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Abstract: The primary goal of these introductory notes is to promote the clear presentation

and rigorous analysis of dynamic economic models, whether expressed in equation or agent-

based form. A secondary goal is to promote the use of initial-value state space modeling with

its regard for historical process, for cause leading to e�ect without the external imposition of

global coordination constraints on agent actions. Economists who claim to respect individual

rationality should not be doing for their modeled economic agents what in reality these agents

must do for themselves.

Keywords: State space modeling, di�erential/di�erence equations, agent-based

computational economics, presentation, analysis

JEL: A23; B4; C6

1 Overview

These notes on dynamic economic modeling are designed for self-study by graduate students

of economics. The focus is on general presentation and analysis principles for dynamic

economic models expressible by means of state space models in initial value form.

The state of a modeled system at any given time is a characterization of system aspects

deemed by the modeler to be relevant for a speci�ed purpose. Typically the only aspects
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explicitly included in the state are aspects that can change over time; �xed aspects are

suppressed for ease of notation. For an economic system, the state typically includes the

asset holdings, information, and beliefs of economic entities such as �rms, consumers, and

government policy makers.

Hereafter, state space model will refer exclusively to a state space model in initial value

form, that is, to a model that speci�es how the state of a system changes over time, starting

from a given state at an initial time t0 [Aström and Murray, 2008, Ch. 2]. Roughly described,

given any time t ≥ t0 and time increment ∆t > 0, the state realized at time t+ ∆t is postu-

lated to be a function of the state realized at time t together with all inputs to the system

between t and t+ ∆t, where the inputs can include controls and random event realizations.

These functional relationships are conditioned on exogenously speci�ed functional forms and

parameter values.

State space models can be expressed in equation form or in agent-based form. In equation

form, the models are represented either as continuous-time systems of ordinary di�erential

equations or as discrete-time systems of di�erence equations. In agent-based form, the

models are typically represented as software programs implementing successive discrete-time

interactions among collections of persistent entities (�agents�) in the system of interest.

State space modeling permits intertemporal planning and optimization as well as myopic

decision-making. Modeled decision makers can form action plans and/or expectations for

current and future time periods that take into account possible future states as long as these

action plans and/or expectations are functions of the current state. Thus, modeled decision

makers can be as rational (or irrational) as real people.

Guidelines for the presentation of economic research supported by state space modeling

are suggested in Section 2. The importance of variable classi�cation is discussed in Section 3.

Section 4 presents an illustrative continuous-time state space model in equation form, and

Section 5 presents an illustrative discrete-time state space model in equation form that

approximates this continuous-time model. Section 6 and Section 7 provide more detailed

guidelines for the presentation and analysis of state space models in equation form. A general
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introduction to state space modeling in agent-based form is given in Section 8. Agent-based

state space models speci�cally for economic study, referred to as Agent-based Computational

Economics (ACE) models, are discussed in Section 9. The basic form of many ACE studies

is outlined in Section 10, and key issues analyzed in ACE studies are discussed in Section 11.

The �nal Section 12 brie�y summarizes the ultimate goal of these notes.

Throughout these notes, pointers are given to on-line resources for more advanced discus-

sion of topics. Extensive annotated pointers to additional materials on dynamic economic

modeling in state space form, including speci�c forms of growth models (descriptive, optimal,

overlapping-generations, dynamic stochastic general equilibrium, agent-based), expectation

formation (adaptive, rational), and the constructive modeling of coordination processes for

dynamic economic systems, can be found at the course website [Tesfatsion, 2016a].

2 General Presentation Considerations

The basic requirement for the e�ective presentation in written form of an economic study

conducted by means of a state space model is to put yourself in the place of a potential

reader. The �rst thing a reader will want to see is a brief but clear summary statement

of your study's purpose. The second thing the reader will want to see is a brief but clear

discussion clarifying the extent to which your study has new aspects relative to what has

been studied before, and why these new aspects are important for the achievement of your

study's purpose. This could constitute your Section 1.

Once you secure the reader's interest with this introductory overview, your next task is

to explain to the reader why you are choosing to support your study's purpose by means of

your model. You should �rst provide the reader with a big-picture overview of your model

that establishes its relationship to your study's purpose. This overview should consist of a

concise but clear verbal discussion, perhaps with an accompanying �ow diagram indicating in

simpli�ed form the �ow of activities at successive points in time (continuous-time modeling)

or over successive time periods (discrete-time modeling). The objective here is to convey in

general terms how your model captures aspects of a dynamic economic system important for
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your study's purpose. This could constitute your Section 2.

Once the reader has a big-picture understanding of your model, you need to provide a

more detailed explanation of the structure of the model. As will be clari�ed in subsequent

sections, this explanation should include:

(E1) a complete, consistent, and non-redundant speci�cation of simultaneous and dynamic

relationships detailing what system events occur at each time t (or during each time

period t) and how the state of the system changes from one time point (or time period)

t to the next;

(E2) a list of all variables and functions appearing in relationships (E1), together with their

intended economic meaning;

(E3) a classi�cation for each variable in (E2) as either endogenous (model determined) or

exogenous (given from outside the model);

(E4) a unit of measurement for each variable in (E2);

(E5) a domain and range for each function in (E2);

(E6) admissibility restrictions on the exogenous variables and/or functions in (E2) to help

ensure the empirical plausibility of the relationships (E1), both individually and as

a whole, as well as the empirical plausibility of any resulting solution values for the

endogenous variables.

The detailed explanations (E1)-(E6) of your model's structure would typically be given

in a separate Section 3. It is useful to summarize explanations (E2) through (E6) in a

nomenclature table for easy later reference.

You then need to explain carefully to the reader what type of analysis you intend to

undertake with your model, in accordance with the purpose you have stated for your study.

For example, do you intend to use the model to predict model outcomes under a particular

empirically-determined speci�cation of the exogenous variables and functions? In this case
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empirical input data will have to be given. Alternatively, do you intend to conduct sensitivity

studies (analytical or computational) to determine model outcomes for a speci�ed range of

values for some subset of the exogenous variables? In this case you will need to explain to

the reader the intended design for your sensitivity studies.

More precisely, to convey to the reader your sensitivity design,1 you will �rst need to

explain carefully to the reader which exogenous aspects of your model are treatment factors,

in the sense that they will be systematically varied during your sensitivity studies, and

which are maintained factors in the sense that they will be maintained at �xed speci�cations

throughout your sensitivity studies. You will then need to report to the reader the particular

range of speci�cation con�gurations you plan to explore for your treatment factors, and the

particular �xed speci�cations you plan to set for your maintained factors. If your model

includes exogenous variables intended to represent realizations for random variables, you

will also need to report the pseudo-random number seed values used in your sensitivity

studies to generate multiple di�erent runs for each studied treatment-factor con�guration in

order to analyze and control for random e�ects.2

After the form of your analysis is carefully explained to the reader, say in Section 4,

the outcomes of your analysis would then typically be reported to the reader in a separate

Section 5. The manner in which these outcomes are reported should be tailored to your

study's purpose and form of analysis. For example, outcomes might be reported by means of

verbal summaries, tables, charts, heat-maps, �ow diagrams, phase diagrams, and/or various

other types of �gures.

The �nal section of your study should be a wrap-up section. Typically this section

will start by summarizing the main accomplishments of your study as reported in previous

sections. It will then identify interesting new questions or issues raised by the study that

would be of interest to explore in subsequent studies.

