two types of baseline models, but they offer promise. Although these six examples 
represent very simple models, various researchers have used them for revealing 
comparisons with their explanatory theories. 

SIX USEFUL TYPES OF BASELINE MODELS  

Equal-weight factors 

During the 1950s and 1960s, applied psychologists discovered that multiple regression 
analyses are likely to yield unreliable predictions for employee selection and college 
admissions (Starbuck, 2006, pp. 53-55, 131-136). Before 1950, the tradition had been to 
evaluate applicants for jobs or for college admission by checking off their characteristics on 
lists. These lists had not resulted from careful studies; they were rooted in the feelings, 
experiences, and prejudices of human resources or admissions personnel. Evaluators 
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counted the numbers of positive checkmarks to measure applicants’ suitability. The 
counting process generally gave every item on a list equal weight. 

Starting in the 1950s, psychometricians began to use squared-error regression to assign 
weights to items (Perloff, 1951). They reasoned that regression would assign higher 
weights to more important items and would assign low weights to redundant or 
uninformative items. It appeared that statistical theory said regression weights would 
minimize prediction errors. However, the ensuing two decades of experience produced 
evidence that the use of regression weights made predictions less accurate. Prediction 
scores computed with regression-derived weights correlated less highly with students' or 
employees’ actual performances than had scores generated by equally-weighted a priori 
items (Boyce, 1955; Lawshe and Schucker, 1959; Wesman and Bennett, 1959). 

During the 1970s, psychometricians used computer simulation to investigate reasons for 
this surprising phenomenon. Their studies assumed an ideal situation – perfect normal 
distributions and independent variables with no measurement errors. They represented 
the idea of equally-weighted a priori items by saying the standardized value of a dependent 
variable equals 1/Sqrt(K) times the sum of the standardized values of K independent 
variables. They assumed that all of the independent variables related positively to the 
dependent variable. The psychometricians discovered that sampling errors cause 
regression calculations to produce incorrect estimates, so the results of regressions 
generate unreliable predictions unless samples are quite large. Indeed, with small samples, 
researchers could make more accurate predictions if they would gather no data and make 
no regression calculations. The psychometricians also found that even when regressions 
are based on large samples, predictions based on regressions are only modestly more 
reliable than predictions based on equal weights (Claudy, 1972; Dorans and Drasgow, 
1978; Einhorn and Hogarth, 1975; Schmidt, 1971). 

One implication of these studies is that researchers can use equally weighted independent 
variables as a baseline model for any explanatory model that is intended to be applicable to 
future data. This baseline model assumes a standardized dependent variable (StdY) and 
standardized independent variables (StdX); it says: 

StdY = (StdX1 + StdX2 + StdX3 +  . . . StdXn)/Sqrt(VarSum) 

where VarSum is the variance of the sum of the standardized independent variables. If the 
independent variables are uncorrelated, VarSum equals the number of independent 
variables. This correction assures that the total variance on the right-hand side equals 1. 

Such a baseline model has some substantive content, so it is not purely non-causal. Firstly, 
researchers choose variables to include in their regressions, so the baseline model 
incorporates whatever insights induce researchers to use specific independent variables. 
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Secondly, researchers have to define the independent variables so that all of the regression 
coefficients in the baseline model have the same signs as they do in the explanatory 
model(s). The baseline model will be more accurate if the independent variables are 
uncorrelated. 

Comparisons between baseline models that use equally-weighted independent variables 
and explanatory regressions yield clues about the functional form of causal effects and the 
potential impact of sampling errors. Hypothetically, sampling errors should be more 
problematic with smaller samples, and the errors should cause less distortion with large 
samples. Of course, a regression calculation with any model will give coefficients that fit the 
sample data more closely than this baseline model, for a regression calculation is defined to 
minimize the sum of squared errors. However, the fitted data do not provide a relevant 
comparison for theorizing about future research. The important comparison is how 
accurately the baseline model and the explanatory model each predict values of the 
dependent variable when using new data that were not included in the regression analyses 
to determine the factor weights for the proposed independent variables. 

Although this type of baseline modeling had significant influence on methodology in 
applied psychology, international business and management scholars seem to have not 
used such baseline models. 

