Introduction

- *Streptococcus suis* is a gram positive bacterium that most commonly infects swine.
- Transmission is thought to occur by nose to nose contact and by aerosol over short distances.
- S. suis can be zoonotic. It is also known to infect dogs, goats, sheep, cattle, and horses.
- Infection usually starts in the crypts of the palatine tonsils and mandibular lymph nodes.
- From there it can become systemic and invade joints, cerebrospinal fluid, heart, lungs, and brain.
- Diagnosis is usually determined based on the presence of lesions and isolation by bacterial culture.
- The Real-Time Polymerase Chain Reaction (qPCR) is a good alternative to traditional bacteriology since PCR assays are quicker and can more efficiently test a large volume of samples.

Objectives

- Develop a qPCR assay that is of similar or better sensitivity to bacterial culture and can be used in routine diagnostic testing for a variety of sample types.

Materials and Methods

Sample Collection:
- 174 clinical samples were obtained from the Iowa State University Veterinary Diagnostic Lab (ISU VDL), isolated by bacterial culture (BacT), and tested by qPCR.
- Samples were chosen prospectively and retrospectively based on presence of lesions, accession, and sample type.
- Homogenates, formalin blocks, and swabs collected from brain, lung, joint, and heart tissue were evaluated as potential matrices for testing.

Primer and Probe Design:
- Primers and probe sequences (Table 1) were developed using Primer Express® design software.
- The recombination repair protein gene (RecN) was chosen for amplification based on its high degree of conservation and target specificity.
- The probe contains a minor groove binder with a 5′-FAM fluorophore and a 3′-non fluorescent quencher.

Sample Preparation

- **Homogenates:** A 10% weight by volume tissue suspension in an Earle’s Balanced Salt Solution was prepared, centrifuged, and the resulting supernatant was tested by qPCR.
- **Swabs:** Placed in a 1% Phosphate Buffered Saline Solution prior to testing.
- **Formalin-fixed Paraffin Embedded (FFPE) Blocks:** No additional sample preparation. However, they required a separate extraction procedure.

Nucleic Acid Extraction and PCR Setup

- Samples were extracted using a KingFisher™ Flex Magnetic Particle Processor consistent with ISU VDL standard operating procedure.
- Joint fluid and FFPE samples were extracted with alternate methods.
- qPCR was performed with TaqMan® Virus 1-Step Master Mix, primers and probe (Table 1) and an internal control.
- A QIAGEN Rotor-Gene Q Thermal Cycler (RGQ) and 7500 Fast Real Time PCR System (ABI) were compared for performance.

Results

Table 1. Primer and probe sequences

<table>
<thead>
<tr>
<th>Oligonucleotide</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>SsuisRecNFor:</td>
<td>5′-CCITGGACAGTTGCGGAGAAGA-3′</td>
</tr>
<tr>
<td>SsuisRecNRev:</td>
<td>5′-TTTCGTTTCTACAAGTCTGTTG-3′</td>
</tr>
<tr>
<td>SsuisRecNP:</td>
<td>5′-FAM-AAGACGTTATCGAACAC-3′</td>
</tr>
</tbody>
</table>

Sample Preparation

- **Homogenates:** A 10% weight by volume tissue suspension in an Earle’s Balanced Salt Solution was prepared, centrifuged, and the resulting supernatant was tested by qPCR.
- **Swabs:** Placed in a 1% Phosphate Buffered Saline Solution prior to testing.
- **Formalin-fixed Paraffin Embedded (FFPE) Blocks:** No additional sample preparation. However, they required a separate extraction procedure.

Nucleic Acid Extraction and PCR Setup

- Samples were extracted using a KingFisher™ Flex Magnetic Particle Processor consistent with ISU VDL standard operating procedure.
- Joint fluid and FFPE samples were extracted with alternate methods.
- qPCR was performed with TaqMan® Virus 1-Step Master Mix, primers and probe (Table 1) and an internal control.
- A QIAGEN Rotor-Gene Q Thermal Cycler (RGQ) and 7500 Fast Real Time PCR System (ABI) were compared for performance.

Table 2. Contingency table comparing BacT and PCR agreement across tissue type when bacteriology results were positive

<table>
<thead>
<tr>
<th>Count</th>
<th>Total %</th>
<th>Col %</th>
<th>Row %</th>
<th>Disagree</th>
<th>Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain</td>
<td>16</td>
<td>17.2</td>
<td>18.1</td>
<td>29.41</td>
<td>41.61</td>
</tr>
<tr>
<td></td>
<td>38.1</td>
<td>52.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart</td>
<td>5.3</td>
<td>8.6</td>
<td>19.05</td>
<td>38.46</td>
<td>51.54</td>
</tr>
<tr>
<td></td>
<td>13.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lung</td>
<td>22.7</td>
<td>17.2</td>
<td>38.1</td>
<td>49.34</td>
<td>50.66</td>
</tr>
<tr>
<td></td>
<td>39.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joint</td>
<td>10.8</td>
<td>12</td>
<td>21.2</td>
<td>43.64</td>
<td>56.36</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Materials and Methods

- **Sample Collection:**
 - 174 clinical samples were obtained from the Iowa State University Veterinary Diagnostic Lab (ISU VDL), isolated by bacterial culture (BacT), and tested by qPCR.
- Samples were chosen prospectively and retrospectively based on presence of lesions, accession, and sample type.
- Homogenates, formalin blocks, and swabs collected from brain, lung, joint, and heart tissue were evaluated as potential matrices for testing.

Primer and Probe Design:

- Primers and probe sequences (Table 1) were developed using Primer Express® design software.
- The recombination repair protein gene (RecN) was chosen for amplification based on its high degree of conservation and target specificity.
- The probe contains a minor groove binder with a 5′-FAM fluorophore and a 3′-non fluorescent quencher.

Results

Anatomical Location

Table 3. Contingency table comparing BacT and PCR agreement across tissue type when bacteriology results were positive.

<table>
<thead>
<tr>
<th>Anatomical Location</th>
<th>Count</th>
<th>Total %</th>
<th>Col %</th>
<th>Row %</th>
<th>Disagree</th>
<th>Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain</td>
<td>16</td>
<td>17.2</td>
<td>18.1</td>
<td>29.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart</td>
<td>5.3</td>
<td>8.6</td>
<td>19.05</td>
<td>38.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lung</td>
<td>22.7</td>
<td>17.2</td>
<td>38.1</td>
<td>49.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joint</td>
<td>10.8</td>
<td>12</td>
<td>21.2</td>
<td>43.64</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Graph 1. Bar plot comparing PCR and BacT agreement across tissue type when bacteriology results were positive

** Graph 1. Bar plot comparing PCR and BacT agreement across tissue type when bacteriology results were positive.

More testing is needed to confirm.