1Sensitivity design is sometimes referred to as experimental design, given the formal similarity between
sensitivity studies and laboratory experimentation. However, some researchers argue that the term �ex-
periment� should be reserved for a sensitivity study conducted on a natural system, not on a theoretical
construct. The use of �experiment� is therefore avoided in these notes.

2See Tesfatsion [2016b] for a more extended discussion of sensitivity design for stochastic dynamic models.
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3 Classi�cation of Variables for State Space Models

A variable whose value is determined outside of a model is said to be exogenous relative to

that model. A variable whose value is determined within a model is said to be endogenous

relative to that model.

For a dynamic model in state space form, it is useful to highlight which particular exoge-

nous and endogenous variables appear within the modeled relationships for each successive

time (or time period) t. It is also useful to partition the endogenous variables appearing

within time-t modeled relationships into those whose values are determined by these rela-

tionships and those whose values are determined by earlier modeled relationships. As will be

seen in subsequent sections, this permits a slice-in-time representation of the modeled rela-

tionships at each successive time (or time period) that highlights their basic causal structure.

The following de�nitions clarify these variable distinctions. Although expressed for

continuous-time state space models, they apply equally well for discrete-time state space

models; simply replace �time t� with �time period t.�

An exogenous variable appearing within the time-tmodeled relationships for a state space

model is said to be time-t exogenous relative to that model. Since exogenous variables ap-

pearing within modeled relationships for earlier times can be included among the exogenous

variables appearing within modeled relationships for later times, this notational convention

imposes no restrictions on model structure.

An endogenous variable appearing within the time-t modeled relationships for a state

space model is said to be time-t endogenous (relative to that model) if its value is determined

by means of these time-t modeled relationships. An endogenous variable appearing within

the time-t modeled relationships for a state space model is said to be time-t predetermined

(relative to that model) if its value is determined by means of modeled relationships for

earlier times s < t.

The time-t predetermined variables for a state space model constitute the time-t state

variables for this model, and the vector of these time-t state variables is referred to as the
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time-t state. For a state space model speci�ed over times (or time periods) t ≥ t0, the state

at the initial time t0 needs to be exogenously given since there are no modeled relationships

prior to this initial time.

4 Continuous-Time State Space Modeling: Equation Form

4.1 Model Description

A complete description for a continuous-time state space model in equation form over times

t ≥ t0 consists of four parts: (i) a set of equations for each time t describing postulated

functional relationships among a collection of variables; (ii) a complete list of variables and

functional forms that identi�es variable units and function domains and ranges; (iii) a clas-

si�cation of variables into time-t endogenous, time-t predetermined, and time-t exogenous;

and (iv) admissibility restrictions on exogenous variables and/or functional forms to help

ensure the empirical plausibility of equations and solutions.

An illustrative example of a continuous-time state space model is given below.

Continuous-time model equations for times t ≥ t0:

Simultaneous equations: 0 = H
(
α(t), z(t), x(t)

)
(1)

Dynamic state equations: Dx(t) = S
(
α(t), z(t), x(t)

)
(2)

Integral equations: x(t) =

∫ t

t0
Dx(s)ds+ x(t0) (3)

Variables and functional forms:

α(t) =
(
α1(t), . . . , αk(t)

)
∈ Rk, for times t ≥ t0

z(t) =
(
z1(t), . . . , zm(t)

)
∈ Rm, for times t ≥ t0

x(t) =
(
x1(t), . . . , xn(t)

)
∈ Rn, for times t ≥ t0

Dx(t) =
(
Dx1(t), . . . , Dxn(t)

)
∈ Rn, for times t ≥ t0

H:Rk+m+n → Rm

7



S:Rk+m+n → Rn

Classi�cation of variables:

Time-t endogenous variables for t ≥ t0: Dx(t), z(t)

Time-t predetermined (state) variables for t > t0: x(t)

Time-t exogenous variables for t > t0: α(t)

Time-t0 exogenous variables: x(t0), α(t0)

Admissibility restrictions:

x(t0) ∈ X ⊆ Rn

In the above illustrative model, the time-t endogenous variables (z1(t), . . . , zm(t)) can

include the actions of decision makers as well as other time-t system events. The time-t ex-

ogenous variables (α1(t), . . . , αk(t)) can include both deterministic variables (e.g., parameter

values) and stochastically generated variables (e.g., realizations for random shock terms).

Note that the model has m + n equations (1) and (2) for the m + n time-t endogenous

variables (z1(t), . . . , zm(t)) and (Dx1(t), . . . , Dxn(t)), for each t ≥ t0, and n equations (3)

for the n time-t predetermined variables (x1(t), . . . , xn(t)) for each t > t0. Consequently, the

number of unknown (endogenous) variables for the model as a whole is equal to the number

of equations.

As seen in this illustrative model, admissibility restrictions on deterministic exogenous

variables, such as the components of the initial state x(t0), typically take the form of non-

negativity constraints or other types of bounds. Admissibility restrictions can also be im-

posed on stochastically generated exogenous variables; for example, a modeler might require

that random shock realizations approximate a sampling from a normal distribution. Ad-

missibility restrictions on functional forms can include properties such as di�erentiability,

monotonicity, and concavity.
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4.2 Incorporation of Optimization Problems

As discussed and demonstrated in Sinitskaya and Tesfatsion [2015], state space modeling

permits modeled decision makers to engage in intertemporal planning and optimization as

well as myopic decision-making as long as each decision maker is constructively rational. This

means that the decision process undertaken by each decision maker at each decision-time t

can be expressed as a function of the state of that decision maker at time t, where this state

includes the decision maker's physical state, knowledge state, and belief state at time t.

In particular, any consideration of future events by the decision maker must take the form

of anticipations regarding these future events, where these anticipations are determined as

functions of the decision maker's current state.

If all modeled decision makers are constructively rational, their implemented decisions

at each time t are functions of the time-t state. This functional dependence can be ex-

pressed either directly, in terms of state-conditioned decision rules, or indirectly in terms of

state-conditioned binding necessary and/or su�cient conditions for optimization. In either

case, the decision processes of the modeled decision makers are in state space form; that is,

their time-t decisions as functions of the time-t state can be incorporated among the time-t

simultaneous relationships of a state space model, such as relationships (1).

Economic models can (and typically do) include optimization problems for key types

of decision makers, such as �rms, consumers, and government entities. These optimization

problems are often constrained to ensure the existence of unique solutions (or are assumed

to have unique solutions) for which �rst-order necessary conditions are also su�cient. The

solutions to these optimization problems are then represented by their binding �rst-order

necessary conditions.

For simple growth models with utility-maximizing consumers and/or pro�t-maximizing

�rms, the binding �rst-order necessary conditions reduce to demand and supply functions

for goods and services (Takayama [1985, Ch. 2], Tesfatsion [2016c]). For optimal growth

models in calculus-of-variations form, expressed as intertemporal optimization problems for

a welfare-maximizing social planner or an in�nitely-lived utility-maximizing representative
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consumer, the binding �rst-order necessary conditions take the form of Euler-Lagrange equa-

tions constraining per-capita consumption and capital along an intertemporal solution path

together with transversality conditions constraining the length of the planning horizon and

the terminal per-capita capital stock (Takayama [1985, Ch. 5], Tesfatsion [2016d]).

For more general dynamic economic models incorporating consumer, �rm, and/or social

planner optimization problems, the binding �rst-order necessary conditions might take the

form of binding Karush-Kuhn-Tucker conditions (Fletcher [1987], Takayama [1985, Ch. 1]),

or of binding Hamiltonian conditions in accordance with variants of Pontryagin's optimal

control theory [Takayama, 1985, Ch. 8]. Alternatively, they might take the form of recursive

relationships among successive dynamic programming value functions in accordance with

variants of Bellman's Principle of Optimality [Cooper, 2001; Powell, 2014; Violante, 2000].