Log-linear changes of scale 

International business and management studies frequently investigate causal effects across 
different countries and different organizations engaged in international business. So, how 
should scholars compare large countries with small ones? Or small organizations with large 
ones? How does a small country or organization change when it grows larger? As a baseline 
model, many researchers have used the assumption that inputs and outputs relate 
proportionately: if the inputs double, the outputs should double . . . approximately. 

One frequently used representation of this idea is the Cobb-Douglas production function: 

Q = ALαC(1-α) 

Where Q is the total output (or consumption) of an economy or organization, L is the labor 
(or employment) input, C is the capital input, and A and α are constants. A is usually 
interpreted as an indicator of technological effectiveness. Logarithmic transformations 
produce a convenient linear function: 

logQ = logA + α logL + (1- α) logC 

The Cobb-Douglas function has a long history and many theoretical and empirical analyses 
have used it. In recent years, some researchers have started to treat the Cobb-Douglas 
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function as a baseline model to compare with less simple formulations. They have used it 
for analyses of both cross-sectional one-time data and changes over time. Comparisons 
tend to ask whether observed phenomena depart from logarithmic linearity, either by 
depending on other factors than capital, labor, and technology, or by exhibiting 
curvilinearity. The transcendental-logarithmic model adds curvature by assuming:  

logQ = β1 logL + β2 logC + β3( logL)2 + β4 (logC)2 + β5 logL*logC + Error 

For example, Triebs and Kumbhakar (2012) used Cobb-Douglas functions as baselines in 
their study of the effects of management on production efficiency. Their study used data 
about management practices in 3140 medium-sized firms from half a dozen countries. 
They fitted data to transcendental-logarithmic models in order to assess the degrees to 
which actual productivities deviate from Cobb-Douglas functions. They inferred that 
management practices generally exert more influence on the productivity of labor than on 
the productivities of technology or capital. However, they pointed out that this finding 
might reflect their measures of management practices. They also discovered variations in 
the effects of management in different countries. 

Statistical independence 

The concept of statistical independence among variables assumes that the values of one 
variable do not correlate with the values of another variable. Tables 1 and 2 show portions 
of the tables reported by Schmidt and Vandenborre (1970) in their analysis of favored-
nation biases for trade among 14 nations and regions. The cells on the major diagonals are 
empty because countries do not export to or import from themselves. Schmidt and 
Vandenborre (1970) explained:  

[Table 2] develops a set of expected data from assumptions of complete indifference 
among the trading partners and thus allows one to measure the plus or minus 
differences between these base values and the actual amounts of transactions in 
each direction for every pair of countries or regions. The method removes gross size 
effects by taking into account the actual volumes of trade as registered by every 
country (exports as well as imports) and locates departures from the null-model 
which could then be examined in a subsequent investigation. The causes for the 
departures from the null-model could be prices, transportation costs, formally 
established preference policies, etc. . . . The no-preference assumption is made 
without regard for reality, insofar as expected data deviate from the actual data will 
a system of preferences be revealed. (pp. 8-9) 
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Table 1. Portion of observed flows of grain in 1965 
 Exports 

From 
Eastern 
Europe 

From 
USSR From US 

From 
EFTA 

From 
Africa 

 
 
Imports 

To Eastern 
Europe 

 1010 416 60  

To USSR      
To US    1  
To EFTA 305 95 3616  509 
To Africa   318 8  

 

Table 2. Portion of Schmidt and Vandenborre’s baseline model that assumes statistically 
independent flows of grain 

 Exports 
From 

Eastern 
Europe 

From 
USSR From US 

From 
EFTA 

From 
Africa 

 
 
Imports 

To Eastern 
Europe 

 108 860 32 33 

To USSR 1  43 1 1 
To US 12 22  13 13 
To EFTA 129 496 3943  151 
To Africa 7 25 200 8  

 

The Chi-square statistic is a familiar metric for evaluating the differences between two 
tables such as Tables 1 and 2. The tables might show the observed data (e. g., Table 1), a 
baseline model (e. g., Table 2), or an explanatory model. Schmidt and Vandenborre did not 
propose an explanatory model, but they did use their baseline model to spot deviations 
from statistical independence that matched to trade agreements, cultural similarities, and 
price differentials. 

