1989

Thermal rearrangements of unsaturated and strained organosilanes and their hydrocarbon counterparts

Martin Dale Power

Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Organic Chemistry Commons

Recommended Citation

Retrospective Theses and Dissertations. 9233.
https://lib.dr.iastate.edu/rtd/9233

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
INFORMATION TO USERS

The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. These are also available as one exposure on a standard 35mm slide or as a 17" x 23" black and white photographic print for an additional charge.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.
Thermal rearrangements of unsaturated and strained organosilanes and their hydrocarbon counterparts

Power, Martin Dale, Ph.D.

Iowa State University, 1989
Thermal rearrangements of unsaturated and strained organosilanes and their hydrocarbon counterparts

by

Martin Dale Power

A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY

Department: Chemistry
Major: Organic Chemistry

Approved:

Signature was redacted for privacy.

In Charge of Major Work

Signature was redacted for privacy.

For the Major Department

Signature was redacted for privacy.

For the Graduate College

Iowa State University
Ames, Iowa

1989
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>LITERATURE SURVEY</td>
<td>3</td>
</tr>
<tr>
<td>Thermal Rearrangements of Silylacetylenes and Acetylenes</td>
<td>3</td>
</tr>
<tr>
<td>Thermal Rearrangements of Strained Organosilanes and Their Hydrocarbon Counterparts</td>
<td>17</td>
</tr>
<tr>
<td>RESULTS AND DISCUSSION</td>
<td>33</td>
</tr>
<tr>
<td>Rearrangements of Silylacetylenes and Acetylenes</td>
<td>33</td>
</tr>
<tr>
<td>Rearrangements of Strained Organosilanes and Their Hydrocarbon Counterparts</td>
<td>61</td>
</tr>
<tr>
<td>CONCLUSION</td>
<td>71</td>
</tr>
<tr>
<td>EXPERIMENTAL</td>
<td>73</td>
</tr>
<tr>
<td>Instrumentation</td>
<td>73</td>
</tr>
<tr>
<td>Procedures and Results</td>
<td>74</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>103</td>
</tr>
</tbody>
</table>
INTRODUCTION

The potential energy surface for the almost isothermal rearrangement of propyne to allene has been calculated by Honjou et al. These calculations show that cyclopropene is an intermediate on this surface lying approximately 22 kcal/mol above propyne and allene (1). The propyne to allene rearrangement has recently been shown experimentally (2) to have a transition energy identical to the above calculations.

This work will study the thermal isomerization of a hydridosilylacetylene to discover if its thermal chemistry resembles that of the analogous propyne. We will also study the thermal chemistry of 13C-labeled-1-phenylpropyne to see if evidence can be gained for the proposed vinylcarbene or methylvinylidene intermediates proposed in the theoretical calculations mentioned above.

Conlin et al. (3) reported the thermal isomerization of 2-methylene-1,1-dimethylsilacyclobutane to 1,1-dimethylsilacyclopent-2-ene and 1,1-dimethylsilacyclopent-3-ene. This ring expansion via a 1,2-silyl migration across an isolated π-system has the advantage of releasing the strain energy of a four-membered silacyclobutane ring (4).

This work will attempt to thermally generate methylene-cyclopropanes and isomerize them to silacyclobutenes. Also,
the mechanistic aspects of the thermal isomerization of trimethylsilylcyclopropane will be explored with regard to the generation of carbenes via 1,2-silyl migrations.
LITERATURE SURVEY

Thermal Rearrangements of Silylacetylenes and Acetylenes

In 1960, Wiberg and Bartley (5) reported the thermal isomerization of cyclopropene to propyne. In this simple helium flow experiment, no kinetics were reported nor was a mechanism proposed.

![Diagram](https://example.com/diagram)

York et al. (6) synthesized optically active 1,3-diethylcyclopropene 3 in a long and tedious synthesis. Its thermal kinetics were carried out in a static reactor and the starting material was found to racemize significantly (nine times) faster than its conversion to acyclic products 4-7.

Also reported by York were Arrhenius parameters for loss of optical activity, product formation, and racemization. While identical activation energies were obtained for these three processes, the log A for product formation was somewhat lower than for loss of optical activity and racemization.
Table 1. Arrhenius parameters for the thermal racemization and structural isomerization of optically active 1,3-diethylecyclopropene

<table>
<thead>
<tr>
<th></th>
<th>log A</th>
<th>E_a (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>loss of optical activity</td>
<td>11.8</td>
<td>32.6</td>
</tr>
<tr>
<td>product formation</td>
<td>10.4</td>
<td>32.2</td>
</tr>
<tr>
<td>racemization</td>
<td>11.5</td>
<td>32.7</td>
</tr>
</tbody>
</table>

![Diagram of chemical reactions](chart.png)
In 1975, two separate research groups reported very different sets of Arrhenius parameters in the shock tube isomerization of allene to propyne. While Lifshitz et al. (7) obtained log $k = 13.17 - 60.4 \text{kcal mol}^{-1}/\text{RT}$, the research of Bradley and West (8) yielded log $k = 14.43 - 92.8 \text{kcal mol}^{-1}/\text{RT}$. The former group also performed crossover experiments to demonstrate unimolecularity of the isomerization. Although the activation energies varied by over 30 kcal/mol, both sets of authors favored a direct 1,3-hydrogen migration mechanism through transition state 11.

![Chemical structure](chemistry.png)

In 1976, Walsh (9) tied all of this research together by proposing cyclopropene to be an intermediate on the pathway from allene to propyne. Repeating earlier work by Srinivassan (10), Walsh found allene to be present in the isomerization mixture of cyclopropene to propyne. Walsh performed his own calculations using thermochemical data and obtained an activation energy of 64.3 kcal/mol for the allene to propyne isomerization. A new mechanism was proposed for this reaction: two 1,2-hydrogen shifts instead of a concerted 1,3-migration. Walsh also obtained log $k =$
13.25 - 37.5 kcal mol⁻¹/RT for the decomposition of cyclopropene.

\[
\text{CH}_3\text{C}≡\text{C}-\text{H} \quad \text{CH}_2=\text{C}≡\text{CH}_2
\]

In 1980, Hopf et al. (11) discovered that \(^{12}\text{H}\)-propyne \(^{12}\text{H}\)-propyne \(^{12}\text{H}\) formed \(^{3}\text{H}\)-propyne \(^{14}\text{H}\) approximately 3.5 times faster than it formed \(^{1}\text{H}\)-allene \(^{15}\text{H}\). They suggested this as evidence of an intermediate on this pathway other than allene. They proposed this intermediate to be \(^{1}\text{H}\)-cyclopropene \(^{13}\text{H}\).

\[
\text{CH}_3\text{C}≡\text{C}-\text{D} \quad \left[\begin{array}{c}
\text{CH}_2=\text{C}≡\text{CHD} \\
\text{DCH}_2\text{C}≡\text{C}-\text{H}
\end{array}\right]
\]

In 1985, Honjou et al. (1) calculated the lowest energy pathway for the interconversion of allene, cyclopropene, and propyne on the \(\text{C}_3\text{H}_4\) singlet surface. They found that vinyl methylene and propylidene are also minima on this surface.
The activation energy for the isomerization of allene to propyne was calculated to be 68.4 kcal/mol and for cyclopropene to propyne is 41.5 kcal/mol. They proposed two 1,2-hydrogen shifts and calculated a direct 1,3-hydrogen migration to have an activation energy of 94.9 kcal/mol.

While several papers (12-14) and a review (15) have been published since Honjou's calculations, the most recent experimental work by Kakumoto et al. (2) are in full agreement with these calculations. In shock tube experiments, this research group obtained log $k = 14.34 - 68.1 \text{ kcal mol}^{-1}/RT$ and found the rearrangement to be exothermic by 1.6 kcal/mol.
Rogers et al. (16) reported the shock tube kinetics for the decomposition of ethynylsilane 16, the silicon analog of propyne. They assumed the decomposition to proceed by four major pathways: [1] 1,1-elimination of hydrogen to form ethynylsilylene 17, [2] rearrangement to silacyclop propane 18 and extrusion of silylene 19 to form acetylene, [3] rearrangement to silacyclop propane 18 and ring opening to form vinylsilylene 20, and [4] rearrangement of the silacyclop propane 18 to unknown 1-silacyclop propylidene 21 which extrudes elemental silicon to form ethylene.

\[
\begin{align*}
H_3Si-C≡C-H & \xrightarrow{k_1} HSi-C≡C-H + H_2 \\
 & \overset{k_2}{\xleftrightarrow{H_2}} :SiH_2 + H-C≡C-H \\
 & \overset{k_3}{\xrightarrow{Si}} H-Si \xrightarrow{k_4} Si + CH_2=CH_2
\end{align*}
\]

Rogers measured the rate constant for the total decomposition of ethynylsilane and found a value of 1985 s\(^{-1}\). He also measured ethylene yield in the presence of added acetylene (\(k_4 = 337\ s^{-1}\) and 17% of reaction pathway) and measured silylene 19 by trapping it with an excess of
added 1,3-butadiene \(k_2 = 278 \text{ s}^{-1} \) and 14\% of reaction). Rogers later increased \(k_2 \) to 615 \text{ s}^{-1} based on observations that silylene trapping with 1,3-butadiene is usually only 45\% efficient \((k_2 = 615 \text{ s}^{-1} \) or 31\% of the decomposition reaction of ethynylsilane). The value for \(k_1 \) was taken from other 1,1-H\(_2\) eliminations to be 932 \text{ s}^{-1}. \(k_1 \) was adjusted to 595 \text{ s}^{-1} due to the pressure difference between his system and the system in which the 932 \text{ s}^{-1} value is determined. \(k_3 \) was determined by subtraction to be 437 \text{ s}^{-1}.