It is important to note, however, that the necessary and/or su�cient conditions char-

acterizing the solutions of intertemporal optimization problems can change over time as

anticipations are replaced by realizations if decision makers are permitted to re-optimize

their action plans as time proceeds. In particular, this re-optimization could result in time-

inconsistency in the sense that the re-optimizing decision makers choose to deviate from their

earlier determined action plans. The structural form of the state space model equations can

then fundamentally change over time in ways that are di�cult to specify a priori.3

Moreover, (initial value) state space modeling rules out ahistorical representations in

which the action plans and/or expectations of decision makers are externally coordinated

by means of system restrictions requiring global solution methods; that is, solution methods

that cannot be implemented, even in principle, by means of a single forward pass through the

state space model relationships at successive points in time, starting from given conditions

at an initial time point. An example of such a system restriction is a strong-form rational

expectations requirement in the sense of Muth [1961]. As discussed in Tesfatsion [2016e,

Sec. 5], economic models in which decision makers are constrained to have strong-form

3For this reason, many economic models either specify that decision makers engage in a single intertem-
poral optimization problem at an initial time, with no re-optimization permitted, or impose conditions on
structural model aspects (e.g., the form of intertemporal discounting) such that time consistency is assured.
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rational expectations require global �xed-point calculations for their solution.

Time inconsistency and the ahistorical nature of rational expectations assumptions are

not addressed in these elementary notes. Introductory discussions of these topics can be

found in Tesfatsion [2016e] and Tesfatsion [1986, 2016f].

4.3 Model Solutions

Consider the continuous-time state space model in equation form presented in Section 4.1.

A solution for this model is a value for each endogenous variable determined as a function

of exogenous variables, where these values satisfy the model equations starting from the

exogenously given state x(t0) at the initial time t0.

Since each time-t predetermined variable (t > t0) is a time-s endogenous variable for some

earlier time s, an equivalent de�nition is as follows: A solution for this model is a value for

each time-t endogenous variable determined as a function of time-t exogenous variables and

time-t predetermined (state) variables, where these values satisfy the time-t model equations

for each time t ≥ t0, starting from the exogenously given state x(t0) at the initial time t0.

In general, without further restrictions on model structure, there is no guarantee that a

solution exists.4 Even if a solution exists, there is no guarantee it is unique. Moreover, even

if a unique solution exists, there is no guarantee it can be derived in exact closed form, i.e.,

in the form of explicit functions mapping exogenous model elements into solution values for

the endogenous variables. Rather, resort must be made to an approximate solution method

[Judd, 1998; Miranda and Fackler, 2004; Kendrick et al., 2006].

Existence of solutions will not be addressed in these elementary notes. Instead, we outline

the successive steps that could be taken, in principle, to derive a closed-form solution for the

illustrative continuous-time state space model presented in Section 4.1 under the presumption

that a derivable closed-form solution exists. First, for each time t, use equations (1) to solve

4The Cauchy-Peano Theorem demonstrates how di�cult it is to �nd general conditions guaranteeing the
existence of solutions for nonlinear systems of ordinary di�erential equations except locally, in an arbitrarily
small neighborhood of the initial time. See Takayama [1985, Section 3.B] for a discussion of existence issues
for such systems.
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for z(t) as a function of α(t) and x(t), say in the following form:

z(t) = h
(
α(t), x(t)

)
, t ≥ t0 . (4)

Next, substitute (4) into equations (2), thus eliminating z(t), which then gives Dx(t) as a

function of α(t) and x(t):

Dx(t) = S
(
α(t), h

(
α(t), x(t)

)
, x(t)

)
≡ f

(
α(t), x(t)

)
, t ≥ t0 . (5)

Given equations (5), plus the exogenous initial state x(t0), use equations (3) to determine

successive solution values for the time-t states x(t), t > t0, by successive integral calculations.

4.4 Remarks on the Need for the Integral Equations (3)

Suppose Dx(s) in (3) is a continuous function of s over s ≥ t0. Then, using the fact that

equations (3) hold for all t ≥ t0, it follows by the Fundamental Theorem of the Integral

Calculus (found in any good calculus textbook) that

Dx(s) =
∂x(s)

∂t
, s ≥ t0 , (6)

where ∂x(s)/∂t denotes the derivative5 of the state x with respect to time, evaluated at the

particular time point s. Consequently, equations (3) and (5) fully determine the motion of

the state x(t) over times t ≥ t0, conditional on the exogenous variables α(t) for t ≥ t0, the

exogenous function f(·), and the exogenously given state x(t0) at the initial time t0.

On the other hand, the crucial equations (6) expressing Dx as the time-derivative of x

do not follow from model equations (1) and (2) alone. In particular, simply labeling a vector

as �Dx(t)� in model equations (2) does not guarantee that this vector is indeed the time-t

derivative of the state x(t) in model equations (1). The relationship between Dx(t) and x(t)

at each time t is entirely determined by the model structure. If the equations (3) are not

included among the model equations, there is no reason to expect that Dx(t) will be the

time-derivative of x(t) at any time t ≥ t0.

5Only the right derivative of x is well-de�ned at s = t0. See Section 4.5 for further discussion of state
di�erentiability issues.
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Many theoretical studies of continuous-time state space models do not explicitly include

among the model equations the integral constraints (3) needed to ensure that Dx is indeed

the time-derivative of x; these integral equations are implicitly assumed without comment.

However, if a computer is being used to obtain an approximate numerical solution for the

model, then all of the model's constraints (in appropriate approximate form) must be ex-

plicitly imposed on these variables. A computer will not automatically impose the integral

constraints (3) that ensure Dx is the time-derivative of x if these integral constraints (in

some appropriate approximate form) are not included in the coding.

4.5 Remarks on the Di�erentiability of the State

For many continuous-time state space models in equation form, it cannot be assured that

solution values are continuous functions of time. In particular, for the illustrative model

set out in Section 4.1, it cannot be assured that the solution values for z(t), and Dx(t) are

continuous functions of t. This follows because the continuity of z(t) and Dx(t) would imply

that these vectors, meant to be time-t endogenous, were in fact predetermined by their past

realizations z(s) and Dx(s) for times s < t. In the latter case, the time-t model equations

would be over-determined in the sense that there would be no degree of freedom left at time

t to ensure that these equations could be satis�ed.

Suppose z(t) and Dx(t) are only right continuous, meaning that z(q) and Dx(q) are only

guaranteed to converge to z(t) and Dx(t), respectively, as long as q → t along a path for

which q > t. This implies, in particular, that Dx(s) in (3) can jump discontinuously at some

points s as long as it satis�es

lim
q→s, q>s

Dx(q) = Dx(s) . (7)

In this case, equations (6) must be weakened to

Dx(s) =
∂x(s)

∂t
|+ = lim

q→s, q>s

[x(q)− x(s)

q − s

]
, s ≥ t0 , (8)

where the right-hand term in (8) de�nes the right time-derivative of x, evaluated at s.

Intuitively, this means that, at each time s ≥ t0, x(s) has a derivative approaching s �from
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the right� (i.e., from times q > s). However, at some times s′ it could happen that x(s′) has

a kink point (�sharp corner�) or a discontinuity, implying that x is not di�erentiable at s′.

In the remainder of these notes it is assumed for simplicity of exposition that the ordinary

time-derivative ∂x(s)/∂t exists at each time s ≥ t0.

