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Toward a Unified Genetic Map of Higher Plants, Transcending the
Monocot-Dicot Divergence

Abstract
Closely related (confamilial) genera often retain large chromosomal tracts in which gene order is colinear,
punctuated by structural mutations such as inversions and translocations 1. To explore the possibility that
conservation of gene order might extrapolate to more distantly related taxa, we first estimated an average
structural mutation rate. Nine pairs of taxa, for which there exist both comparative genetic maps and plausible
estimates of divergence time, showed an average of0.14 (±0.06) structural mutations per chromosome per
million years of divergence (Myr; Table 1). This value is offered as a first approximation, acknowledging that
refined comparative data and/or divergence estimates may impel revision.

Keywords
chromosomes, mutation, divergence, Monocotyledonae, Dicotyledonae

Disciplines
Botany | Genetics | Plant Breeding and Genetics

Comments
This letter is from Nature Genetics 14 (1996): 380, doi:10.1038/ng1296-380.

Rights
Works produced by employees of the U.S. Government as part of their official duties are not copyrighted
within the U.S. The content of this document is not copyrighted.

Authors
Andrew H. Paterson, Tien-Hung Lan, Kim P. Reischmann, Charlene Chang, Yann-Rong Lin, Sin-Chieh Liu,
Mark D. Burow, Stanley P. Kowalski, Catherine S. Katsar, Terrye A. DelMonte, Kenneth A. Feldmann, Keith F.
Schertz, and Jonathan F. Wendel

This letter to the editor is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/bot_pubs/27

http://dx.doi.org/10.1038/ng1296-380
http://lib.dr.iastate.edu/bot_pubs/27?utm_source=lib.dr.iastate.edu%2Fbot_pubs%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages


© 1996 Nature Publishing Group  http://www.nature.com/naturegeneticscorresponA.ce 

380 

Toward a unified genetic map of higher plants, 
transcending the monocot-dicot divergence 

Sir - Closely related (confamilial) 
genera often retain large chromoso­
mal tracts in which gene order is co­
linear, punctuated by structural 
mutations such as inversions and 
translocations 1. To explore the pos­
sibility that conservation of gene 
order might extrapolate to more 
distantly related taxa, we first esti­
mated an average structural muta­
tion rate. Nine pairs of taxa, for 
which there exist both comparative 
genetic maps and plausible esti­
mates of divergence time, showed 
an average of0.14 (±0.06) structural 
mutations per chromosome per 
million years of divergence (Myr; 
Table 1). This value is offered as a 
first approximation, acknowledging 
that refined comparative data 
and/or divergence estimates may 
impel revision. 

A predictive model, based on the 
structural mutation rate that we 
estimated, suggests that small 
regions of common gene order 
might persist in taxa that are 
diverged by much longer time peri­
ods than those investigated to date 
(Fig. la). Data more detailed than 
those presently available are likely to 
impel a revised model using differ­
ent rate constants for the two major 
types of structural mutations, intra-

chromosomal inversions and inter­
chromosomal translocations. 

The predicted existence of small 
chromosome segments retaining 
common gene order after long 
divergence times, was tested by 
genetic mapping of common Ara­
bidopsis expressed-sequence tags 
(AESTs) in the flowering plant sub­
classes Monocotyledonae (monocots: 
Sorghum spp.) and Dicotyledonae 
(dicots: Arabidopsis thaliana, Brassi­
ca oleracea [broccoli], Gossypium 
[cotton] spp.). Monocots and dicots 
collectively include most agricultur­
al crops and botanical models, and 
diverged from a common ancestor 
about 130-200 million years ago2•3• 

Over this period, our model (Fig. 
1a) predicts that 43-58o/o of chro­
mosomal tracts $3 eM should 
remain co-linear. A comparative 
map of the crucifers Arabidopsis and 
Brassica (ref. 4; T.-H. Lan et al., 
unpublished data) enabled us to 
treat these genera essentially as a 
unit. 

Among eight pairs of genes linked 
at $3 eM in the crucifers, seven pairs 
(87.5o/o) were also linked in 
sorghum at distances of 1.4, 13.5, 
26.0, 3.3, 9.0, 12.5 and 46.7 eM, 
respectively (AEST38-51, Fig. Ib; 
AEST8b-239 and 239-69, Fig. lc; 

AEST56-18a, 18a-39, and 39-146, 
Fig. ld; AEST136-l37, Fig. le; 
AEST36- 123, Fig. 1[). The eighth 
pair, AEST39-146, mapped to puta­
tively homoeologous sorghum chro­
mosome segments (Fig. I d). Among 
three pairs of probes linked at $3 eM 
in the crucifers (AEST 51-9 and 9-
204, Fig. lb; AEST18a-56, Fig. 1d) 
the fust two were linked at 5.8 and 
41.1 eM in cotton; the last pair were 
unlinked. The lesser conservation 
found in cotton compared with 
sorghum is presumably an artifact of 
lower density of comparative mark­
ers (average 38 eM spacing, versus 
19 eM in sorghum). 