Brown and co-workers (17-19) have demonstrated the isomerization of acetylenes utilizing isotopic carbon labelling. Pyrolyses of \(^{13}\text{C}\)- and \(^{14}\text{C}\)-labelled acetylenes showed that scrambling had occurred in the alkyne carbons. The proposed explanation is sequential 1,2 shifts via substituted vinylidenes 23 or 24.

\[
R - \overset{\ast}{C} = C - H \quad \overset{22}{\rightarrow} \quad \overset{\ast}{H} = C = C - R \quad \overset{24}{\leftarrow}
\]

\[
R - \overset{\ast}{C} = C - H \quad \overset{23}{\rightarrow} \quad \overset{\ast}{R} \quad \overset{\ast}{C} = C - \overset{\ast}{H} \quad \overset{25}{\leftarrow}
\]

\(R = \text{phenyl, adamantyl, D} \)

\(\ast \) denotes \(^{13}\text{C}\) or \(^{14}\text{C}\) label
Other evidence which supports the intermediacy of vinylidenes was found in the pyrolyses of (methylaryl)-acetylenes such as o-tolylacetylene \(26\), 8-methyl-1-naphthylacetylene \(28\), o-tolylphenylacetylene \(30\), and Barton and Groh's work with o-dimethylsilylphenylacetylene \(33\) (20). All of these acetylenes underwent closure upon pyrolysis to form five- and six-membered rings. These products were all
explained by the vinylidene intermediate being intramolecularly trapped by a C-H or a Si-H bond.

Brown et al. (17) have studied the thermal isomerization of methylenebenzocyclobutene 35 to indene 27. He proposes ring opening to o-quinoid allene 36 and rearrangement to indene 27 through o-tolylacetylene 26.

Formation of acenaphthylene 42 in 80% yield from the pyrolysis of 1-naphthylacetylene 38 yielded further evidence for vinylidene intermediates. Formation of 42 can be envisioned by either direct C-H insertion of the vinylidene or by addition to a π-bond followed by cleavage of the internal housene bond of 40 and 1,2-hydrogen shift.

Brown found that when he pyrolyzed o-tolyl-1-13C-acetylene 43, he recovered indene with the carbon label in positions 1, 2, and 3. The initial acetylene isomerization
scrambles the label between the 2 and 3 position of indene. The 1 and 3 positions are known to scramble by two sequential 1,5-hydrogen migrations.

In 1942, Alder et al. (21) first reported an adduct formed by the pyrolysis of indene and maleic anhydride.
He proposed several structures and mechanisms for these adducts. Nineteen years later, he independently generated isoindene 50 from 49 and trapped it with dienophiles to give 2,3-benzobicyclo[2.2.1]heptane adducts.

Berson and Aspelin (22) determined that the mechanism of the adduct formed in the pyrolysis of indene and maleic anhydride formation did not result from reaction of indene with the dienophile followed by rearrangement. In their deuterium labeled indene experiment, it was shown that the indene underwent isomerization to isoindene and this reactive diene was trapped with maleic anhydride.
Roth (23) demonstrated the 1,5 hydrogen migration of indene in a deuterium labeling experiment. He used 1H NMR integration to watch the non-aromatic protons equilibrate.
In 1966, Isaacs (24) studied the kinetics of the indene-maleic anhydride adduct formation. He found the disappearance of indene to be dependent on the concentration of maleic anhydride in the solution. He further stated that while this supports the isoindene intermediacy, it is not demanding of it.

Koelsch and Johnson (25) and Miller and Boyer (26) separately studied the rearrangement of di- and tri-phenyl indenes. In every case studied, the compounds equilibrate to mixtures of di- or triphenyl indenes independent of the regiochemistry of the starting material.

![Diagram of chemical reactions](image-url)
Rakita and Davison (27) synthesized and studied the variable temperature 1H NMR of group IV trimethylindenyl compounds of silicon, germanium, and tin. Over the temperature range which he explored, Rakita found totally fluxional behavior only for the tin derivative. Cotton and Marks (28) later performed similar experiments with bis(indenyl)mercury which were inconclusive.
Thermal Rearrangements of Strained Organosilanes and Their Hydrocarbon Counterparts

The rearrangement of an olefin to a carbene is a very rare reaction, in agreement with a usually large endothermic gap. Numerous calculations have been carried out to determine the activation energy for the rearrangement of ethylene \(\text{CH}_2=\text{CH}_2 \) to methylcarbene \(\text{CH}_3-\cdot\text{CH} \) via a 1,2-hydrogen shift.

\[
\text{CH}_2=\text{CH}_2 \quad \rightarrow \quad \text{CH}_3-\cdot\text{CH}
\]

As shown in Table 1, the relative energies and activation energies vary widely from one calculation to another. The first calculation shows a 51.6 kcal/mol activation energy (29), the middle calculations rise to reach a maximum value of 99.1 kcal/mol (30), and the most recent calculations estimate activation energies between 74.2 and 82.1 kcal/mol (31,32). Although the actual values vary widely, it is the consensus of these calculations that a 1,2-hydrogen migration of ethylene \(\text{CH}_2=\text{CH}_2 \) to form methylcarbene \(\text{CH}_3-\cdot\text{CH} \) is a process of respectable activation energy, based largely if not totally on the relative energy gap. The first two calculations probably should not be given serious consideration since the minimum activation energy should be 60-65 kcal/mol, the value of a carbon-carbon π-bond (33).
Table 2. Summary of calculations on singlet C₂H₄ isomers

<table>
<thead>
<tr>
<th>Basis Set or Level</th>
<th>Relative Energies (kcal/mol)</th>
<th>CH₂=CH₂</th>
<th>CH₃-CH</th>
<th>TS</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MINDO/2</td>
<td>0.0</td>
<td>51.6</td>
<td>51.6</td>
<td></td>
<td>(29)</td>
</tr>
<tr>
<td>MINDO/3</td>
<td>0.0</td>
<td>52.0</td>
<td>52.7</td>
<td></td>
<td>(34)</td>
</tr>
<tr>
<td>MNDO</td>
<td>0.0</td>
<td>73.3</td>
<td>95.2</td>
<td></td>
<td>(34)</td>
</tr>
<tr>
<td>ab initio double zeta</td>
<td>0.0</td>
<td>72.3</td>
<td>93.2</td>
<td></td>
<td>(35)</td>
</tr>
<tr>
<td>double zeta</td>
<td>0.0</td>
<td>72.1</td>
<td>99.1</td>
<td></td>
<td>(30)</td>
</tr>
<tr>
<td>4-31G//4-31G</td>
<td>0.0</td>
<td>74.0</td>
<td>93.9</td>
<td></td>
<td>(32)</td>
</tr>
<tr>
<td>6-31G*/6-31G*</td>
<td>0.0</td>
<td>68.0</td>
<td>82.1</td>
<td></td>
<td>(31)</td>
</tr>
<tr>
<td>6-31G*/4-31G</td>
<td>0.0</td>
<td>68.0</td>
<td>79.4</td>
<td></td>
<td>(32)</td>
</tr>
<tr>
<td>MP2/6-31G**//4-31G</td>
<td>0.0</td>
<td>81.5</td>
<td>79.7</td>
<td></td>
<td>(32)</td>
</tr>
<tr>
<td>MP3/6-31G**//4-31G</td>
<td>0.0</td>
<td>77.3</td>
<td>79.4</td>
<td></td>
<td>(32)</td>
</tr>
<tr>
<td>MP4SDQ/6-31G**//4-31G*</td>
<td>0.0</td>
<td>78.1</td>
<td>80.7</td>
<td></td>
<td>(31)</td>
</tr>
<tr>
<td>MP4SDTQ/6-31G**//4-31G*</td>
<td>0.0</td>
<td>75.3</td>
<td>74.2</td>
<td></td>
<td>(31)</td>
</tr>
</tbody>
</table>

Several entries in the table show methylcarbene to be higher in energy than the transition state and deserve further comment. Nobes et al. (32) show the transition state to be 1.8 kcal/mol lower than methylcarbene in their MP2/6-31G**//4-31G calculations. They attribute this to overestimation of the electron correlation correction in this calculation and point out that their best calculation,
MP3/6-31G**//4-31G, does yield a 1.9 kcal/mol barrier for the methylcarbene to ethylene.