4.6 Basic Causal System

Suppose the continuous-time state space model presented in Section 4.1 has a derivable

closed-form solution. As explained in Section 4.3, this means that the model's time-t en-

dogenous variables z(t) and Dx(t) can be solved for as explicit functions (4) and (5) of the

time-t exogenous variables α(t) and the time-t state x(t) for each t ≥ t0.

As in Section 4.3, let the functional relationships (4) be used to substitute out the en-

dogenous variables (z(t))t≥t0 . Using (4) together with (5), the resulting reduced-form model,

hereafter referred to as the model's Basic Causal System (BCS), takes the following form:

BCS model equations for times t ≥ t0:

Dynamic state equations: Dx(t) = f
(
α(t), x(t)

)
(9)

Integral equations: x(t) =

∫ t

t0
Dx(s)ds+ x(t0) (10)

BCS variables and functional forms:

α(t) =
(
α1(t), . . . , αk(t)

)
∈ Rk, for times t ≥ t0

x(t) =
(
x1(t), . . . , xn(t)

)
∈ Rn, for times t ≥ t0

Dx(t) =
(
Dx1(t), . . . , Dxn(t)

)
∈ Rn, for times t ≥ t0

f :Rk+n → Rn

BCS classi�cation of variables:

Time-t endogenous variables for t ≥ t0: Dx(t)

Time-t predetermined (state) variables for t > t0: x(t)
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Time-t exogenous variables for t > t0: α(t)

Time-t0 exogenous variables: x(t0), α(t0)

BCS admissibility restrictions:

x(t0) ∈ X ⊆ Rn

The dynamic properties of the BCS state solution (x∗(t))t≥t0 as a function of the initial

state x(t0) can be explored using a variety of methods, such as phase diagram techniques,

frequency domain analysis, and computer explorations [Aström and Murray, 2008; Flake,

2013]. The dynamic properties of the BCS solution (z∗(t))t≥t0 for the remaining endogenous

variables can then be explored, in turn, using the functional relationships (4) with the state

variables replaced by their solution values.

5 Discrete-Time State Space Modeling: Equation Form

Since computer implementations of state-space models are limited to �nitely many calcula-

tions at �nitely many time points, many researchers choose to represent real-time systems of

interest directly in terms of discrete-time state space models in equation form. One danger

in doing so is that researchers can lose sight of the degree to which this form of modeling

induces ad hoc synchronization across modeled system events, which in turn can result in

spurious regularities in model outputs.

As discussed in subsequent sections, agent-based modeling permits �exible asynchroniza-

tion across modeled system events. Another approach that can be taken is to start with

a continuous-time state space model in equation form and then approximate this model in

discrete-time form, taking care to select empirically meaningful step sizes for the discretiza-

tion of the timeline. This section illustrates the widely-used �nite-di�erence method for the

discrete-time approximation of a continuous-time state space model in equation form (Judd

[1998, Ch. 10], Miranda and Fackler [2004, Ch. 5]).
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Consider the continuous-time state space model presented in Section 4.1. Let t ≥ t0 be

given, and let ∆t denote a positive time increment whose length is measured in some given

time unit (e.g., hours). Let the derivative Dx(t) at time t be approximated by the following

�nite-di�erence expression:

Dx(t) ≈ x(t+ ∆t)− x(t)

∆t
(11)

Substituting (11) in place of Dx(t) in (2), and manipulating terms, one obtains

x(t+ ∆t) ≈ S(α(t), z(t), x(t)) ·∆t + x(t) (12)

Note the important appearance of the time increment ∆t on the right-hand side of (12). Even

if ∆t is set to one unit of time (e.g., one hour), it cannot be omitted from this equation.

The expressions x(t + ∆t) and x(t) are measured in x units; however, S(α(t), z(t), x(t)) is

measured in x per t, and it must be multiplied by ∆t in order to obtain a commensurable

expression in x units.

For each j = 0, 1, · · · , let period j denote the time interval
[
t0 + j∆t, t0 + (j + 1)∆t

)
.

Also, de�ne

F (αj, zj, xj) ≡ S(αj, zj, xj) ·∆t + xj (13)

where

αj = α(t0 + j∆t) (14)

zj = z(t0 + j∆t) (15)

xj = x(t0 + j∆t) (16)

Then the original continuous-time state space model over times t ≥ t0 can be expressed in

discrete-time approximate form over periods j = 0, 1, . . . , as follows:

Discrete-time approximation equations for periods j ≥ 0 :

Simultaneous equations: 0 = H(αj, zj, xj) (17)

Dynamic state equations: xj+1 = F (αj, zj, xj) (18)

Variables and functional forms:

16



αj = (αj,1, . . . , αj,k) ∈ Rk, for periods j ≥ 0

zj = (zj,1, . . . , zj,m) ∈ Rm, for periods j ≥ 0

xj = (xj,1, . . . , xj,n) ∈ Rn, for periods j ≥ 0

H:Rk+m+n → Rm and F :Rk+m+n → Rn

Classi�cation of variables:

Period-j endogenous variables for j ≥ 0: xj+1, zj

Period-j predetermined (state) variables for j > 0: xj

Period-j exogenous variables for j > 0: αj

Period-0 exogenous variables: x0, α0

Admissibility restrictions:

x0 ∈ X ⊆ Rn

By construction, the above discrete-time approximation converges to the original continuous-

time state space model as the period-length ∆t converges to 0. Convergence to a well-posed

continuous-time state space model as the period length approaches zero is an important

check on the basic logical consistency of a discrete-time state space model.

6 Presentation of Dynamic Economic Models in State

Space Equation Form

Building on the materials in Sections 3 through 5, it is now possible to o�er more speci�c

guidelines for the presentation of dynamic economic models in state space equation form.

Six key steps are outlined below.

Step 1: Provide a complete, consistent, and non-redundant set of model equa-

tions. By complete is meant that the model equations provide enough information to permit
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(in principle) the determination of a solution value for each endogenous variable. By consis-

tent is meant that the model equations do not contradict each other. By non-redundant is

meant that each model equation constitutes a new restriction on the endogenous variables,

hence no model equation can be derived from the remaining model equations.

Step 2: Provide a classi�cation of the variables appearing in your model

equations. Specify the time-t endogenous variables, time-t predetermined variables, and

time-t exogenous variables for each time (or time period) t. For example, if your model

equations include a relationship of the form y(t) = a(t)F (`(t), k(t)), you might specify that

y(t), `(t), and k(t) are time-t endogenous variables and a(t) is a time-t exogenous variable.

Step 3: Explain the intended economic meaning of each variable and function

appearing in your model equations. For example, if your model equations include a

relationship of the form y(t) = a(t)F (`(t), k(t)), as described in Step 2, you might explain

that y(t) denotes a particular �rm's time-t output, a(t) denotes the �rm's time-t total factor

productivity, `(t) and k(t) denote the �rm's time-t labor services and time-t capital services,

and F :R2
+ → R denotes the �rm's production function.

Step 4: Specify admissibility restrictions on exogenous variables and func-

tions. Admissibility restrictions are conditions imposed on exogenous variables and func-

tions to help ensure the empirical plausibility of a model's structure and solution values.

For example, if your model equations include a particular �rm's production relationship

y(t) = a(t)F (`(t), k(t)), as described in Steps 2 and 3, you should impose empirically plau-

sible restrictions on the form of the production function F , such as monotonicity, and you

should require the exogenous total factor productivity variable a(t) to be non-negative, or

to be generated by a probability distribution with a non-negative support. Moreover, you

should try to �nd additional empirically plausible restrictions to impose on your exogenous

variables and/or functional forms to ensure that solution values for the time-t endogenous

variables y(t), `(t), and k(t) are non-negative.6

6Note that admissibility restrictions should not be imposed directly on the endogenous variables y(t),
`(t), and k(t), as augmentations to your complete, consistent, and non-redundant model equations, since
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Step 5: Provide an economic interpretation for each of your model equations.

