12-1-2017

Reducing Cycle Time in Frozen Gel-Bag Production

Christian Thompson
Iowa State University, clt@iastate.edu

Dustin Reichert
Iowa State University, dustinr@iastate.edu

Dylan Paris
Iowa State University, dparis10@iastate.edu

Guangyu Lu
Iowa State University

Mathew Winch
Iowa State University, mawinch@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/tsm415

Part of the Bioresource and Agricultural Engineering Commons, and the Industrial Technology Commons

Recommended Citation
Thompson, Christian; Reichert, Dustin; Paris, Dylan; Lu, Guangyu; and Winch, Mathew; "Reducing Cycle Time in Frozen Gel-Bag Production" (2017). TSM 415 Technology Capstone Posters. 7.
http://lib.dr.iastate.edu/tsm415/7

This Poster is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in TSM 415 Technology Capstone Posters by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Reducing Cycle Time in Frozen Gel-Bag Production

Client: PurFoods, Ankeny, Iowa

Problem Statement

- PurFoods estimates they will use two million gel-bags in the fiscal year to place in their meal packages. Currently the cycle time to freeze gel-bags in a -10°F freezer is about 24 hours, causing issues with time needed for production.

Scope

- Task is to reduce the cycle time required in order to completely freeze the gel-bags

Objective(s)

- Reduce gel-bag freezing time by 25%.
- Reduce inventory costs associated with storing gel-bags
- Reduce footprint required to store in cooler

Constraints

- Gel-bag size cannot be changed
- Dimensions of shipping box cannot be altered
- Solution must be edible
- Production must not be slowed

Methods

- On site testing of various proposed solutions with infrared temperature sensor
- Data logging and analysis of proposed solutions
- Cost analysis of each proposed solution

Proposed Solutions

- Freeze tunnel
- Salt water added to gel-bag
- Metal racks instead of plastic
- Better air circulation within freezer
- Nitrogen Bath
- Other food safe chemical options

Major Outcomes

- Reduction of freezing time
- Reduction of on hand gel-bag inventory
- Cost savings from gel-bag freezing reduction
- Dimensions of footprint reduction within the freezer

Benefit to Client

- Allows more flexibility in matching market demands for their products
- Creates a more efficient means of production

Acknowledgements: Authors are grateful to PurFoods for the opportunity to work on this project. Project was co-funded by the differential tuition.