Raghavachari et al. (31) also had a transition state 1.1 kcal/mol below the relative energy of methylcarbene in their MP4SDTQ/6-31G**//4-31G calculations. The authors conclude from their calculations that singlet methylcarbene does not exist as an intermediate on this surface. Instead, it is a transition state for the degenerate 1,2-hydrogen shift in ethylene.

An example of an olefin to carbene isomerization via a 1,2-carbon migration has recently been demonstrated by Eaton and Hoffmann (36) in the photolysis of cubylphenyldiazomethane. The initially formed cubylphenylcarbene undergoes a 1,2-alkyl shift to produce the very strained, twisted olefin 9-phenyl-1(9)-homocubene which was trapped with ethanol to form 9, the Markovnikov addition product. Also formed was an isomer of 9, which was originally assigned structure 81, the anti-Markovnikov addition product of ethanol and 77. However, homonuclear coupled 13C NMR methodology showed that the ipso-carbon of the phenyl ring was not coupled to an aliphatic carbon bearing a hydrogen (37). The structure of the isomer of 9 was corrected to 80, which is the expected adduct of ethanol and 1-phenyl-9-homocubylidene 78. Further trapping experiments with
2,5-diphenylisobenzofuran, cis-2-butene, and trans-2-butene yielded cyclopropanohomocubane products 82, 83, and 84. These results not only enhance the belief that 9-phenylhomocubylidene 78 is the trapped species, but the retention of stereochemistry of adducts 83 and 84 show that carbene 78
reacts in stereospecific, singlet carbene addition reactions (38).

The heat of formation of olefin \(77 \) has been calculated to be 201 kcal/mol, very near the calculated value of carbene \(78 \) (199 kcal/mol) (39). This thermochemical neutrality explains why the olefin to carbene rearrangement can occur so readily in this system.

Barton and Yeh (40) propose a 1,2-carbon migration across a bridgehead double bond in the thermal generation and rearrangement of 1-norbornene. The high strain energy of the anti-Bredt olefin 1-norbornene reduces the activation energy in this olefin to carbene rearrangement.

\[
\text{Me}_2\text{Si} \quad \xrightarrow{\Delta} \quad \text{C-H insertion}
\]

\[
\begin{align*}
\text{1,2 carbon migration} \\
\end{align*}
\]
Trimethylsilyl groups migrate much more readily than does hydrogen (41). The trimethylsilyl group of 5-2H-5-trimethylsilylcyclopentadiene undergoes a 1,5-sigmatropic migration approximately one million times faster than does the deuterium (42).

There also exists evidence that suggests 1,2-silyl migrations are more facile than similar 1,2-hydrogen migrations in a possible allene to vinylcarbene rearrangement. Barton and Hussman found that trimethylsilyl-3-(trimethylsilyl)allyl ketone readily cyclizes to 2,4-bis(trimethylsilyl)furan at 150°C (43). Allenylmethyl ketone requires 530°C in a He flow pyrolysis (44). Both cyclizations were proposed to proceed by initial 1,2-shifts as shown in Scheme I. If this is the initial step in the mechanism, it seems logical that this 1,2-shift is the rate determining step since the cyclization does not appear to be very energetically demanding.

Therefore, by virtue of the much higher temperature required for the cyclization of allenyl methyl ketone, the
1,2-hydrogen migration would have a higher activation energy than the 1,2-silyl migration.

Ashe (45) has also reported that 1,2-silyl shifts are more facile than 1,2-hydrogen shifts. In the pyrolysis of endo- or exo-5-trimethylsilylbicyclo[2.1.0]pentanes 94 and 95, Ashe observed only 3-trimethylsilylcyclopentene 97, the product of a 1,2-silyl shift after initial C1-C4 homolytic bond cleavage. None of the corresponding 1,2-hydrogen shift product 98 was formed. Within his limits of detection, he estimates that the 1,2-silyl shift is at
least 10^3 times faster than the corresponding 1,2-hydrogen shift.

The thermal ring expansion of 2-methylene-1,1-dimethylsilacyclobutane 99 to 1,1-dimethylsilacyclopent-2-ene 101 and 1,1-dimethylsilacyclopent-3-ene 102 represents the first claim of an olefin to carbene isomerization via a 1,2-silyl shift (3). Conlin proposes two mechanisms for this vinylsilane to β-silyl carbene rearrangement.
Path a involves a 1,2-silyl migration to form β-silyl carbene 100. Insertion of this carbene into a C-H bond at carbons 2 or 4 form silacyclopentenes 101 and 102, respectively. Path b involves initial 1,2-carbon migration to form β-silyl carbene 103. Insertion of this carbene into the only available α-C-H bond at C3 yields isomer 104 which can subsequently rearrange to isomer 105. Conlin then rules out mechanism b footnoting that "No isomerization occurs of 101 and 102 under these conditions."
One bothersome aspect of this ring expansion involves the energetics of the decomposition. Silacyclobutanes are known to decompose by initial heterolytic cleavage of one of the carbon-carbon bonds (46). Silacyclobutane 1_{07} decomposes to silene 1_{09a} and ethylene 1_{3} with an activation energy of 63.8 kcal/mol and a log A of 15.8. 1-methyl-1-vinylsilacyclobutane reportedly yields identical kinetic parameters (47). Given that radicals are usually stabilized 12-16 kcal/mol by the presence of an α-olefin (48), this should bring the activation energy for heterolytic decomposition of the C2-C3 bond of 1,1-dimethyl-2-methylene-silacyclobutane down to 48-52 kcal/mol. The minimum activation energy for the ring expansion is the strength of the π-bond which is approximately 60-65 kcal/mol (33). Given the activation energies of these two processes, it is interesting that no products are observed from such a heterolytic cleavage. One explanation is that this cleavage could be occurring, but the diradical 1_{10} simply recloses to starting material.
The thermal chemistry of the analogous methylenecyclobutane revealed another bothersome feature. Doering and Gilbert (49) examined the interconversion of 2,2-dideutero- and \(\alpha,\alpha\)-dideuteromethylenecyclobutane \(\text{112} \) and \(\text{113} \). Their activation energy of 49.5 kcal/mol did not agree well with Chelsick's activation energy for the thermal
cleavage of methylenecyclobutane to ethylene and allene 114 and 115 (log A = 15.68, $E_{\text{act}} = 63.3 \text{ kcal/mol}$) (50a,b). Doering made the suggestion that cleavage to 114 and 115 required additional twisting of the intermediate allyl radical with concomitant loss of resonance energy.

$$\begin{align*}
\text{CH}_2=\text{C}=\text{CH}_2 & \quad 10 \\
\text{CH}_2=\text{C}=\text{CH}_2 & \quad 73 \\
E_{\text{act}} & = 63.3 \text{ kcal/mol}
\end{align*}$$

1,2-Silyl migrations to form carbenes was also proposed in the thermolysis of silyl substituted allenes (51), ketenes (52), and thioketenes (53). The rearrangements of these cummulenes is unique because the π-system to which the silicon is migrating is coplanar with the cummulene-silicon bond in the ground state molecule.

$$\begin{align*}
\text{Me}_3\text{Si} & \quad \text{Me}_3\text{Si} \\
\text{Me}_3\text{Si} & \quad \text{Me}_3\text{Si} \\
X = \text{CH}_2, \text{O}, \text{S} & \\
1,2 \text{ silyl migration} & \\
\text{bond rotation} &
\end{align*}$$
Sakurai et al. explored the thermal chemistry of trimethylsilylcyclopropane 116 and 1,2-cyclopropyl-1,1,2,2-tetramethyldisilane 119 (54). Compound 116 isomerized mainly (95%) to allyltrimethylsilane 117 and 119 isomerized by sequential ring openings to 1,2-diallyl-1,1,2,2-tetramethyldisilane 121. These products lead one to assume that the C2–C3 bond is breaking in either a homolytic or a concerted fashion.

Anchimeric Assistance

Homolytic Cleavage
Some years later, theoretical (55) and spectroscopic (56) research concluded that the C2-C3 bond of silylsubstituted cyclopropanes is significantly shorter than the C1-C2 bonds.

\[
\text{SiH}_3
\]

Conlin and Kwak (57) probed deeper into the thermal decomposition of trimethylsilylcyclopropane 116 in which the major pathway to decomposition is breaking the shorter and most likely stronger bond. Upon pyrolysis of 116, Conlin found a 92% yield of 117 and an 8% yield of (E)- and (Z)-1-propenyltrimethylsilane, 123a and 123b. He proposed the following mechanistic scheme adding that these results do not rule out the possibility of the silicon atom anchimerically assisting the C2-C3 bond cleavage.
Although a direct comparison with the hydrocarbon analog t-butylcyclopropane is not available, it is of interest that trimethylsilylcyclopropane isomerizes approximately 30 times faster than cyclopropane 124 (58,59) and approximately 10 times faster than methylcyclopropane 126 and ethylcyclopropane 131 (60,61). From the products of the pyrolyses of 126 and 131, it is clear that the major decomposition pathway involves initial cleavage of the C1-C2 cyclopropane bond.
\[E_{\text{act}} = 65.2 \text{ kcal/mol} \]
\[
\begin{align*}
\log A &= 15.1 \\
\end{align*}
\]

\[E_{\text{act}} = 65.0 \text{ kcal/mol} \]
\[
\begin{align*}
\log A &= 15.4 \\
\end{align*}
\]

\[E_{\text{act}} = 61.6 \text{ kcal/mol} \]
\[
\begin{align*}
\log A &= 14.4 \\
\end{align*}
\]

Me

Et
RESULTS AND DISCUSSION

Rearrangements of Silylacetylenes and Acetylenes

Honjou et al. have calculated the potential energy surface for the isomerization of methylacetylene to allene (1). They find propenylidene, cyclopropene, and vinylcarbene to be stable intermediates on this surface. Other calculations and experimental work have supported these results (2,5,6,9,11).