For each model equation, explain whether it is an identity, an assumed form of behavior, an

imposed coordination condition, or some other form of relationship. For example, if your

model equations include a particular �rm's production relationship y(t) = a(t)F (`(t), k(t)),

as described in Steps 2 through 4, you should explain that this relationship guarantees that

the �rm's time-t production is e�cient in the sense that its time-t output y(t) is the maximum

possible output obtainable from its time-t inputs `(t) and k(t), given a(t).

Step 6: Provide a complete description of any modeled optimization prob-

lem. Explain what entity is undertaking the optimization, and provide complete careful de-

scriptions of the objective function, decision variables, feasible decision set, and constraints

for this optimization problem. Also, explain how this optimization problem is represented

among your model equations. For example, if a relationship y(t) = a(t)F (`(t), k(t)) appear-

ing among your model equations is derived as a binding �rst-necessary condition for a �rm's

pro�t maximization problem, carefully explain this derivation.

7 Analysis of Dynamic Economic Models in State Space

Equation Form

The range of techniques that have been developed for the analysis of dynamic economic

models in state space equation form would take multiple volumes to convey with clarity and

care. The goal here is much more modest: namely, to give readers a summary description of

seven types of issues that have traditionally been analyzed by economic researchers making

use of such models.

Issue 1: Existence and Uniqueness of Solutions

(a) Does a model have at least one solution?

(b) If a solution exists, is it unique?

this could over-determine your model and result in non-existence of solutions. That is, you would be imposing
too many restrictions on too few endogenous variables.
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(c) If a unique solution exists, can it be derived in exact closed form? If not, can it be

approximated to a degree of accuracy su�cient for the modeler's purpose?

Issue 2: Equilibrium Properties of Solutions

(a) Do markets clear?

(b) Are plans realized?

(c) Are expectations ful�lled?

(d) Do solutions display other types of coordination? For example, are solutions necessarily

Nash equilibria or core equilibria?

(e) Can solutions display emergent coordination, i.e., coordination not directly and delib-

erately imposed a priori by the modeler through structural restrictions?

(f) Can solutions display coordination failure in some sense? For example, can a solution

be a Pareto-dominated Nash equilibrium?

Issue 3: Dynamic Properties of Solutions

(a) Can a model be reduced to a Basic Causal System (BCS )?7

(b) If yes, can the dynamic properties of the model solution be determined from the dynamic

properties of the BCS solution?

(c) If not, can selection principles, phase diagrams, computer simulations, and/or other

methods be used to understand the potential dynamic properties of the model solution?

7In the older economic growth literature, a dynamic model represented as a system of ordinary di�erential
equations is said to be non-causal if there exists at least one reachable state x(t) at which Dx(t) is not
uniquely determined. For non-causal models, some form of external selection principle would be needed to
resolve the ambiguity in Dx(t) and hence in the continuation of the state solution. It follows that non-causal
dynamic models do not have a BCS. For example, the classic continuous-time two-sector growth model
developed by Uzawa [1963] is known to be non-causal under some parameter speci�cations.
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Issue 4: Stability Properties of Solutions

(a) Does a solution s∗ starting from a given state x∗(t0) at the initial time t0 exhibit global

stability with respect to perturbations in its initial state, in the sense that any solution

s′ starting from x′(t0) 6= x∗(t0) at the initial time t0 eventually converges to s∗?

(b) Does a solution s∗ starting from a given state x∗(t0) at the initial time t0 exhibit local

stability with respect to perturbations in its initial state, in the sense that any solution

s′ starting from a state x′(t0) su�ciently close to x∗(t0) at the initial time t0 eventually

converges to s∗?

(c) Does there exist a stable attractor (e.g., a stable stationary point or limit cycle) for all

solutions starting from a speci�ed state set X at the initial time t0, in the sense that

all such solutions ultimately approach and remain near (or within) this attractor?

Issue 5: Optimality Properties of Solutions

(a) Are solutions e�cient, in the sense that no physical resources are wasted?

(b) Are solutions Pareto-e�cient, in the sense that there is no wastage of opportunity to

improve the welfare of any one modeled human agent in a way that does not diminish

the welfare of any other modeled human agent?

(c) Are solutions socially optimal in the sense of maximizing some meaningful measure of

welfare for society as a whole?

Issue 6: Sensitivity of Solutions to Changes in Exogenous Conditions

(a) Robustness analysis: How do solutions vary in response to changes in parameters or

functional forms?

(b) Basin boundaries and attractors: How do attractors and basins of attraction for solu-

tions vary in response to changes in parameters or functional forms?
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(c) Scenario analysis: How sensitive are solutions to changes in realizations for stochasti-

cally determined exogenous variables?

Issue 7: Empirical Validation

(a) Input validation: Are the exogenous inputs for the model (e.g., functional forms, random

shock realizations, data-based parameter estimates, and/or parameter values imported

from other studies) empirically meaningful and appropriate for the purpose at hand?

(b) Process validation: How well do the structural conditions, institutional arrangements,

and human behaviors represented within the model re�ect real-world aspects important

for the purpose at hand?

(c) Descriptive output validation: How well are model-generated outputs able to capture the

salient features of the sample data used for model identi�cation (in-sample validation)?

(d) Predictive output validation: How well are model-generated outputs able to forecast

sample data withheld from model identi�cation or to forecast new data acquired at a

later time (out-of-sample validation)?

8 Discrete-Time State Space Modeling: Agent-Based Form

8.1 Overview of Agent-Based Modeling

An agent-based model (ABM) is a modeling of a system populated by agents whose suc-

cessive interactions drive all system events over time.8 The agent-based modeler begins

with assumptions about the agents and their potential interactions and then uses computer

simulations to generate histories that reveal the dynamic consequences of these assumptions.

The agents represented in an ABM consist of entities of interest for the modeler's purpose.

These entities can represent: (i) physical features such as buildings, geographical regions,

8Some of the materials in this section are adapted from Axelrod and Tesfatsion [2006], Borrill and Tes-
fatsion [2011], and Tesfatsion [2016g].
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and weather; (ii) institutions such as markets and legal systems; (iii) social groupings such

as families and communities; (iv) biological lifeforms such as insects, forests, and crops; and

(v) human decision makers such as workers, managers, and government regulators.

ABM researchers investigate how large-scale e�ects arise from the micro-level interactions

of agents, starting from initial conditions, much as a biologist might study the dynamic

properties of a culture in a petri dish. The �rst step is to construct a model of a system

that is suitable for the purpose at hand. The second step is to specify the initial state of

the modeled system, which consists of the initial state of each constituent agent. The �nal

step is to permit the modeled system to change over time driven solely by agent interactions,

with no further intervention from the modeler.

Agent-based modeling is well suited for the study of dynamic systems in which complex-

ity arises from the interactions of natural and human systems [Tesfatsion, 2016h]. Multi-

disciplinary teams of ABM researchers can develop empirically-based frameworks capturing

physical, institutional, biological, and social aspects of real-world systems salient for their

speci�c research objectives without concern for analytical tractability.9 Simpli�cation is a

considered choice (simple but not too simple) rather than an analytical necessity.

