Silicone Applicator Cleaning Improvement

Dan Church
Iowa State University, dpchurch@iastate.edu

Tyler Hamann
Iowa State University, tjhamann@iastate.edu

Troy Harding
Iowa State University, tharding@iastate.edu

Tyler Hoch
Iowa State University, twhoch@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/tsm415

Part of the [Bioresource and Agricultural Engineering Commons](http://lib.dr.iastate.edu/biores), and the [Industrial Technology Commons](http://lib.dr.iastate.edu/indtech)

Recommended Citation

Church, Dan; Hamann, Tyler; Harding, Troy; and Hoch, Tyler, "Silicone Applicator Cleaning Improvement" (2017). *TSM 415 Technology Capstone Posters*. 5.
http://lib.dr.iastate.edu/tsm415/5

This Poster is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in TSM 415 Technology Capstone Posters by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Silicone Applicator Cleaning Improvement

Client: Cardinal Glass, Greenfield, Iowa

Problem Statement
• Silicone is curing inside the applicator tips due to process not being standardized.
• Due to silicone curing inside the tips, the employees are having to repeat the cleaning process resulting in added labor expenses.

Scope
• Implement a new cleaning process to all workstations to reduce overall tip cleaning cycle time by standardizing the cleaning process and organizing workstations.

Objectives
• Standardize cleaning procedure throughout facility
• Reduce applicator tip cleaning process by 30 seconds
• 5S compliant workstation

Constraints
• Criteria to be met: 3% internal rate of return in 12 months
• Cannot change the silicon used in the process.
• Cannot use abrasives on the applicator tip.
• The process must be universal to all applicator tip sizes.

Methods
• Research alternative solvents
• Calculate current costs (tooling and labor)
• Calculate new costs (tooling and labor)

Major Outcomes
• Update the SOP to improve tip cleaning time by 5%
• Replace solvent to decrease tank cycle time by 5%
• Make workstation 5S compliant to improve organization and efficiency

Benefit to Client
• Estimated $8,600 savings per station per year in rework time
• Standardize the cleaning procedure for the tip cleaning process.

Acknowledgements: Authors are grateful to Kim Nelson for the opportunity to work on this project. Project was co-funded by the differential tuition.