Extending this idea to organosilanes, we were curious as to the behavior of the analogous hydridosilylacetylenes. Will they undergo rearrangement to silacyclopropanes and
silaallenes? Or will, perhaps, a more energetically favorable pathway be found?

\[
\begin{align*}
R_2Si\equivC\equivC-H &\quad\quad H_2\quad\quad R_2Si\equiv\cdot\equivCH_2 \\
136 &\quad\quad 137 &\quad\quad 138
\end{align*}
\]

Rogers et al. have studied the shock tube reaction of silylacetylene and extracted kinetic data for their four assumed decomposition pathways (16). However, their only apparent rationale for the formation of silacyclopropanylidene 21 is the presence of ethylene from the decomposition of \(\sim \). They determined the rate constant for this pathway by subtracting the rate constant of the other processes from

\[
\begin{align*}
H_2Si\equivC\equivC-H &\quad k_1 \quad HSi\equivC\equivC-H + H_2 \\
16 &\quad 17
\end{align*}
\]

\[
\begin{align*}
H_2 &\quad k_2 \quad \cdot SiH_2 + H-C\equivC-H \\
18 &\quad 19
\end{align*}
\]

\[
\begin{align*}
H-Si &\quad k_3 \quad H-C=CH_2 \\
20
\end{align*}
\]

\[
\begin{align*}
Si &\quad k_4 \quad Si + CH_2=CH_2 \\
21
\end{align*}
\]

the total decomposition rate constant of silylacetylene.

One of the other processes, a 1,1-elimination of hydrogen
from silane 16 to form silylene 17, is very well documented and only complicates the picture of the total decomposition.

We chose to study the thermal decomposition of dimethylsilylacetylene. Of Rogers' four decomposition pathways, only the pathway for silacyclopropene formation and subsequent silylene extrusion would be possible since there is only one silyl hydrogen in the starting material. The other three pathways require a minimum of two silyl hydrogens. We hypothesized that if a rearrangement were to occur to a silacyclopropene or a silaallene, these species would be of much higher energy species than a silaacetylene based on strain energy calculations of Boatz et al. (4) and the reactivity of silicon-carbon $\pi-\pi$ bonded species (62). The reverse reaction would, therefore, occur much more readily than the forward and we would have a very slim chance of observing a silacyclopropene or a silaallene. However, since both silacyclopropene and silaallene are symmetric with respect to the position of the olefinic hydrogens, a monolabelled acetylene such as 139 should scramble the non-methyl hydrogens.

Synthesis of 138 was begun by reacting calcium carbide with deuterium oxide to generate dideuteroacetylene. Dideuteroacetylene was bubbled into a tetrahydrofuran
solution of methylmagnesium chloride to form 1-deutero-2-chloromagnesioacetylene and quenched with dimethylchlorosilane to yield 1-deutero-2-dimethylsilylacetylene in 21% yield. FVP of 1-deutero-2-dimethylsilylacetylene at increasing temperatures yielded increasing yields of (deuterodimethylsilyl)acetylene 141.

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>H Me$_2$Si\equivC\equivC-H</th>
<th>D Me$_2$Si\equivC\equivC-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>510</td>
<td>97%</td>
<td>3%</td>
</tr>
<tr>
<td>700</td>
<td>89%</td>
<td>11%</td>
</tr>
<tr>
<td>750</td>
<td>81%</td>
<td>19%</td>
</tr>
<tr>
<td>800</td>
<td>57%</td>
<td>43%</td>
</tr>
</tbody>
</table>

Stirred-flow reactor pyrolysis of dimethylsilylacetylene 143 showed formation of acetylene and bis(dimethylsilyl)acetylene 144. These products presumably
arise from extrusion of dimethylsilylene from starting material or from a dimethylsilacyclopropene intermediate.

\[
\begin{align*}
\text{H} &\quad \text{Me}_2\text{Si} - \text{C} &= \text{C} - \text{H} \\
143 &\xrightarrow[650^\circ\text{C}]{\text{SFR}} \quad \text{H} - \text{C} &= \text{C} - \text{H} + \text{Me}_2\text{Si} - \text{C} &= \text{C} - \text{SiMe}_2 \\
144 &
\end{align*}
\]

Also pyrolyzed was dimethylsilylphenylacetylene 145. Under FVP conditions, 145 yielded mainly phenylacetylene 146 with small amounts of phenyldimethylsilylacetylene 147, indene 27, and styrene 148. The presence of 146 and 147 supports the intermediacy of silacyclopropene 149.
Since pyrolysis of the analogous carbon system, 1-phenylpropyne 150, had not been reported previously, we studied its thermal chemistry under flash vacuum conditions. Between the temperatures of 650°C and 1000°C, 150 yielded phenylallene 151, indene 27, and phenylacetylene 146. The indene to phenylallene ratio increased with temperature.

\[
\begin{array}{cccc}
\text{Ph} & \equiv & \text{C} & \equiv \text{CH}_3 \xrightarrow{\text{FVP}} & \text{Ph} & \equiv & \text{C} & \equiv \text{CH}_2 & + & 27 & + & \text{Ph} & \equiv & \text{C} & \equiv \text{C} & \equiv & \text{H} \\
{150} & & & & {151} & & & & & {146} \\
100% & 700°C & 0% & 0% & 0% \\
>95% & 800°C & <5% & <1% & <1% \\
50% & 900°C & 28% & 38% & 34% \\
38% & 925°C & 15% & 51% & 34% \\
0% & 1000°C & 0% & 50% & 50% \\
\end{array}
\]

Although the reversible thermal isomerization of alkynes and allenes is very well documented (1,2,7-9, 11-15), very little is known about the formation of indene from the thermolysis of either alkynes or allenes. R. F. C. Brown and co-workers observed indene 27 and substituted indenes from the pyrolysis of monoarylhydridoarylacetylenes and diarylacetylenes (17-19). In their work, evidence was also presented for the degenerate thermal rearrangement of acetylenes by synthesizing and pyrolyzing ^{13}C- and ^{14}C-labelled alkynes.
The indene products arose from the pyrolysis of o-tolylacetylenes. The ortho-methyl group provided an efficient intramolecular C-H trap for the proposed vinylidene intermediate.
indene 27. Alternatively, vinylcarbene 158 could insert into an ortho C-H bond to form indene directly.

To test this mechanism, 3-13C-1-phenylpropyne 161 was synthesized in 55% isolated yield from the reaction of 2-lithiophenylacetylene and 13C-methyl iodide. Pyrolysis of this compound should yield 1-13C-indene and possibly 3-13C-indene. This latter product arises if we are at temperatures which the 1- and 3- positions interchange by two successive 1,5-hydrogen migrations (21-24). Labeled acetylene 161 was flash vacuum pyrolyzed at 900°C and the pyrolysate was examined utilizing 13C-NMR integration using
1,4-dioxane as an internal standard. Unexpectedly, the indene carbon label was observed at all carbons in the following amounts.

Carbons 1 and 3 of indene 27 are known to interchange via two 1,5-hydrogen migrations through isoindene 159 (21-24). Intermediate 159 has been trapped with maleic anhydride 163 in research done by several research groups (21,22).

There is no report of scrambling the indene carbons of positions other than C1 and C3. To test if the other indene carbons do scramble, we synthesized and pyrolyzed
3-\(^{13}\)C-indene 168. 2-Phenylethylmagnesium bromide was converted into 3-phenyl-1-\(^{13}\)C-propionic acid 166 by reacting it with \(^{13}\)C-carbon dioxide generated from \(^{13}\)C-barium carbonate and excess 10% hydrochloric acid. The
organic acid 166 was cyclized to ketone 167 by the method of Hulin and Koreeda (63) and converted to 168 by the method of Braun and Bernard (64).