Agent-based modeling is also well-suited for the study of dynamic systems in which

complexity arises from the interactions of decision-making agents [Tesfatsion, 2016i]. At one

extreme, each decision-making agent in an ABM might have a simple if-then decision rule

resulting in a relatively small range of individually expressible behaviors. However, just as

the simple �xed rules of a chess game can produce an enormously large space of di�erent

games through player interactions, so too can the simple �xed decision rules of ABM agents

produce surprisingly intricate global system behaviors through agent interactions.

At the other extreme, each decision-making agent in an ABM might have a decision

mode involving sophisticated data gathering and calculations. For example, an agent might

engage in intertemporal optimization conditional on anticipated future states, where these

9An added bene�t of multidisciplinary ABM research is that it keeps you humble because you are always
working with people who know more than you do.
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anticipations re�ect both individual learning based on own experiences and social learning

based on social communication and observations.

In between these extremes lie many other possibilities. A decision-making agent might

be a reactive learner who asks �if this event happens, what should I do?� A decision-

making agent might be an anticipatory learner who asks �if I do this, what will happen?� A

decision-making agent might be a strategic learner who asks �what should I do to get him

to do that?� Or a decision-making agent might be a goal-directed learner who asks �what

should I do di�erently in order to achieve this objective?�

Moreover, if agent birth and death are permitted in accordance with some form of �tness

criterion, the composition of the agent population will evolve over time. In this case, even if

each decision-making agent has a �xed decision mode una�ected by learning, the �ecology�

of decision modes present in the population will evolve over time as well.

An ABM is typically implemented as a software program that determines the motion of

the modeled system's state over successive time periods, starting from a user-speci�ed initial

state [Tesfatsion, 2016j]. Although any ABM can, in principle, be expressed in equation form,

this representation would be extremely complicated. Instead, ABMs are usually motivated

and explained by means of �gures, verbal descriptions, Uni�ed Modeling Language (UML)

diagrams, �ow diagrams, and/or pseudo-code expressing structural model aspects and the

logical �ow of agent processes and interactions over time. These communication aids should

be accompanied by access to the software, itself, in either binary or source code form.

For example, in Tesfatsion et al. [2015] an agent-based software platform is developed

for the study of watersheds as coupled natural and human systems. Figure 1 is displayed to

convey to readers that the platform can be used to construct ABMs permitting the study of

interactions among hydrology, climate, and strategic human decision-making in a watershed

over time.

A diagram highlighting key platform components is next presented and discussed. To

demonstrate the capabilities of the platform, a sensitivity study is then reported for a test-

case ABM capturing, in simpli�ed form, the structural attributes of the Squaw Creek wa-
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Figure 1: An agent-based software framework for the study of watersheds as coupled natural
and human systems. Source: Tesfatsion et al. [2015]

tershed in central Iowa. Attention is focused on the alignment of farmer and city manager

welfare outcomes as a prerequisite for e�ective watershed governance. Verbal descriptions,

tables, and �gures are used to report key �ndings. Code and data for the test-case application

are provided at an on-line repository.

8.2 Distinctive Attributes of Agent-Based Modeling

Listed below are six distinctive attributes of ABMs that, taken together, distinguish ABMs

from standard state space models in equation form. These distinctive attributes re�ect the

fundamental goal of many agent-based modelers: namely, to be able to study real-world

dynamic systems as historical processes unfolding through time, driven solely by their own

internal dynamics.

(D1): The state of an agent at any given time consists of the agent's internal data, attributes,

and methods at that time.

(D2): Each decision-making agent is constructively rational.10

(D3): The state of the modeled system at any given time consists of the collection of agent

states at that time.

10Constructive rationality is de�ned in Section 4.2.
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(D4): Heterogeneity across agent states can change endogenously over time as a result of

successive agent interactions.

(D5): Coordination of agent interactions cannot be externally imposed by means of free-

�oating cross-sectional or intertemporal restrictions, that is, by means of restrictions

that do not arise from the internal data, attributes, and methods of the agents.

(D6): The role of the modeler is limited to the setting of initial agent states, and to the

non-perturbational observation of model outcomes. Given initial agent states, all sub-

sequent events in the modeled system are driven solely by agent interactions.

The key attributes (D5) and (D6) require more discussion. As seen in previous sections,

(initial value) state space models in equation form rule out the imposition of intertemporal

restrictions requiring global solution methods. However, as standardly formulated, these

models do not encapsulate data, attributes, and methods into separate autonomous inter-

acting agents. Thus, the time-t simultaneous equations can be used to impose external

restrictions that coordinate system events at each time t. The important quali�er �external�

means that the coordination restrictions do not arise from the data, attributes, and meth-

ods of the agents (physical, institutional, biological, and/or social) constituting the modeled

system but instead represent the a priori beliefs or desires of the modeler regarding the way

the modeled system should behave over time.

In contrast, the only chance an ABM researcher has to in�uence the dynamics of his

modeled system is through his speci�cation of initial agent states. All subsequent events in

his modeled system are then determined solely by agent interactions; recall the analogy of a

culture developing in a petri dish. Consequently, ABM researchers can hypothesize and test

for the existence of equilibria requiring coordinated agent interactions at successive times,

but they cannot externally impose these forms of equilibria on their modeled agents.
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9 Agent-Based Computational Economics

Agent-Based Computational Economics (ACE) is the computational modeling of economic

processes (including whole economies) as open-ended dynamic systems of interacting agents.11

ACE is a specialization of agent-based modeling to the study of economic systems. Thus,

the discussion of agent-based modeling in Section 8 applies equally well to ACE.

In this section illustrative ACE studies are used to discuss the potential usefulness of

agent-based modeling speci�cally for the study of economic systems. The following three

aspects are stressed.

1. Agent heterogeneity: The range of agent types that can be considered.

2. Agent autonomy: The degree to which agents are in control of their own behaviors,

including the manner in which these behaviors change over time.

3. Asynchronicity: The degree to which system events can be modeled as occurring at

asynchronous times to better match the �ow of events in real-world systems of interest.

Aspect 1: Agent Heterogeneity

ACE models permit a wide range of agents to be included in a �exible, modular, plug-

and-play manner. For example, Fig. 2 depicts a nested hierarchy of agents for an ACE study

of a decentralized market economy with three basic agent types: namely, Decision-Making

Agent (DMAgent), Asset, and Market.

The state of each basic agent type consists of data, attributes, and methods common

to all agents of its type. Each basic agent type can be used to instantiate (construct in

software form) further agents of its type that are distinguished by the inclusion of additional

data, attributes, and/or methods in their states. For example, as depicted in Fig. 2, the

state of a DMAgent can be augmented in order to instantiate either �individual� agents

representing individual decision makers or �agency� agents representing groups of decision

11Annotated pointers to ACE tutorials, publications, demos, software, research groups, and research area
sites are posted at the ACE website [Tesfatsion, 2016g]. For broad overviews, see Arthur [2015], Chen [2016],
and Kirman [2011].
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Figure 2: Partial hierarchy of agents for an ACE modeling of a decentralized market economy.
Upward-pointing (black) arrows denote �is a� relationships and downward-pointing (red)
arrows denote �has a� relationships. Source: Borrill and Tesfatsion [2011]

makers who must arrive at collective decisions. The state of an �agency� agent can be

augmented to instantiate �privately-owned �rm� agents, �corporation (non-bank)� agents,

�government agency� agents, and/or �bank� agents. And the state of a �bank� agent can be

augmented to instantiate a �central bank� agent or �private-sector� bank agents.

Moreover, the agents in ACE models can include other agents as data members. For

example, as depicted in Fig. 2, a privately-owned �rm agent can include worker agents,

manager agents, and a �rm-owner agent among its data members. Thus, ACE models can

be used to study the formation and evolution of hierarchical organizations.

