A Conceptual Framework to Support Natural Interaction for Virtual Assembly Tasks

Thumbnail Image
Date
2011-06-01
Authors
Vance, Judy
Dumont, Georges
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Vance, Judy
Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of
Versions
Series
Department
Mechanical Engineering
Abstract

Over the years, various approaches have been investigated to support natural human interaction with CAD models in an immersive virtual environment. The motivation for this avenue of research stems from the desire to provide a method where users can manipulate and assemble digital product models as if they were manipulating actual models. The ultimate goal is to produce an immersive environment where design and manufacturing decisions which involve human interaction can be made using only digital CAD models, thus avoiding the need to create costly preproduction physical prototypes. This paper presents a framework to approach the development of virtual assembly applications. The framework is based on a Two Phase model where the assembly task is divided into a free movement phase and a fine positioning phase. Each phase can be implemented using independent techniques; however, the algorithms needed to interface between the two techniques are critical to the success of the method. The paper presents a summary of three virtual assembly techniques and places them within the framework of the Two Phase model. Finally, the conclusions call for the continued development of a testbed to compare virtual assembly methods.

Comments
Description
Keywords
Citation
DOI
Source
Subject Categories
Copyright
Sat Jan 01 00:00:00 UTC 2011