Many loci that were more distant­
ly linked in the crucifers remain syn­
tenic (on the same chromosome) in 
sorghum (Fig. l c, f), implying that 
additional shortest conserved evolu­
tionary unit sequences5 (SCEUS) 
may be delimited as more compara­
tive markers are mapped. Large 
chromosomal intervals are highly 
likely to incur structural mutation(s) 
over 200 Myr (Fig. la). Apparent co­
linearity across such intervals cannot 
be inferred to represent absolute 
conservation in the order of all 
intervening genes in monocots and 
dicots, but may reflect the presence 
of several smaller gene tracts which 

Table1 Rates of chromosome structural mutation for different taxa 

Taxon 

Dicotyledoneae 
Solanaceae 

Brassicaceae 
Malvaceae 

Monocotyledoneae 
Poaceae 

Mammalia 
Pnmate/Rodentia 

Average: 

- - ----

Genera (basal chromosome #) 

Lycopersicon/Solanum (12) 
Lycopersicon/Capsicum (12) 
Arabidopsis/Brassica (5/9)c 
Gossypium spp. (13) 

Zea/Sorghum (1 0) 
Zea/Oryza (1 0/ 12)c 
Oryza/Triticum (1 2/7)c 
Triticum/Seca/e (717) 

Homo/Mus (24/ 20)c 

. - . - -

Chromosomal 
rearrangements 

5 (ref. 22) 
33b 
264 

9d 

~1 4 (ref. 12) 
23 (ref. 13) 
~0 (ref. 14) 
13 (ref. 23) 

1388 

-- --- ---- -

Estimated Rearrangements 
divergence per chromosome 
ltme(Myr) perMyr 

1()8 0 .042 
40(±10)8 0 .069 

< 1 0 (ref. 24) 0.52 
4-11 (ref. 25) 0.11 

24 (ref. 26) 0 .058 
66 (ref. 27) 0.035 
66 (ref. 27) 0 .043 
6 (ref. 28) 0.31 

100 0 .069 

0.14 (±0.06) 

•R. Olmstead, pers. comm. bBased upon applicalton of the algonthm descnbed29 to published data23• •Rate calculattons were 
based on the smaller chromosome number, so expectaltons of co-lineanty are conservative. dOnly 11 of 13 homoeologous chro­
mosomes are sufftctently well-mapped to make rearrangements clearS. Consequently, the rate calculalton used a value of 10.6 
rearrangements (9'13/11). and a consensus dtvergence ttme of 7.5 Myr. •Demonstrated ustng a map of 241 genes at -6 eM 
tntervals30. Ongoing mapptng5 has defined addttional SCEUS. and the ftnal number may approach 180, as prevtously 
predictf!d29. This latter value would tnd1cate a somewhat higher rate of rearrangement (0.09) tn Mammalia, but only nominally 
affect our overall structural mutatton rate esttmate. 
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Fig. 1 a, Likelihood that chromosomal tracts are not re-arranged 
after long periods of divergence (as indicated in legend}, esti-
mated using the exponential probability distribution function2B 

The probability that an interval of K eM, in a chromosome of L eM, has been rearranged after M million years of evolution= 1-e-K(0.14M}IL. The constant 0.14 

is the estimated rate of structural mutation, based on an average rate of 9 pairs of taxa (see Table 1 }. Likelihoods are based on a value of L = 100 eM. b-f, Co­

linearity of monocot and dicot genes. Arabidopsis cDNAs that show DNA sequence conservation (BLASTx > 150; ref. 31} with genes from monocots or more 

distant taxa, were used to detect restriction fragment length polymorphisms (RFLPs}, and added to existing genetic maps of Sorghum bicolor x S. propinqu­

um6, Arabidopsis thaliana4 , Brassica oleracea {T. -H.L. et a/., unpublished data} and Gossypium trilobum x G. raimondii (C. Brubaker, A.H.P., J.F.W., unpublished 

data}, by described procedures4·6·8. Brassica mapping followed essentially the same procedures used for Arabidopsis, in 56 progeny of a cross between a self­

compatible rapid-cycling b, o/eracea selection (from P. Williams, Madison WI} and the commercial broccoli cultivar 'Green Comet.' AEST, TT, and AC denote 

Arabidopsis cDNAs. pSB denotes sorghum Pstl-genomic DNA clones. HHU, COO, and RZ denote sorghum, oat, and rice cDNAs. lower-case letters denote 

that additional loci were detected by the same DNA probe. Chromosomal locations of duplicate loci are shown either directly, or in parentheses. Among 161 

probes screened in Sorghum, 52 (32%} could be mapped to 79 loci (11 to 2 loci, 4 to 3, 1 each to 4 and 6}: 35 of these could be mapped in Arabidopsis, and 