Aspect 2: Agent Autonomy

ACE models allow agents to have more autonomy than is typically permitted for agents

in standard economic models. This increased autonomy arises from agent encapsulation, i.e.,

from the ability of agents to hide their state from other agents. Encapsulation can make

agents unpredictable to other agents.

More precisely, an ACE agent can self-activate and self-determine its actions on the
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basis of internal data, attributes, and methods that are hidden from other agents, or whose

access is restricted to certain other agents. The agent's methods can include pseudo-random

number generators (PRNGs)12 permitting randomizations of behaviors and decisions. For

example, the agent might use �coin �ips� to decide among equally preferred actions or action

delays, mixed strategies in game situations to avoid exploitable predictability, and mutations

(random perturbations) of previous behaviors to explore new possibilities. Moreover, the

agent's hidden data, attributes, and methods can change over time as it interacts within its

world, making it di�cult for other agents to predict its future behavior [Tesfatsion, 2016i].

For example, Fig. 3 depicts the �ow of events in an ACE modeling of a goods market

organized as a double auction, adapted from Nicolaisen et al. [2001]. The decision-making

agents participating in this market consist of pro�t-seeking buyers and sellers with learning

capabilities who submit strategic bids and asks for goods in successive trading rounds, plus

an auctioneer who clears the market in each trading round by matching bids with asks.

Each bid takes the form of a descending schedule depicting a buyer's willingness to pay

for each successive unit of good, and each ask takes the form of an ascending schedule

depicting a seller's minimum acceptable sales price for each successive unit of good. The

auctioneer identi�es and clears all inframarginal units, that is, all units that can be sold

because their maximum bid price exceeds their minimum ask price. The auctioneer sets the

market prices for these inframarginal units using one of two pricing rules, either uniform or

discriminatory.13 Buyer-seller trades then take place at these market prices, resulting in a

(possibly zero) pro�t outcome for each trader. At the end of each trading round, each trader

uses its learning method and its pro�t outcome to update its bid or ask for the next trading

round. Thus, bid and ask prices can deviate from true reservation values.

Figure 3 indicates the form of the sensitivity design used by Nicolaisen et al. [2001]

12Alternatively, �true� random data from the real world can be directly streamed into an ACE model in
place of PRNG-generated data, a possibility that raises interesting philosophical questions.

13Under the uniform pricing rule, the market price for each inframarginal unit is set at the midpoint
between the maximum bid price and the minimum ask price for the marginally cleared inframarginal unit.
Under the discriminatory pricing rule, the market price for each inframarginal unit is set at the midpoint
between the maximum bid price and the minimum ask price for this particular unit.

29



Figure 3: Flow diagram for an ACE double-auction market study.

to study the performance of this double auction under di�erent trader learning methods

and market pricing rules. Multiple runs of the double auction were conducted for each

learning/pricing treatment, where each run consisted of a speci�ed number of trading rounds

conditional on a speci�ed seed for the PRNG used in the learning method. The average pro�t

outcomes resulting for each treatment were then compared against competitive equilibrium

pro�t outcomes calculated o�-line for the same market pricing rule but using the traders' true

reservation values as their bid and ask prices. These comparisons were used to determine the

degree to which di�erent treatments permitted buyers or sellers to achieve strategic market

power, i.e., to learn bid/ask behaviors resulting in sustained pro�t advantages relative to the

pro�t outcomes they would achieve under competitive equilibrium.

The greater autonomy of decision-making agents in ACE models relative to standard

economic models is also highlighted in an ACE study by Sinitskaya and Tesfatsion [2015]. In

standard dynamic macroeconomic models, such as Dynamic Stochastic General Equilibrium

(DSGE) models, the decisions of consumers and �rms with intertemporal utility and pro�t

objectives are coordinated by externally imposed equilibrium conditions. Typically these
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equilibrium conditions include the requirement that all consumers and �rms exhibit strong-

form rational expectations in the sense of Muth [1961].

In contrast, Sinitskaya and Tesfatsion transform a standard dynamic macroeconomic

model into an ACE macroeconomic model by requiring consumers and �rms with intertempo-

ral utility and pro�t objectives to be constructively rational learning agents. Tested learning

methods for the consumers and �rms range from reactive reinforcement learning to adaptive

dynamic programming. Sensitivity studies are used to explore macroeconomic performance

under alternative learning treatments relative to a social planner benchmark solution.

Aspect 3: Asynchronicity

Careless treatments of timing issues in state space models can induce spurious regularities

in model outcomes, which in turn can result in misleading or incorrect inferences [Borrill

and Tesfatsion, 2011, Sec. 4.2]. The �exible modular architecture of ACE models gives

researchers wide latitude with regard to the timing of agent actions. In principle, each agent

could be permitted to proceed forward on its own action thread, taking actions in response

to experienced events instead of in response to an externally clocked time.14

To date, however, despite the availability of agent-based toolkits permitting event-driven

time advance [Meyer, 2015], most ACE researchers still use discrete-time models that impose

a great deal of arti�cial synchronicity (simultaneity) on agent actions. When asynchronicity

is permitted, it is often implemented mechanically by assuming either a �xed or randomized

ordering for agent action updating. Another approach is to assume that certain agents take

actions (or not) at successive times in accordance with a binary probability distribution.15

In two recent ABM/ACE studies [Tesfatsion et al., 2015; Sinitskaya and Tesfatsion, 2015]

a method is introduced that permits a more �exible timing of agent actions without resort

to a full-blown discrete-event modeling. The timeline is divided into discrete time periods

t = [t, t+1), as in standard discrete-time state space models, and agent states are calculated

14That is, ACE models can be structured as discrete-event state space models rather than discrete-time
state space models. In a discrete-event state space model, the evolution of the state over time is driven
entirely by the occurrence of discrete events.

15The (in)famous Calvo fairy pricing mechanism in many DSGE models is an example of this approach.
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as usual at each time t. However, each time period t is further subdivided into subperiods

t1, . . . , tK during which either some random event is realized or an action is taken by some

agent. The proximate e�ects of this realization or action on other system variables within

the subperiod are then calculated and carried over to the next subperiod.

10 Basic Form of ACE Theoretical Studies

Many ACE researchers interested in theoretical issues follow a particular sequence of steps

to conduct their studies. These steps are outlined below, followed by additional discussion.16

Step [1]: Model Construction. Construct an ACE model consisting of a collection of

agents suitable for the study of the theoretical issue of interest.

Step [2]: Sensitivity Design. Determine appropriate treatment factors for the issue of

interest, and specify which con�gurations of treatment factors will be tested. Designate

all remaining aspects of the model as maintained factors.

Step [3]: Model Con�guration. Set speci�c values for all maintained factors.

Step [4]: Sensitivity Testing. Conduct tests to implement the sensitivity design, and

record outcomes of interest. If the model includes exogenous random elements, test

each treatment-factor con�guration multiple times for multiple possible random real-

izations to control for random e�ects.

Step [5]: Outcome Analysis. Report the outcomes resulting from the sensitivity tests,

and analyze their implications for the issue of interest.

To illustrate Step [1], suppose an ACE researcher wishes to study the relationship between

learning methods and stock price volatility. Suppose he hypothesizes that stock prices are

16The �ve steps below are adapted from Borrill and Tesfatsion [2011, Sec. 3.2]. See Tesfatsion et al. [2015]
for a concrete illustration in which these �ve steps are sequentially implemented, with careful accompanying
explanations, in order to develop an agent-based watershed management model.
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less likely to exhibit volatility over time when traders have sophisticated learning capabilities,

assuming price volatility is calculated using a particular measure PV .

