Virulence Determination for Rapid Extraintestinal Dissemination (Acute Infection) of Common Salmonella Serotypes in Swine

A. T. Loynachan
Iowa State University

J. M. Nugent
Iowa State University

Matthew M. Erdman
Iowa State University

D.L. Hank Harris
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/swinereports_2002

Part of the [Agriculture Commons](http://lib.dr.iastate.edu/aac), and the [Animal Sciences Commons](http://lib.dr.iastate.edu/as)
Extension Number: ASL R1807

Recommended Citation
http://lib.dr.iastate.edu/swinereports_2002/22

This report is brought to you for free and open access by the Animal Science Research Reports at Iowa State University Digital Repository. It has been accepted for inclusion in Swine Research Report, 2002 by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Virulence Determination for Rapid Extraintestinal Dissemination (Acute Infection) of Common Salmonella Serotypes in Swine

Abstract
Salmonella enterica (Typhimurium and Choleraesuis) have been shown to rapidly disseminate extraintestinally (RED) within 3 hours of intranasal inoculation in pigs (1,2,5,6). Evaluation of RED serotypes may be an important indicator of Salmonella virulence. Experimentally, pigs were challenged with important lymph node, fecal, and vaccine isolates of Salmonella and evaluated for RED. These isolates include S. Heidelberg, S. Infantis, S. Derby, S. Worthington, S. 4, 12 imonophasic, S. untypable HL 10416, S. Typhimurium, S. Typhimurium variant Copenhagen, S. Bredeney, S. Bredeney, S. Brandenburg, S. Choleraesuis SC-38, S. Choleraesuis SC-54, and S. Choleraesuis strain Argus. Three hours after intranasal inoculation, the pigs were euthanized, necropsied, and the following tissues were collected for qualitative isolation: tonsil, thymus, blood, mandibular lymph node, lung, spleen, liver, ileocecal lymph node, colon contents, and cecum contents. Fewer tissues were positive for vaccine strains compared with wild type or parent strains.

Keywords
ASL R1807, RED, pathogenesis, intranasal

Disciplines
Agriculture | Animal Sciences

This food safety is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/swinereports_2002/22
Virulence Determination for Rapid Extraintestinal Dissemination (Acute Infection) of Common *Salmonella* Serotypes in Swine

A.T. Loynachan¹,², J.M. Nugent², M.M. Erdman¹,², and D.L. Harris²,³

¹: Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, Iowa 50011, USA. Phone: +1-515-294-3769, Fax: +1-515-294-6019, E-mail: bosshog@iastate.edu
²: Department of Microbiology, College of Agriculture, Iowa State University, Ames, Iowa 50011, USA.
³: Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa 50011, USA.

ASL-R1807

Abstract

Salmonella enterica (Typhimurium and Choleraesuis) have been shown to rapidly disseminate extraintestinally (RED) within 3 hours of intranasal inoculation in pigs (1,2,5,6). Evaluation of RED serotypes may be an important indicator of *Salmonella* virulence.

Experimentally, pigs were challenged with important lymph node, fecal, and vaccine isolates of *Salmonella* and evaluated for RED. These isolates include *S. Heidelberg*, *S. Infantis*, *S. Derby*, *S. Worthington*, *S. 4, 12 i-monophagic, S. untypable HL 10416, S. Typhimurium, S. Typhimurium variant Copenhagen, S. Bredeney, S. Muenchgen, S. Brandenburg, S. Choleraesuis SC-38, S. Choleraesuis SC-54, and S. Choleraesuis strain Argus.* Three hours after intranasal inoculation, the pigs were euthanized, necropsied, and the following tissues were collected for qualitative isolation: tonsil, thymus, mandibular lymph node, lung, spleen, liver, ileocecal lymph node, colon contents, and cecum contents. Fewer tissues were positive for vaccine strains compared with wild type or parent strains.