Thomsen and Pedersen (1996) investigated national differences in large firm ownership 
across six European countries. A visual evaluation of the data in Table 3 convinced them 
that substantial differences exist, so they investigated whether these differences reflect 
nationality, industry composition, or firm size.  They used a variety of calculations that 
included comparing observed frequencies with expected frequencies in baseline models 
that assumed statistical independence. They inferred that there are nation-specific 
differences in large-firm ownership between the six countries. 
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Table 3. Ownership of the 100 largest companies in six nations 
 Dispersed Dominant Family Foreign Cooperative State 
Britain 61 11 6 18 1 3 
Denmark 10 9 30 23 17 11 
France 16 28 15 16 3 22 
Germany 9 30 26 22 3 10 
Netherlands 23 16 7 34 13 7 
Sweden 4 31 18 14 12 21 

 

No-change and no-change-in-trend 

Many baseline models for longitudinal theories start by capturing assumptions about 
period-to-period changes. A majority of social processes, practices and norms change 
rather slowly. They exhibit inertia in both their magnitudes and their rates of change. This 
allows simple baseline models that assume values of the dependent variable will not 
change over time to fit most time-series data very well. 

For instance, Ozsoz, Rengifo, and Salvatore (2010) investigated the effects of interventions 
into foreign currency markets by the central banks of Croatia, Czech Republic, and Slovakia. 
They compared their explanatory model with what they labeled a “naïve” model. This naive 
baseline model assumed the banks’ interventions had no effects. Table 4 compares their 
explanatory model with their naïve model for the events in Slovakia. Comparison between 
the models basically removes the “no action” events from consideration, and draws 
attention to the three instances in which the explanatory model predicted correct actions. 

Table 4. Interventions by Slovakia’s central bank, 1998-2006 
 Explanatory model Naïve model 
Intervention Sell No action Buy Sell No action Buy 
Total events 6 80 11 6 80 11 
Correct predictions 2 80 1 0 80 0 
% Correct 33 100 9 0 100 0 
% Incorrect 67 0 91 100 0 100 

 

Coën and Desfleurs (2004) compared a similar “naïve” baseline model with the accuracy of 
earnings forecasts between 1990 and 2000 by financial analysts in Hong Kong, Korea, 
Indonesia, Malaysia, Thailand, Singapore, Taiwan and the Philippines. Their naïve model 
said that earnings next year will be the same as earnings this year. Coën and Desfleurs 
decided that analysts have learned little from their errors during a period of financial crisis, 
have not been improving the accuracy of forecasts in general, and have been particularly 
poor at forecasting turning points. 
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Lee, Trimi, and Kim (2013) used a no-change baseline model when they investigated the 
impact of cultural differences on technology adoption. Based on Hofstede’s cultural 
dimensions, they hypothesized that people in individualistic cultures seek out information 
sources for their adoption decisions, whereas people in collectivist cultures rely more on 
the evaluations of like-minded individuals who have adopted the innovation. They 
compared these expectations with actual mobile phone adoption in the US and Korea and 
with a baseline model that said adoptions are the same year after year. 

A slightly more complicated baseline model for time series assumes that variables continue 
to change at constant rates.  Arora and Smyth (1990), for example, compared economic 
forecasts made by the International Monetary Fund with a naïve baseline model that said 
economies would change next year by the same percentage that they changed this year. 
The data consisted of nine time series for each of five international regions: Africa, Asia, 
Europe, the Middle East, and the Western Hemisphere. Comparison of IMF’s forecasts with 
the baseline model convinced the researchers that errors in IMF’s forecasts are not 
systematic. By one measure, the baseline model produced more accurate forecasts in 27 
out of 45 instances, and by another measure, the baseline model produced more accurate 
forecasts in 42 out of 80 instances. Although Arora and Smyth found that these differences 
were not statistically significant, they inferred that their “no-change-in-trend” baseline 
model would have been more accurate than the actual forecasts. 