At 800°C, approximately 4% of the 13C label occurs at positions C4 through C7. At 900°C, 22% of the 13C label was found at positions other than C1 and C3. We propose two possible mechanisms by which this rearrangement could occur. The first mechanism employs dyatropic rearrangements (65) which have been suggested in the isomerization of other polycyclic aromatic compounds (66). The second mechanism scrambles the carbon label via phenylcarbene isomerizations (67).
Mechanism A (continued)
All of the labelled indenes can be accounted for by dyatropic rearrangement mentioned in Mechanism A.

The scheme to the left shows the position of the carbon label in this interconversion.

The horizontal arrows represent 1,5-hydrogen migrations while the vertical arrows represent 1,2-dyatropic shifts followed by hydrogen migrations.

Mechanism B
Mechanism B (continued)
The amount of carbon label at C2 of the 3-13C-1-phenyl-propyne pyrolysis leads us to believe that some scrambling may occur before the formation of indene. The following mechanism, which takes advantage of the o-tolylacetylene rearrangement demonstrated by Brown, offers a channel by which the carbon label can scramble to C2 of indene.

![Chemical diagram]

To ensure that the [1,5] hydrogen migrations were operative under our conditions, 1-2H-indene was prepared in 42% yield by quenching 1-indenyllithium (27) with D2O and pyrolyzed at 700°C, 800°C, and 900°C. The pyrolysates were examined by 2H-NMR. At 700°C, 48.3% of the deuteria were observed at C1, 47.1% were equally distributed between the
two olefinic positions and 4.6% were equally scrambled between the four aromatic positions. At 800°C, 33.3% of the deuteria were at C1, 17.4% each at C2 and C3, and 9.1% were at each of the positions C4-C7. At 900°C, the deuteria were totally scrambled throughout all of the positions; 23.8% were located at C1, 12.8% were located at each of the two olefinic positions, C2 and C3, and 12.6% at each of the four aromatic positions, C4-C7. Totally scrambled deuterium would show 25.0% at C1, 12.5% at C2 and C3, and 12.5% at C4, C5, C6, and C7. Above 700°C the two olefinic singlets were inseparable from one another as were the aromatic peaks. Since the peak heights were approximately equal, the relative amounts at each carbon were considered to be equal.

\[
\begin{align*}
\text{[Chemical structure]} & \quad 1) \text{n-BuLi} \\
& \quad 2) \text{D}_2\text{O} \\
\end{align*}
\]

<table>
<thead>
<tr>
<th>°C</th>
<th>C1</th>
<th>C2 + C3</th>
<th>C4 + C5 + C6 + C7</th>
</tr>
</thead>
<tbody>
<tr>
<td>700</td>
<td>48.3%</td>
<td>47.1%</td>
<td>4.6%</td>
</tr>
<tr>
<td>800</td>
<td>32.0%</td>
<td>33.3%</td>
<td>34.7%</td>
</tr>
<tr>
<td>900</td>
<td>23.8%</td>
<td>25.6%</td>
<td>50.6%</td>
</tr>
<tr>
<td>total scrambling</td>
<td>25.0%</td>
<td>25.0%</td>
<td>50.0%</td>
</tr>
</tbody>
</table>

At first, we believed that a radical process was responsible for the deuterium incorporation into the
aromatic ring. This radical process would lead to a significant amount of non-deutero (d_0) and dideutero (d_2) products by the following mechanism.

![Chemical Reaction Diagram]

However, examination of the M-2 : M-1 : M : M+1 : M+2 ratios of the unpyrolyzed material and the three pyrolysates showed that very little d_0 and d_2 were present. The 800°C pyrolysate showed 0.2% d_0 and d_2 and the 900°C pyrolysate contained 2.3% non- and dideuteroindene.

Thermal migration of a deuterium from a non-aromatic carbon to an aromatic carbon by a unimolecular rearrangement has not been previously reported. To explore the generality
of this phenomenon and deduce the mechanism of this unusual rearrangement, several labeling experiments were carried out.

Since indene can be considered a derivative of both styrene and toluene, \(\alpha, \beta, \beta' \)-trideuterostyrene ~196 and \(\alpha \)-deuterotoluene ~198 were synthesized and pyrolyzed to see if the deuterium atoms were incorporated into the aromatic ring.

Acetophenone ~193 was stirred over 0.12 M NaOD/D\(_2\)O three times at 6 hour intervals to produce trideuteromethylphenylketone ~194 in 76% isolated yield containing 98.5% deuterium at the methyl carbon by 300 MHz \(^1\)H NMR. Reduction of ketone ~194 by lithiumtetradeuteroaluminate
followed by aqueous workup yielded 1,2,2,2-tetradutero-1-phenylethanol 195 in 84% yield. Alcohol 195 was converted to α,β,γ-trideuterostyrene 196 in 37% yield using anhydrous CuSO₄ according to the method of Hoffman et al. (68).

Pyrolysis of 196 at 700°C, 800°C, and 900°C showed no incorporation of deuterium in the aromatic ring by ²H-NMR. Thus, we concluded that the penultimate position of the aromatic deuteriums from the FVP of 1-²H-indene was probably not either of the olefinic position.

```
\begin{center}
\begin{tikzpicture}
\node at (0,0) {\textbf{193}};\node at (2,0) {\textbf{194}};\node at (4,0) {\textbf{195}};\node at (6,0) {\textbf{196}};
\draw[->] (0,0) -- (2,0) node[midway, above] {NaOD};\draw[->] (2,0) -- (4,0) node[midway, above] {\textbf{LiAlD}_4};\draw[->] (4,0) -- (6,0) node[midway, above] {\textbf{CuSO}_4 / \Delta -HOD};\draw[->] (0,0) -- (6,0) node[midway, above] {\textbf{FVP}};
\end{tikzpicture}
\end{center}
```
The other possible position of the deuterium is the 1-position of indene -- a "tolyl-type" position. Although we did not believe that α-^2H-toluene 198 would scramble a deuterium to any of the positions of the aromatic ring, we synthesized 198 from α-chloromagnesiotoluene and deuterium oxide in 21% isolated yield. FVP of 198 at 700°C, 800°C, and 900°C and analysis of the pyrolysates by 2H-NMR showed only starting material.

![Chemical structure](image)

We reluctantly proposed a mechanism in which 2^-2H-isooindene 222, undergoes a very difficult 1,5-deuterium shift followed by two 1,5-hydrogen shifts to get to the two isomers 5^- and 6^-2H-indene. However, this migration across the rigid planar carbon structure could not explain the 4^- and 7^-2H-indene isomers.
1,2-di-13C-benzene 202 and disubstituted benzenes are known to scramble their carbon framework at elevated temperatures. Several research groups have observed this phenomenon, although they do not agree on the mechanism of rearrangement (69,70). This thermal isomerization of
aromatic rings very nicely explains the formation of 4- and 7-2H-Indene from 5- and 6-2H-Indene. All that remains is to demonstrate that this aromatic automerization occurs under our conditions.

To demonstrate that our conditions facilitate this isomerization, 4-2H-toluene \(\text{209} \) was prepared from 4-bromomagnesiotoeluene and deuterium oxide in 52% isolated yield. FVP of \(\text{209} \) at 700°C, 800°C, and 900°C and analysis of the pyrolysates by 1H-NMR and 2H-NMR showed no change in starting material.

We then attempted to deduce an alternative mechanism for this unique rearrangement of indene. The six-electron
1,5-hydrogen migration from C1 to C2 of indene yields isoindene. Isoindene, although of higher energy than indene, may have some resonance stabilization owing to the benzene ring of diyl resonance form.

However, another possible 1,5-hydrogen migration is available. The migration of a hydrogen from C1 to C8 would yield isomer in which all of the aromatic character of the benzene ring would be destroyed. This isomerization would require more energy than the formation of isoindene.

We propose that a 1,5-deuterium migration takes place to totally destroy the aromatic character of the benzene ring in the pyrolysis of 1-^H-indene. Further migration occurs to the other aromatic positions via previously unknown 1,9-migrations of hydrogen to reform the indene structure.

Although a 1,9-sigmatropic migration has been claimed in the degenerate rearrangement of 7-acetyl-3-methyl-anthranil shown below (71), we strongly agree with the
authors' suggestion that this can be considered an allowed \(\pi s + \pi 2s \) or \(\pi 8a + \pi 2a \) process. It is believed that the rigid planar structure of this molecule, which very much resembles our indene system, facilitates this rearrangement (72).

Another example of a possible 1,9-sigmatropic migration is a reasonable mechanism in the rearrangement of photochemical intermediate 208 to indene derivative 210 (73). Johnston and Scaiano propose either a six-electron electrocyclic ring opening followed by a 1,5-hydrogen migration or a direct 1,13-hydrogen migration. We believe that a 1,9-hydrogen migration would be an appropriate alternative and are at a loss to understand why the authors chose to include the two additional \(\pi \)-bonds in their mechanism.

We sought to observe if the deuterium could be incorporated into an aromatic ring of molecules similar to indene. Since \(\beta \)-methylstyrene is capable of undergoing a
1,5-hydrogen migration into the aromatic ring, we synthesized and pyrolyzed trans-β-deuteromethylstyrene at 700°C, 800°C, and 900°C. 2H-NMR showed deuterium incorporation into the aromatic ring at all three temperatures but there were too many peaks to identify the exact compound(s).