Keywords

RED, pathogenesis, intranasal

Introduction

It has been shown that pigs in transit to slaughter and while in lairage have contracted infections of *Salmonella* that were likely not present on the farm of origin before transfer (3). It is implied by Hurdet et al. (3) that these animals may have encountered these new and different species of *Salmonella* from the short term intermingling of pigs in transit and while in lairage. This evidence supports previous findings, in which an unknown alternate route of invasion by *S. Typhimurium* was suspected, after *Salmonella* was found in body organs and lower intestine within 3 hours after intranasal inoculation of esophagostomized pigs (2). The objectives of this study were to determine whether wild type lymph node isolates, fecal isolates, and vaccine strains are capable of rapid extraintestinal dissemination in the pig.

Materials and Methods

Pigs were obtained from herds known to have low levels of *Salmonella* at 3-4 weeks of age. Five separate controlled trials were conducted in which various wild-type serotypes and vaccine strains were inoculated into four pigs each. Uninoculated control pigs were included in each trial. Upon arrival to Iowa State University the pigs were acclimatized to the facility for 4-8 days. During acclimatization, blood and feces from the pigs were evaluated for *Salmonella* status by the Danish Mix-ELISA and culture. Inoculum was prepared as described previously (2). Pigs were euthanized with pentobarbital sodium at 3 hours postinoculation and necropsied. At necropsy 3-5-gram samples of tonsil, thymus, mandibular lymph node, lung, spleen, liver, ileocecal lymph node, and colon contents were collected for isolation of *Salmonella*. Additionally, 25 grams of cecum contents and 25 ml of blood were collected for *Salmonella* isolation.

For isolation of *Salmonella*, samples were hammered with a plastic headed mallet until well minced. Samples were then diluted in buffered peptone water (BPW) 1:9, hand mixed, and incubated at 37°C for 18 hours. After incubation in BPW the samples were vortexed and 100-µl was transferred from the BPW to 9.9-ml tubes of rappaport-vassiliadis (RV) broth, and incubated at 42°C overnight. From RV, samples were streaked for isolation on XLD agar plates, and incubated overnight at 37°C. Selected colonies from each tissue were verified as *Salmonella* by biochemical and serological tests.

Results and Discussion

The current practice of intermixing swine of different origins during transport and lairage has resulted in the opportunity for *Salmonella* in infected herds to contaminate pigs of uninfected herds within 3 hours of comingling (4). This study evaluated the ability of wild type isolates and two vaccine strains for their abilities to rapidly disseminate extraintestinally (Table 1). Because all wild-type isolates seemed to disseminate rapidly and caused acute infection, future intervention strategies I need to address this aspect of the common human foodborne *Salmonella*.
Table 1. Percentage of organs positive for *Salmonella* isolation.

<table>
<thead>
<tr>
<th>Serotype</th>
<th>% of Organs positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Heidelberg</td>
<td>83</td>
</tr>
<tr>
<td>S. Worthington</td>
<td>68</td>
</tr>
<tr>
<td>S. 4, 12 i-monophasic</td>
<td>60</td>
</tr>
<tr>
<td>S. Bredeney</td>
<td>58</td>
</tr>
<tr>
<td>S. Infantis</td>
<td>56</td>
</tr>
<tr>
<td>S. Derby</td>
<td>55</td>
</tr>
<tr>
<td>S. Untypable</td>
<td>53</td>
</tr>
<tr>
<td>S. Muenchen</td>
<td>53</td>
</tr>
<tr>
<td>S. Brandenburg</td>
<td>48</td>
</tr>
<tr>
<td>S. Typhimurium variant Copenhagen</td>
<td>45</td>
</tr>
<tr>
<td>S. Typhimurium</td>
<td>41</td>
</tr>
<tr>
<td>S. Choleraesuis Strain 38</td>
<td>40</td>
</tr>
<tr>
<td>S. Choleraesuis Strain Argus</td>
<td>20</td>
</tr>
<tr>
<td>S. Choleraesuis Strain 54</td>
<td>10</td>
</tr>
<tr>
<td>Controls</td>
<td>5*</td>
</tr>
</tbody>
</table>

* *Salmonella* were isolated from three tissues in two of six negative control pigs.

Literature Cited