To examine this issue, the researcher constructs an ACE model populated by K stock

traders with bid/ask learning capabilities. The K traders engage in a sequence of stock

trades over T successive trading periods. The stock trades takes place within a stock market

organized as an automated double auction. In each trading period, stock market outcomes

are perturbed by a random shock that a�ects trader con�dence levels. The constituent

agents for this ACE model thus include: the stock market (institution); the shock process

(environment); and the K traders (decision makers).

For Step [2], the researcher decides his two treatment factors will be bid/ask learning

methods and random shock realizations. He speci�es admissible bid/ask learning meth-

ods ranging from simple decision rules to sophisticated intertemporal optimization based

on sequentially updated expectations. He chooses N distinct learning treatments, where

each learning treatment n denotes a particular con�guration of admissible bid/ask learning

methods to be assigned to the K traders over the T trading periods. He also speci�es a

�nite number S of shock scenarios s with associated probabilities Prob(s), where each s is a

distinct sequence of possible shock realizations over the T trading periods.

The researcher's sensitivity design then consists of N price volatility tests, where each

test n is conditioned on a particular learning treatment n. For each test n the researcher

will conduct S di�erent runs, one run for each shock scenario s. The researcher designates

all remaining aspects of his model to be maintained factors.

For Step [3], the researcher con�gures all maintained factors appearing within each agent's

initial state. Speci�cally, he sets the stock market's initial data (number of participant

traders), attributes (double auction market type), and methods (rules of operation). He sets

the maintained attributes of the shock process (timing of shock realizations). He speci�es

each trader's initial data (information about other traders), �xed attributes (preferences),

and initial values for time-varying attributes (money holdings, information, and beliefs). He

also speci�es each trader's maintained (non-learning) methods, such as information-collection
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methods and methods for submitting bids/asks into the stock market.

For Step [4], the researcher carries out each price volatility test n, as follows. The

researcher sets the learning treatment n. He then conducts S di�erent runs for this learning

treatment, where a di�erent shock scenario s is set for each run. For each run the modeled

system is permitted to develop over the T trading periods, driven solely by agent interactions;

and the researcher records the stock market price π(t)s,n that is observed in each trading

period t = 1, . . . , T . The researcher then uses these recorded price outcomes to calculate

price volatility for test n in accordance with his price volatility measure PV .

For Step [5], the researcher analyzes the price volatility outcomes obtained from his N

price volatility tests. He then uses this analysis to update his prior hypothesis into one or

more re�ned posterior hypotheses.

The above �ve steps presume that ACE researchers conduct their studies without stake-

holder participation. However, the �exible modular architecture of ACE models makes them

particularly well suited for an alternative approach, called Iterative Participatory Modeling

(IPM) [Tesfatsion, 2016k; Voinov and Bousquet, 2010].

The IPM approach envisions multidisciplinary researchers and stakeholders engaging to-

gether in an ongoing study of a real-world system of mutual interest. This ongoing study

involves a repeated looping through four stages: �eld study and data analysis; role-playing

games; agent-based model development; and intensive systematic sensitivity studies. For

example, the agent-based watershed platform developed in Tesfatsion et al. [2015] and de-

picted in Fig. 1 is currently being used as an initial modeling platform for an IPM process

whose purpose is improved local governance for the Squaw Creek watershed in central Iowa.

However, attempts to develop agent-based models through IPM processes have high-

lighted a key problem. Currently there is no consensus among agent-based researchers

regarding how best to present agent-based models and model �ndings to external parties

for evaluation and possible use. Some researchers advocate for standardized presentation

protocols while others argue that protocols must be specialized for the purpose at hand.
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Useful discussions of this issue can be found in [An, 2012; Grimm et al., 2010; Müller et

al., 2014; Tesfatsion, 2016p]. See, also, Wallace et al. [2015] for an exceptionally thoughtful

attempt to develop presentation and evaluation protocols for agent-based models designed

for policy purposes.

11 Issues Analyzed in ACE Studies

All of the issues identi�ed in Section 7 as traditional topics analyzed by economic researchers

using state space models in equation form can also be analyzed using ACE models. This

section focuses, instead, on four issues addressed in ACE studies that exploit the distinctive

aspects of ACE modeling.17

One key issue stressed in ACE research is empirical understanding: Why have partic-

ular observed empirical regularities evolved and persisted despite the absence of top-down

planning and control? Examples of such regularities include social norms, socially accepted

monies, market protocols, business cycles, persistent wealth inequality, and the common

adoption of technological innovations. ACE researchers seek possible explanations grounded

in the repeated interactions of agents operating in realistically rendered ACE models. Specif-

ically, they try to understand whether particular types of observed empirical regularities can

be reliably generated within these ACEmodels [Epstein, 2006]. Agent-based macroeconomics

and agent-based �nancial economics are particularly active ACE research areas along these

lines; see Tesfatsion [2016l] and Tesfatsion [2016m].

A second key issue is normative understanding: How can ACE models be used as compu-

tational laboratories for the discovery of good economic designs? As discussed in Tesfatsion

[2011], the typical ACE approach to normative economic design is akin to �lling a bucket

with water to determine if it leaks. An ACE model is constructed that captures the salient

aspects of an economic system operating under the design. The ACE model is populated

with decision-making agents with learning capabilities and allowed to develop over time. One

concern is the extent to which the resulting model outcomes are e�cient, fair, and orderly,

17Materials for this section are adapted from Tesfatsion [2016g].
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despite attempts by decision-making agents to gain individual advantage through strategic

behavior. A second concern is the possibility of adverse unintended consequences.

The double auction study depicted in Fig. 3 is an example of ACE research directed to-

wards a normative objective: namely, good market design. Annotated pointers to additional

ACE research along these lines can be found at the resource sites [Tesfatsion, 2016n,o].

A third key issue is qualitative insight and theory generation: How can ACE models

be used to gain a better understanding of dynamic economic systems through a better

understanding of their full range of potential behaviors over time (equilibria plus basins

of attraction)? Such understanding would help to clarify not only why certain types of

regularities have evolved and persisted but also why others have not.

A quintessential example of this third line of ACE research is the desire to resolve a

long-standing issue raised by economists such as Adam Smith (1723-1790), Ludwig von

Mises (1881-1973), John Maynard Keynes (1883-1946), Joseph Schumpeter (1883-1950), and

Friedrich von Hayek (1899-1992): namely, what are the self-organizing capabilities of decen-

tralized market economies? As evidenced by the extensive materials posted at the resource

site Tesfatsion [2016l], this is a particularly active ACE research area.

A fourth key issue is methodological advancement: How best to provide ACE researchers

with the methods and tools they need to undertake theoretical studies of dynamic eco-

nomic systems through systematic sensitivity studies, and to examine the compatibility of

sensitivity-generated theories with real-world data? As documented at the resource site Tes-

fatsion [2016k], ACE researchers are exploring a variety of ways to address this fourth issue

ranging from careful considerations of methodological principles to the practical development

of programming, visualization, and empirical validation tools.

12 Concluding Remarks

These introductory notes have covered general presentation and analysis principles for eco-

nomic state space models, whether in equation or agent-based form. The primary intended

readership is graduate students of economics, early in their careers, who plan to support
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their thesis research by some form of dynamic modeling e�ort. The ultimate purpose of

these notes is to provide support and encouragement for young economists who dare to take

a road less traveled in hopes of reaching a �ner place.
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