Dispersed Repetitive DNA Has Spread to New Genomes Since Polyploid Formation in Cotton

Thumbnail Image
Date
1998-05-01
Authors
Zhao, Xin-Ping
Hanson, Robert
Crane, Charles
Price, H. James
Stelly, David
Wendel, Jonathan
Paterson, Andrew
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Wendel, Jonathan
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Botany
The Botany Graduate Program offers work for the degrees Master of Science and Doctor of Philosophy with a graduate major in Botany, and minor work for students majoring in other departments or graduate programs. Within the Botany Graduate Major, one of the following areas of specialization may be designated: aquatic and wetland ecology, cytology, ecology, morphology, mycology, physiology and molecular biology, or systematics and evolution. Relevant graduate courses that may be counted toward completion of these degrees are offered by the Departments of EEOB and GDCB, and by other departments and programs. The specific requirements for each student’s course distribution and research activities are set by the Program of Study Committee established for each student individually, and must satisfy all requirements of the Graduate College (See Index). GRE (and if necessary, TOEFL) scores are required of all applicants; students are encouraged to contact faculty prior to application.
Journal Issue
Is Version Of
Versions
Series
Department
Botany
Abstract

Polyploid formation has played a major role in the evolution of many plant and animal genomes; however, surprisingly little is known regarding the subsequent evolution of DNA sequences that become newly united in a common nucleus. Of particular interest is the repetitive DNA fraction, which accounts for most nuclear DNA in higher plants and animals and which can be remarkably different, even in closely related taxa. In one recently formed polyploid, cotton (Gossypium barbadense L.; AD genome), 83 non-cross-hybridizing DNA clones contain dispersed repeats that are estimated to comprise about 24% of the nuclear DNA. Among these, 64 (77%) are largely restricted to diploid taxa containing the larger A genome and collectively account for about half of the difference in DNA content between Old World (A) and New World (D) diploid ancestors of cultivated AD tetraploid cotton. In tetraploid cotton, FISH analysis showed that some A-genome dispersed repeats appear to have spread to D-genome chromosomes. Such spread may also account for the finding that one, and only one, D-genome diploid cotton, Gossypium gossypioides, contains moderate levels of (otherwise) A-genome-specific repeats in addition to normal levels of D-genome repeats. The discovery of A-genome repeats in G. gossypioides adds genome-wide support to a suggestion previously based on evidence from only a single genetic locus that this species may be either the closest living descendant of the New World cotton ancestor, or an adulterated relic of polyploid formation. Spread of dispersed repeats in the early stages of polyploid formation may provide a tag to identify diploid progenitors of a polyploid. Although most repetitive clones do not correspond to known DNA sequences, 4 correspond to known transposons, most contain internal subrepeats, and at least 12 (including 2 of the possible transposons) hybridize to mRNAs expressed at readily discernible levels in cotton seedlings, implicating transposition as one possible mechanism of spread. Integration of molecular, phylogenetic, and cytogenetic analysis of dispersed repetitive DNA may shed new light on evolution of other polyploid genomes, as well as providing valuable landmarks for many aspects of genome analysis.

Comments

This article is from Genome Research 8 (1998): 479. Posted with permission.

Description
Keywords
Citation
DOI
Source
Copyright
Thu Jan 01 00:00:00 UTC 1998
Collections