11 more in Brassica. Fewer (randomly chosen} probes were screened in cotton, and 29 mapped to 39 loci (6 to 2 loci, and 2 to 3}: 20 of these could be mapped 

in Arabidopsis, and 4 more in Brassica. b, A segment of Arabidopsis chromosome 5 retains co-linearity with both sorghum and cotton. Co-linearity of duplicat­

ed AEST91oci with AEST51 and AEST204 (respectively} suggests that these segments of cotton linkage groups (lGs} 07 and 01 may derive from an ancient 

duplication. c, Co-linearity of Arabidopsis and Brassica helps to reveal synteny with Sorghum (see AEST239). d, Sorghum evolution may also have involved 

chromosomal duplication, consistent with recent data6•7. e, Apparent conservation is obscured by the fact that AEST137 reveals RFLPs at six different sorghum 

loci; two proximal loci are shown. f, AEST36, AEST123, and AEST127 duplicated loci support evidence from sorghum DNA probes that different parts of LG I 

are homoeologous to parts of LGs F and D. AEST36 and AC184 also show closely linked duplicated loci onArabidopsis chromosomes 1 and 3, suggesting that 

this duplication may predate monocot-dicot divergence. Segments of Arabidopsis chromosome 3, and Brassica homoeologs G2/G4 and G5/G6 (respectively} 

are related to different parts of sorghum LG F, and possibly to each other (see AEST122}. Correspondence of AEST numbers to microliter plate numbers for the 

clone repository has been deposited at the Arabidopsis Biological Resources Center and at the Nature Genetics web site (http//genetics.nature.com}. 
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have been reshuffled by intrachro­
mosomal inversion. 

The arrangements of duplicated 
loci detected by these highly con­
served DNA probes support recent 
evidence of ancient chromosomal 
duplication in sorghum6·7 (Fig. ld, 
f), cotton8 (Fig. lb), and even Ara­
bidopsis 4•9 (Fig. lf). Conservation 
of these DNA sequences from 
before the monocot-dicot diver­
gence should, and apparently does, 
transcend subsequent chromosomal 
duplication(s) that have occurred in 
many plant genomes10·11 . Pseudo­
gene formation, or other sub-chro­
mosomal duplications, may 
complicate interpretation of some 
comparative data (Fig. le). 

Common gene order, as implied 
by parallel genetic linkage relation­
ships, provides a framework for 
unifying genetic maps of divergent 
taxa. Based on a modal SCEUS 
length of 3 eM, predicted by our 
model and congruent with our 
empirical data, as few as 200 
rearrangements may distinguish the 
genomes of Arabidopsis and 
Sorghum. Extrapolation of results 
from sorghum to other grass­
es3·6·12-15, and Arabidopsis to other 
crucifers\ or even to other dicot 
families such as cotton, will provide 
a starting point for a unified map. 
By phylogenetic analysis, ancestral 
versus derived gene orders might be 
discerned, revealing the course of 
chromosome evolution and provid­
ing more data to evaluate the need 
for separate rate constants for inver­
sions and translocations4•13• 

A unified genetic map would 
afford new opportunities for molecu­
lar dissection of both simple and 
complex phenotypes. Physical maps 
for facile models such as Arabidop­
sis16 might aid in the cloning of agri­
culturally important genes or 
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quantitative trait loci (QTLs) 17 from 
major crops. Thousands of genetical­
ly mapped mutants of Arabidopsis, 
maize, rice, and other taxa might be 
united into a central tool for compar­
ative study of plant development. 
Mutants unique to one taxon may 
facilitate molecular dissection of 
processes that are invariant in other 
taxa. 

The ability to evaluate phenotypic 
convergence over long periods of 
biotic evolution, as already demon­
strated across 65 Myr of diver­
gence1 8, may have many important 
consequences. In medicine, compar­
ative analysis might shed new light 
on convergent or parallel evolution 
of functionally similar structures, 
such as the eyes of invertebrates and 
vertebrates, which evolved indepen­
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responding genes cause susceptibili­
ty of divergent crops to common 
pests20, then strategies fundamental 
to 'integrated pest management' 
such as 'crop rotation' may require 
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Conserved gene blocks that are 
larger than expected to persist by 
chance might reflect unusual struc­
tural features or genomic processes 
that confer fitness advantages. Pre­
dicted lengths of co-linear chromo­
some segments (Fig. la) provide a 
null hypothesis to identify such 
properties. Chromosomal regions 
that are insulated from rearrange­
ment, or taxa that show rapid 
rearrangement such as Brassica4 

may be fruitful systems for new 
investigations. 
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ative biology may extend far beyond 
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