In general, no-change baseline models help researchers to evaluate the inertial tendencies 
associated with their dependent variable and focus their investigation of proposed causal 
effects on period-to-period changes, either absolute changes or percentages. Alternatively, 
researchers could limit their investigation to effects on period-to-period change model by 
redefining their dependent variables as period-to-period changes. The explicit estimation 
of inertial tendencies using baseline models, however, provides potentially valuable 
information for the interpretation of observed effects – and this may be one of the reasons 
why researchers have tended not to limit their dependent variables to measuring only 
period-to-period changes. When baseline models capture that trends do not change, 
researchers are enabled to identify and evaluate accelerations or decelerations in rates of 
change. 

Random walks 

Our literature search has found no examples of baseline models that explicitly simulated 
random-walk processes in studies of developing countries, emerging markets, or 
international business. Some researchers, such as Lee et al. (2013) introduced earlier, 
described their no-change model or their no-change-in-trend models as “random walks” 
because random-walk processes can be one of many factors contributing to inertial 
tendencies. The focus in this section, however, is rather on baseline models that explicitly 
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simulate random walk effects and try to predict more complex change trajectories over 
time or difference between alternative empirical settings.  

In other fields of management research, the value of random-walk baseline models has 
been well-established. In research into the population ecology of organizations, for 
example, Levinthal (1991) compared random walks with data about the growth and 
survival of business firms. He started from a model in which organizational wealth changes 
according to a random walk, and he surmised:  

This paper shows that such a process generates the familiar pattern of negative 
duration dependence that has been observed in nearly all empirical analyses of age 
dependence in organizational mortality. The process is also consistent with the 
presence of an initial honeymoon period and a liability of adolescence . . . in which 
the risk of death for an individual organization is initially quite low and increases 
with time, reaching a peak at a point referred to as adolescence, and then 
subsequently declines. This more complex pattern of organizational mortality has 
been observed at an aggregate level in several empirical studies (Singh, Tucker and 
House, 1986; King and Wicker, 1988; Brüderl and Schüssler, 1990). . . . In the model 
developed here, there is no direct relationship between age and mortality. The 
negative relationship between age and mortality rates is due to the fact that older, 
surviving organizations tend to be organizations that have been successful, and this 
prior success buffers them from subsequent selection pressures. . . . The basic 
random-walk model demonstrates the importance of heterogeneity that emerges 
stochastically over time. (p. 401) 

Levinthal saw random walks as baseline models that challenge contemporary explanatory 
models and expose issues for exploration. He pointed out that the ability of a random-walk 
model to generate data very similar to the observed data does not prove that more subtle 
and interesting processes are occurring. It does, however, draw attention to the possibility 
that random events can mimic causal processes. 

Random-walk baseline models have also been very successfully applied in organizational 
studies of labor markets. Zuckerman et al. (2003), for example, investigated the effects of 
identity building and type casting on the repeated collaboration patterns and careers in the 
Hollywood movie industry. For their investigation, they had to develop baseline models to 
capture differences between the number of movies produced in a specific genre (e.g., 
drama, comedy, action) in order to estimate the corresponding random probability of 
working on a future film project in the same genre. Corresponding baseline model 
comparisons represented an important part of their very meticulous empirical 
investigation that identified complex and contingent type casting patterns. 
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Clearly, organizational survival and labor markets processes are phenomena also of 
interest to international business and management scholars. In addition, similar random-
walk processes may be highly relevant for the investigation of other phenomena. 
Advancements in available computer technology have also created new opportunities to 
estimate and simulate random-walk processes. Consequently, random-walk baseline 
models deserve more attention in future studies. 

Markov chains 

Some researchers make more complex assumptions by creating baseline models or 
explanatory models that are Markov chains. In the Markov chain framework, each possible 
state of a stochastic variable defines a distinct probability distribution for the next state of 
the variable. The states can have complex definitions that take account not only of 
variables’ current values but also their past values. Thus, a researcher might use a simpler 
Markov chain as a baseline model to compare with a more complex Markov chain as an 
explanatory model. 