We then pyrolyzed trans-β-methylstyrene at the same temperatures. At 700°C and 800°C, cis-β-methylstyrene was the major product. At 900°C, 27 and 148 were also observed. The loss of hydrogen in the following mechanism is supported by the unusually long time that the pyrolysis required to keep a constant pressure in the 10^{-4} range.
Given silicon's greater migratory aptitude, we studied the thermal chemistry of 1-trimethylsilyl indene. FVP of 215 at 600°C yielded only 2- and 3-trimethylsilylindene. At higher temperatures, no additional isomers were observed.
- only the decomposition products indene and a methylindene.

\[
\begin{align*}
\text{TMS} &= \text{Si(CH}_3\text{)}_3 \\
215 \text{TMS} &\rightarrow 216 \text{TMS} + 217 \text{TMS}
\end{align*}
\]

Rearrangements of Strained Organosilanes and Their Hydrocarbon Counterparts

Since 2-methylene-1,1-dimethylsilacyclobutane 99 thermally ring expanded to form the two dimethyilsilacyclopentene isomers 101 and 102 (3), we hypothesized that a methylenesilacyclopropane such as 2186 might ring expand in a similar manner to form a silacyclobutene 222.

Boatz et al. (4) reported that the strain enthalpies for three-, four-, five-, and six-membered saturated silacycles are 41.4 kcal/mol, 24.7 kcal/mol, 4.5 kcal/mol, and 4.0 kcal/mol and later calculates strain enthalpy for a silacyclobutene ring to be 26.3 kcal/mol (4). Therefore, expanding from a three- to a four-membered ring would lose roughly 15 kcal/mol of strain energy. This is close to the value gained in expanding from a four- to a five-membered ring -- roughly 20 kcal/mol.

If one could generate the methylenecyclopropane in situ, and high enough temperatures were used, a mechanismically
interesting one step synthesis of silacyclobutenes might be realized.

\[\text{Allene} \stackrel{10}{\text{flow pyrolysis with known dimethylsilylene thermal generator 1-methoxy-1,1,2,2,2-pentamethyldisilane 221 followed by evaporation of allene yielded no adduct of dimethylsilylene and allene. Indeed the only silicon containing products observed were trimethylmethoxysilane 222 and a small amount of starting material 221.}} \]

\[\begin{align*}
\text{Me}_3\text{SiSiMe}_2\text{OMe} + \text{CH}_2\text{-C} = \text{CH}_2 & \xrightarrow{475^\circ \text{C}} \text{pyrolysis} \xrightarrow{222} \text{Me}_3\text{SiOMe} \\
221 \quad 10 & \quad 222
\end{align*} \]
Raising the temperature did not improve the results. It was difficult for us to believe that the silylene did not add to allene given the propensity of silylenes to add to π-systems (74) and the usually high reactivity of allenes toward divalent species (75). However, we theorized that addition did occur to form the methylenesilacyclop propane 218, but that, reversibly, this intermediate extruded dimethylsilylene to reform allene.

$$\text{Me}_2\text{Si}: + \text{CH}_2\text{=C=CH}_2 \xrightarrow{} \begin{array}{c}
\text{Me}_2 \\
\text{Si} \\
\text{Me}_2 \\
\text{Si:} + \text{CH}_2\text{=C=CH}_2 \\
\end{array}$$

The experiment was then attempted under stirred flow reactor (SFR) conditions. A 100 fold excess of allene was copyrolyzed with 1-methoxypentamethyldisilane. The only products formed were trimethylmethoxysilane and 1-methoxyheptamethyltrisilane. The latter product is the insertion of dimethylsilylene into the Si-O bond of the starting disilane. Attempts to trap the silylene with a 10 fold excess of trimethylsilylacetylene were very successful. This proved that the silylene could be trapped under these conditions.

We then changed allenes. SFR experiments with 1,2-butadiene yielded an adduct with a molecular weight of $1/2 \text{ g/mol}$. Mass spectrum could not confirm whether this
adduct is a silacyclobutene or an isomer. Due to the low boiling point of 1,3-butadiene, nitrogen flow pyrolysis experiments did not produce the product that weighed 112 g/mol.

An allene that was easier to handle at room temperature was then attempted. Copyrolysis of 1,2-dimethoxytetra-

\[\text{MeO OMe} \]
\[\text{SiSiMe}_2 \]
\[+ \]
\[\text{224} \]
\[\text{475°C} \]
\[\text{N}_2 \text{flow} \]
\[\rightarrow \]
\[\text{Me}_2\text{SiMe}_2 \]
\[\text{225} \]

31%
methyldisilane 223 and 3-methyl-1,2-butadiene 224 yielded 2-dimethylsilyl-3-methyl-1,3-butadiene 225 in 32\% yield. We, therefore, concluded that path \textit{b}, the silamethylene-methane pathway, was operative since carbene 228 cannot undergo a 1,2-hydrogen shift that would go on to yield a 2-dimethylsilyl-1,3-butadiene. This carbene would probably form 1-dimethylsilyl-1,3-butadiene 231 which was not observed.

In 1986, Ando and Saso \textcite{76} reported the reaction of photogenerated dimesitylsilylene with t-butylallene 233, t-butyldimethylallene 234, and tetramethylallene 235. With the two t-butyl-substituted allenes 233 and 234, one alkylidenesilacyclopropane was isolated in each case. With the methyl-substituted allenes 234 and 235, each produced an isolable 1,3-butadiene in which C2 was substituted with a dimesitylhydridosilyl group. These 2-(hydridosilyl) substituted 1,3-butadiene products of this photochemical reaction supports our claim for intermediacy of an alkylidenesilacyclopropane in our thermal reaction.

Methylenecyclopropanes have been shown to undergo structural isomerizations to exchange exo- and ring carbons as in the reversible interconversion of 2-methylmethylenecyclopropane 246 to ethylidenecyclopropane 247 \textcite{77}.
Other labeled methylenecyclopropanes have been observed to undergo this rearrangement (78) and the kinetic studies show all of these isomerizations to have an activation energy of approximately 42 kcal/mol. The intermediate in all of these rearrangements is believed to be a trimethylenemethane (TMM) biradical, which has been discussed in detail (79).

A higher energy process requiring approximately 54 kcal/mol of activation energy involves the formation of a substituted 1,3-butadiene. Methylmethylenecyclopropane 246 forms isoprene 249 at temperatures higher than the reversible structural isomerization mentioned above (80). Diene 249 is believed to arise from an intramolecular 1,4-hydrogen abstraction process involving TMM biradical 248.
At the thermal upper limit of methylenecyclopropanes, fragmentation to acetylenes and olefins is observed (81). 2,2-dimethylmethylenecyclopropane forms isobutene 252 and acetylene with an activation barrier of 60 kcal/mol. This process is suggested to proceed via the intermediacy of vinylidene 251.

Sakurai et al. (54) and Conlin and Kwak's (57) work on the thermolysis of trimethylsilylcyclopropane along with the spectroscopic and theoretical results led us to question the ring opening mechanism. In this mechanism, the shorter and, therefore, possibly more stable bond in the ring is the sole bond broken. Sakurai favors an anchimerically assisting silicon atom in a concerted ring opening to allyltrimethylsilane. Conlin adds the homolytic cleavage of
the shorter bond in the cyclopropane ring but does not rule out Sakurai's mechanism.

Since Conlin had previously proposed a 1,2-silyl shift to form a carbene (3), we were somewhat surprised to discover that he did not propose a 1,2-silyl shift to break the longer cyclopropane bond and form a γ-silyl carbene \(253 \) which can easily C-H insert to form \(117 \), the major product of the pyrolysis.

In order to test this mechanism, 1-\(^2\)H-1-trimethylsilyl-cyclopropane was synthesized and pyrolyzed. Vacuum distillation through a packed quartz tube at 700°C and 2.0 x \(10^{-4} \) mm Hg yielded mainly 2-\(^2\)H-3-trimethylsilylpropene as detected by GC/MS and \(^2\)H NMR. This shows that the major pathway to decomposition of trimethylsilylcyclopropane does indeed involve cleavage of the shorter C2-C3 bond.
256 \text{ FVP} \rightarrow (\text{CH}_3)_3\text{Si} - \text{CH} = \text{CH}_2 + (\text{CH}_3)_3\text{Si} - \text{D} \quad 95\% \quad 5\%
CONCLUSION

The products from the flash vacuum pyrolysis (FVP) of dimethylsilyldeuteroacetylene and dimethylsilylphenylacetylene support the intermediacy of silacycloprenenes. Formation of bis(dimethylsilyl)acetylene from the stirred-flow reactor (SFR) pyrolysis of dimethylsilylacetylene strongly suggests extrusion of dimethylsilylene from either starting material or from a silacyclopropene intermediate.

FVP of 1-phenylpropyne yielded phenylacetylene and the two isomeric products phenyllallene and indene. 13C-labeling experiments led us to propose the intermediacy of phenyl-substituted cyclopropene, vinylidenes, and vinylcarbenes.

13C-labelled indene undergoes some rearrangement at high temperatures but not enough to account for all of the scrambling observed in the pyrolysis of 3-13C-1-phenylpropyne. 1-2H-indene experiments fortuitously led us to the discovery of a hitherto unknown 1,9-sigmatropic migration of hydrogen and deuterium.

Addition of thermally generated dimethylsilylene to methyl-substituted alkenes yielded 2-dimethylsilyl-1,3-butadienes. Formation of products most likely proceeded through a novel silatrimethylenemethane. Addition of thermally generated dimethylsilylene to allene yielded no adduct.
FVP of 1-2H-1-trimethylsilylcyclopropane yielded mainly 3-trimethylsilyl-2-2H-propene. This product is consistent with the major decomposition pathway being cleavage of the shorter C2-C3 cyclopropane bond.
EXPERIMENTAL

Instrumentation

1H NMR spectra were recorded on a Nicolet model NT-300 spectrometer. ^{13}C NMR spectra were recorded on either the Nicolet mentioned above or on a Bruker model WM-200 or WM-300 spectrometer. The Bruker model WM-300 was used in obtaining all 2H NMR spectra. All chemical shifts are reported as parts-per-million (δ scale) using either tetramethyldisilane, benzene, chloroform, acetone, or methylene chloride as an internal standard. Infrared (IR) spectra were obtained on an IBM model IR/98 Fourier transform spectrometer. GC/IR spectra were recorded on the same spectrometer coupled with a HP5880A capillary GC. All bands are reported in reciprocal centimeters (cm^{-1}). GC/MS data were obtained at 70 eV on a HP5970 mass selective detector coupled with a HP5890 capillary GC. All signals are recorded in m/e percent relative intensities.

Gas chromatographic analyses were performed on a HP5890 capillary GC. Preparatory GC purification was performed on a Varian Aerograph series 1700 equipped with 1/4" GC columns between 10% and 25% SE-30 as the stationary phase. Column lengths were between 10° and 20°.
Procedures and Results

General conditions for flash vacuum pyrolysis (FVP)

All samples were vacuum distilled from a bath maintained at a temperature allowing slow introduction of the sample into a horizontal quartz tube packed with quartz chips and heated with an electric tube furnace. The heated zone of the quartz tube was approximately 1.6 cm x 30 cm. Pyrolysates were collected in a cold trap cooled with liquid nitrogen. Pressures were measured by an ionization gauge behind two liquid nitrogen cooled traps and do not accurately reflect the actual pressures in the reaction zone. However, experiments conducted on this apparatus have shown that the pressure before the hot zone is approximately an order of magnitude higher than at the ionization gauge. Throughout the pyrolysis experiments, the pressure was maintained below 6×10^{-4} mm Hg as measured at the ionization gauge.

General conditions for flow pyrolyses

The oven and packed quartz tube were the same as used for the FVP. During addition, the pyrolysis tube was continually swept with a nitrogen stream of 40 mL/min unless otherwise specified. The pyrolysates were collected in a cold trap cooled to -78°C.
General conditions for stirred-flow reactor (SFR) pyrolyses

The plug stirred-flow reactor (SFR) used was designed after Baldwin's et al. (82). The quartz reactor had a volume of 3 cm3. The helium flow through the reactor was 60 mL/min. The reactor temperature was controlled to 0.1°C by a Digi-Sense temperature controller. A Varian 6000 gas chromatographed, equipped with a 25° x 1/4" 25% SE-30 column was used to separate the products. A splitter after the column directed a fraction of the eluent stream to a quadrupole mass spectrometer (VG-SX300).

Samples were introduced from a vacuum manifold. The pressures were measured with a Baratron transducer. The samples were swept through the reaction vessel with the helium carrier gas. Approximate pressure inside the reaction vessel was 3 atmospheres. Approximate pressures of samples introduced was 0.1 torr. Concentration of the reactant in the reaction vessel is roughly 0.004%. This extremely low concentration in the helium flow gas maximizes collisions with helium, minimizes collisions with other reactant molecules and reactor walls, and, therefore, maximizes unimolecular reactions.

Synthesis of dimethylsilylacetylene 139

Calcium carbide was heated to 600°C in vacuo for five hours to yield black crystalline calcium carbide; 42.5 g of this solid was added slowly to a stirred round bottom flask
which contained 50.2 g deuterium oxide. The dideuteroacetylene gas generated was bubbled for three hours into a three neck round bottom containing 65 mL tetrahydrofuran (THF) cooled to 0°C. After the gas had bubbled through the solvent for 0.5 hr, 35 mL of a 3.0 M THF solution of methylmagnesiumchloride was slowly added. After the gas was stopped, the deutoacetylenemonogignard was quenched with 9.9 g of freshly distilled dimethylchlorosilane and allowed to stir at 0°C for five hours. The product was distilled as a THF solution. Yield by 1H NMR was 41% as a 9% THF solution. The product was purified as needed by preparatory gas chromatography. Integration of the residual protons at 2.40 ppm versus the proton at 4.17 ppm showed the acetylene to be 100.0% deuterated. 1H NMR (300 MHz, CDCl$_3$) δ 4.17 ppm (heptet, J = 3.78 Hz, 1 H; 0.26 ppm (d, J = 3.86 Hz, 6 H). Mass spectrum 85 (21), 84 (27), 70 (100), 59 (21), 58 (70), 54 (43), 43 (64).

FVP of dimethylsilyldeuteroacetylene 139

i. Dimethylsilyldeuteroacetylene, 6 mg, was vacuum distilled through a 512°C quartz tube at a pressure of 1 x 10^{-4} mm Hg. The pyrolysate, 5 mg (83% mass recovery) was analyzed by 300 MHz 1H NMR. The ratio of 13C and an isomer, dimethyldeutosilylacetylene was 97 : 3 by NMR integration.

ii. Dimethylsilyldeuteroacetylene, 7 mg, was vacuum distilled through a 700°C quartz tube at a pressure of 4.0 x
10^{-4} mm Hg. The pyrolysate, 5 mg (71\% mass recovery) was analyzed by 300 MHz 1H NMR. The ratio of 135 and an isomer, dimethyldeuteriosilylacetylene was 89 : 11 by NMR integration.

iii. Dimethylsilyldeuteroacetylene, 9 mg, was vacuum distilled through a 750°C quartz tube at a pressure of 4.5×10^{-4} mm Hg. The pyrolysate, 9 mg (100\% mass recovery) was analyzed by 300 MHz 1H NMR. The ratio of 135 and an isomer, dimethyldeuteriosilylacetylene was 81 : 19 by NMR integration. Some other products, dimethylsilane and trimethylsilane were observed by 1H NMR and gas chromatography / mass spectrometry (GC/MS).

iv. Dimethylsilyldeuteroacetylene, 11 mg, was vacuum distilled through a 752°C quartz tube at a pressure of 3.0×10^{-4} mm Hg. The pyrolysate, 8 mg (73\% mass recovery) was analyzed by 300 MHz 1H NMR. The ratio of 135 and an isomer, dimethyldeuteriosilylacetylene was 77 : 23 by NMR integration. The other products observed in iii above were also seen in this run.

A mass spectrometry experiment was done on this sample to estimate the percent isomerization. By analyzing the ration of m/e 53 (C_2HSi) to m/e 54 (C_2DSi) in the pyrolyzed and unpyrolyzed sample, it was calculated that 29.3\% of the starting material was converted to its isomer. The contribution of the m/e 53 peak to the m/e 54 peak was taken
into consideration. Exact mass measurements confirm that the m/e 53 peak and the m/e 54 peak both contained one silicon. The possibility that m/e 54 consisted of C₂H₂Si instead of C₂DSi could not be ruled out by the exact mass measurement. However, since the mass spectrum of non-deuterated dimethylsilylacetylene does not show m/e 54, it seems reasonable that the m/e 54 peak does not arise from C₂H₂Si.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Calculated Value</th>
<th>Deviation From Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₂DSi</td>
<td>53.99103</td>
<td>9.8 ppm</td>
</tr>
<tr>
<td>C₂H₂Si</td>
<td>53.99258</td>
<td>38.5 ppm</td>
</tr>
<tr>
<td>C₄H₆</td>
<td>54.04695</td>
<td>1,045.0 ppm</td>
</tr>
<tr>
<td>C₄H₆D</td>
<td>54.04540</td>
<td>1,017.0 ppm</td>
</tr>
<tr>
<td>C₃¹³CH₅</td>
<td>54.04578</td>
<td>1,024.0 ppm</td>
</tr>
<tr>
<td>Measured Value</td>
<td>53.9905</td>
<td>0.0 ppm</td>
</tr>
</tbody>
</table>

v. Dimethylsilyldeuteroacetylene, 7 mg, was vacuum distilled through a 800°C quartz tube at a pressure of 4.5 x 10⁻⁴ mm Hg. The pyrolysate, 6 mg (86% mass recovery) was analyzed by 300 MHz ¹H NMR. The spectrum was very messy, but the silylhydride region and the acetylene region were easily integrated. The ratio of 132 and an isomer,
dimethyldeuterosilylacetylene was 57 : 43 by NMR integration.