Liu, Wang and Wei (2009) used a Markov chain as a baseline model in their study of the 
effects of foreign direct investment on Chinese manufacturing. They used Markov chains 
because previous research revealed undesirable properties of least-squares estimates. As a 
first step, they estimated the parameters of industry-specific Cobb-Douglas production 
functions on the assumption that these parameters change following specified Markov 
chain processes. Then, Liu et al. used these industry-specific production functions as 
baseline models to analyze the data in search of effects attributable to horizontal, forward, 
and backward linkages between the Chinese firms and foreign firms. They inferred that the 
effects of foreign direct investment differ by regions and the kinds of foreign and Chinese 
firms. 

Again, available computer technology has created new opportunities to simulate and model 
such potentially relevant stochastic processes. Related baseline modeling applications 
promise more comprehensive empirical investigations that maybe of interest to 
international-management scholars. 

DISCUSSION 

A small, but increasing, number of international-management researchers are using 
baseline modeling. They are experimenting with a range of models, but the opportunities 
are vast for developing new approaches and the potential benefits may be large. 

Stronger tests for deductive theories 

Most of the international-management researchers who have used the term “baseline 
model” did not engage in the kind of baseline modeling that this chapter discusses. Instead, 
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they have developed baseline models as the first stage in a sequence of regression analyses. 
Most often, they then used dichotomized decision rules based on null-hypothesis statistical 
significance tests to add variables to the regression calculations. Null hypotheses propose 
no effect of a causal variable or treatment in an experiment of field data. Methodologists 
have long argued that null hypotheses are highly unlikely to be true, as most treatments or 
causal variables have some effects. Consequently, null-hypothesis tests set very low 
thresholds for evaluating hypotheses and they have high likelihoods of false inferences. 

Baseline modeling asks researchers to pose stronger challenges to their explanatory 
theories than do null hypotheses. From a hypothesis-testing perspective, such baseline 
modeling "raises the bar" and promises more meaningful analyses. Methodological 
tradition says that baseline models should not incorporate causal processes that 
researchers see as meaningful explanations for their dependent variables. However, 
researchers, especially bioecologists, have debated the degrees to which baseline models 
should take into account properties of studied contexts. 

Inductive iterative model development.  

In a debate among sociologists about the value of baseline models, Turner and Hanneman 
(1984, pp. 283-288) argued against the use of baseline models only for simple one-shot 
dichotomous comparisons with proposed explanatory models. Instead, researchers can use 
models for much broader and more detailed comparisons of the data patterns implied by 
both the baseline models and the causal models. Such comparisons promise a much deeper 
understanding not only of the theoretical constructs and their causal relationships, but also 
of the specific empirical contexts. Researchers can then revise or propose alternative causal 
models and alternative baseline models. 

Multi-dimensional comparisons and parsimonious theorizing 

Comparisons that involve multiple evaluation dimensions promise a deeper understanding 
that supports theory development. Archibald highlighted the usefulness of 
multidimensional comparisons between models. He (1967, p.295) remarked, “when we 
compare theories with observation, we commonly find more than one criterion. Thus we 
may ask which better accounts for, e.g. total variance, or for turning points, or for 
amplitude of fluctuations. Once again, we should not be surprised if the theory which does 
better by some criteria does worse by others.” 

Comparison across multiple dimensions and multiple baseline models implies new 
challenges for the interpretation of observed empirical patterns because it is unusual for 
one theory to prove superior on all dimensions. In particular, strong baseline models can 
demonstrate the power of very simple assumptions. Comparisons with very simple 
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baseline models then challenge researchers to demonstrate that complicated explanatory 
theories perform sufficiently better to justify their complexity. 

Contemporary social research norms have been placing low value on theoretical 
parsimony. The use of null-hypothesis significance tests and the ease of collecting larger 
samples has induced researchers to add more and more variables to their explanatory 
models. Journal reviewers frequently propose that researchers should add more variables 
or interactions. One result has been models that fit the data too closely. 

When researchers add more independent variables, regression calculations climb and 
descend Ockham’s hill, an effect named for William Ockham, a 14th century advocate of 
parsimonious theorizing (Schwab et al., 2011). Although a model that includes too few 
independent variables fails to capture important variation and it makes inaccurate 
inferences about the population, additional variables have diminishing returns. A model 
that includes too many independent variables is likely to describe random noise or 
idiosyncratic properties of a studied context that do not generalize. Gauch (2006) found 
that the models that give the most accurate generalizations are quite parsimonious.  

Earlier, this chapter introduced two empirical studies that illustrate how researchers can 
use simple baseline models to challenge more complex causal explanations. Elliott’s (1973) 
study discovered that “no-change” and “no-change-in-trend” baseline models performed as 
well as the far more sophisticated economic models developed independently by several 
think tanks. Levinthal (1991) showed how simple random walk processes lead to firm 
survival patterns that are very similar to those explained by the theories of population 
ecology. In both cases, these studies changed the directions of future research by showing 
that complex causal explanations are not better than simple non-causal explanations. 

A fundamentally different methodological paradigm 

Using baseline models for multi-dimensional model comparison and iterative model 
development has implications for the nature of scientific inquiry because it implies a 
fundamental departure from our current research paradigm based on deductive 
falsification of hypotheses. In his “Logic of Scientific Discovery”, Popper (1959) argued that 
true science is based on falsification and not on verification. In contrast, Archibald and 
others have advocated a more inductive approach to identify best-fit hypotheses through 
an iterative process of empirical comparison and refinement of alternative models and 
hypotheses. This approach builds on the fundamental philosophy of science arguments of 
inductive logic as proposed by Bacon (1620) and Chamberlin (1897), who recommended 
the investigation of multiple opposing hypotheses. Such an approach replaces the idea of a 
test that conclusively rejects a hypothesis, with the idea that continuing analysis and 
refinement of hypotheses lead toward more likely hypotheses. Instead of judging 
hypotheses to be important or unimportant, true or false, iterative comparisons search for 
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hypotheses that are better on some of many dimensions – likely, useful, effective, accurate, 
terse, general. 

Archibald (1967, pp. 295-296) envisioned:  

… we compare rival theories by reference to such criteria as scope, generality, 
elegance, etc.: we ask, e.g. If one is ‘above more things’ than another or carries 
excess baggage in the form of unnecessary elements, or connects more satisfactorily 
with other parts of our theoretical structures. We should not be surprised if a theory 
which is superior on some counts is inferior on others! The case of vector-
dominance is the rare and lucky one in which one theory at last wins all down the 
line, so that we may reject its rival without waiting for the refutation that never 
occurs. … The new paradigm is accepted, not because it passes tests which refuted 
the old, but because it does strikingly better on a number of crucial comparisons. 

It will thus be seen that comparisons are frequently indecisive, not merely because each 
comparison is itself indecisive, being a probabilistic rather than deterministic, but because 
the complexity of theory and observation give rise to multiple criteria for comparison. Thus 
when we say that one theory is ‘doing better’ than a rival, we refer specifically to that set of 
(individually indecisive) comparisons that has already been carried out. It is this 
complexity of comparisons, rather than pig-headedness, that accounts for the well-known 
circumstances that we frequently disagree over theories even after a good deal of relevant 
empirical work has been done! 

CONCLUSION 

Baseline modeling if implemented as an iterative and multi-dimensional process of model 
comparison, model improvement, and theory development addresses fundamental 
methodological issues of scientific inquiry. These ideas also resonate with arguments for 
more systematic inductive reasoning based on the notions (a) that similar approaches have 
proven very useful in other fields of science, such as atomic physics, molecular chemistry, 
and chemistry (Platt, 1964), and (b) that researchers should focus on detecting useful 
regularities in observed phenomena instead of simplistic null-hypothesis tests (Starbuck, 
2006; Nord and Connell, 2011). 

The examples of baseline modeling in the international business and management 
literature did not explicitly describe how researchers engaged in iterative model 
comparison and model development. The absence of such description, however, may be 
deceptive, as research reports are always incomplete and as authors may have tried to 
increase their odds for publication by emphasizing their conformity to the hypothesis 
testing paradigm. An iterative and multi-dimensional process of model comparison seems 
to be the most promising form of baseline modeling to support theory development.  
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Fig. 1. Numbers of studies that used baseline modeling (3-year moving averages) 
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