SFR pyrolysis of dimethyldimethyldichloromethylacetylene

Stirred-flow reactor pyrolysis of 0.5 torr at 650°C yielded approximately 40% decomposition of starting material. The major products of the pyrolysis was bis(dimethyldimethyl)acetylene and acetylene. The only other identifiable products were traces of dimethyldimethylsilane and methane. These produces were identified by mass spectroscopy.

FVP of dimethyldimethylphenylacetylene 145

i. Dimethyldimethylphenylacetylene 145, 40 mg, was vacuum distilled through an 800°C quartz tube at a pressure of 4.5 x 10^-4 mm Hg. The pyrolysate, 31 mg (78% mass recovery), was analyzed by 300 MHz ¹H NMR and GC/MS showed that a 77% conversion of 142 had occurred to yield 96% phenylacetylene, 2.3% styrene, 1.2% indene, and 0.7% phenyldimethyldimethylacetylene. All products were identified by comparison of their spectra with that of authentic material.

ii. Dimethyldimethylphenylacetylene 145, 45 mg, was vacuum distilled through a 850°C quartz tube at a pressure of 4.0 x 10^-4 mm Hg. The pyrolysate, 11 mg (24% mass recovery), was analyzed by 300 MHz ¹H NMR and GC/MS showed that an 88% conversion of 142 had occurred to yield 91.3% phenyl-
acetylene, 2.9% styrene, 3.5% indene, and 1.7% phenyl-dimethylsilylacetylene. All products were identified by comparison of their spectra with that of authentic material.

FVP of 1-phenylpropyne 150

i. 1-phenylpropyne 150, 20 mg, was vacuum distilled through a 700°C quartz tube at a pressure of 5 x 10^{-4} mm Hg. Analysis of the pyrolysate, 19 mg (95% mass recovery) by 300 MHz ^1H NMR showed that no reaction had occurred.

ii. 1-phenylpropyne 150, 30 mg, was vacuum distilled through an 800°C quartz tube at a pressure of 5 x 10^{-4} mm Hg. Analysis of the pyrolysate, 29 mg (97% mass recovery) by 300 MHz ^1H NMR showed traces of phenylallene and indene.

iii. 1-phenylpropyne 150, 50 mg, was vacuum distilled through a 900°C quartz tube at a pressure of 5 x 10^{-4} mm Hg. Analysis of the pyrolysate, 45 mg (90% mass recovery) by 300 MHz ^1H NMR showed a 50% conversion of the starting material. The products formed were 28% phenylallene, 38% indene, and 34% phenylacetylene. The indene and phenylacetylene were identified by comparison of the spectra with that of authentic material. The phenylallene was identified by mass spectrum 116 (65), 115 (100), 89 (13), 63 (15), 39 (12), and by the olefinic protons at δ 6.159 ppm (apparent triplet, J = 6.8 Hz, 1 H) and δ 5.140 ppm (d, J = 6.8 Hz, 2 H).

iv. 1-phenylpropyne 150, 29 mg, was vacuum distilled through a 925°C quartz tube at a pressure of 5 x 10^{-4} mm Hg.
Analysis of the pyrolysate, 27 mg (40% mass recovery) by 300 MHz \(^1\text{H}\) NMR showed that 62% of \(^{150}\) had been converted to products. Yield of products 15% phenylallene, 51% indene, and 34% phenylacetylene.

v. 1-phenylpropyne \(^{150}\), 120 mg, was vacuum distilled through a 1000°C quartz tube at a pressure of 5 x 10\(^{-4}\) mm Hg. Analysis of the pyrolysate, 48 mg (40% mass recovery) by 300 MHz \(^1\text{H}\) NMR showed that 100% of the starting material was converted to products indene (50%) and phenylacetylene (50%).

Synthesis of 3-\(^{13}\text{C}\)-1-phenylpropyne \(^{161}\)

To a stirred THF solution of 0.713 g phenylacetylene (6.98 mmol) cooled to -78°C was added 3.0 mL of a 2.5 M hexanes solution of n-butyllithium. The reaction flask was allowed to come to room temperature over the next hour. The flask was then cooled to -78°C and a THF solution containing 1.0 g \(^{13}\text{C}\)-methyl iodide was slowly added. The mixture was allowed to slowly warm to room temperature over the next 18 hours. Fifteen mL of pentanes were added along with 5 mL distilled water. The layers were separated and the organic layer washed an additional three times with 5 mL portions of distilled water. The solvent was removed by rotary evaporation and the product was purified by bulb-to-bulb vacuum distillation at room temperature to yield 0.448 g
(55\%) isolated yield. Mass spectrum 117 (69), 116 (100), 90 (9), 64 (9), 63 (10), 58 (9).

FVP of 3-^{13}\text{C}-1\text{-}phenylpropyne 161

A sample of 161 (43 mg) was vacuum distilled through a 922°C quartz tube at a pressure of 4.5×10^{-4} mm Hg. The pyrolysate, 30 mg (70\% mass recovery) was analyzed by ^{13}C NMR integration using a known quantity 1,4-dioxane as an internal standard. Three samples of non-labeled indene with known quantities of 1,4-dioxane were used as standard runs. The integration results are tabulated below. Seventy-five MHz ^{13}C shifts and peak heights in CD$_2$Cl$_2$ are as follows: 39.62 (8.89), 121.36 (3.08), 124.20 (2.87), 125.03 (4.76), 126.76 (1.55), 132.34 (9.89), 134.80 (11.95), 144.30 (0.73), 145.35 (0.31).

<table>
<thead>
<tr>
<th>Carbon</th>
<th>Peak Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.822</td>
</tr>
<tr>
<td>2</td>
<td>7.713</td>
</tr>
<tr>
<td>3</td>
<td>8.419</td>
</tr>
<tr>
<td>4</td>
<td>1.959</td>
</tr>
<tr>
<td>5</td>
<td>4.044</td>
</tr>
<tr>
<td>6</td>
<td>3.579</td>
</tr>
<tr>
<td>7</td>
<td>1.859</td>
</tr>
<tr>
<td>8</td>
<td>0.325</td>
</tr>
<tr>
<td>9</td>
<td>0.394</td>
</tr>
</tbody>
</table>
The 13C-label showed up in indene in the following amounts:

```
<table>
<thead>
<tr>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>6%</td>
</tr>
<tr>
<td>13%</td>
</tr>
<tr>
<td>26%</td>
</tr>
<tr>
<td>28%</td>
</tr>
<tr>
<td>11%</td>
</tr>
<tr>
<td>6%</td>
</tr>
<tr>
<td>11%</td>
</tr>
</tbody>
</table>
```

Synthesis of 13C-3-phenylpropionic acid

A solution consisting of 3.60 g (19.45 mmol) l-bromo-2-phenylethene and 5 mL THF was slowly added to a three neck round bottom flask containing 0.65 g magnesium turnings and 15 mL THF. After reaction had occurred, 13C-labeled carbon dioxide (generated from the action of excess 10% hydrochloric acid on 3.90 g 99.99% 13C-labelled barium carbonate) was bubbled into the flask containing the grignard reagent. After addition of the gas was complete, the reaction was allowed to stir for an additional two hours before the addition of excess 10% hydrochloric acid and 25 mL diethyl ether. The layers were separated and the organic phase was washed twice with 10 mL solutions of saturated ammonium chloride. The product was then extracted from the organic phase as its sodium salt with three 10 mL portions of 10% NaOH. The aqueous washings were combined and acidified with concentrated hydrochloric acid. The product
was extracted with three 30 mL portions of diethyl ether. The organic layers were combined, dried over anhydrous magnesium sulfate and the solvent removed by rotary evaporation to yield 0.60 g (20%) of an oil which crystallized to clear needles upon standing. 1H NMR (300 MHz, CDCl$_3$) δ 7.15-7.35 ppm (broad multiplet, 5 H); 2.88-3.00 ppm (d of t, $J = 4.1$ Hz, 7.7 Hz); 2.60-2.71 ppm (apparent q, $J = 7.5$ Hz). Mass spectrum 151 (31), 105 (17), 104 (59), 103 (13), 91 (100), 79 (12), 78 (20), 77 (23), 65 (17), 51 (25), 50 (11), 46 (18).

Synthesis of 13C-indanone from 166

The acid chloride prepared from 0.60 g (4.0 mmol) of labeled acid 166 was cyclized to the labeled indanone with trifluoromethanesulfonic acid using the procedure of Hulin and Koreeda (63) in 73% (0.38 g) crude yield and was used without purification in the next step.

Synthesis of 3C-indene 168 from 167

13C-indanone was converted to 3C-indene using the method of Braun and Bernard (64) to yield 0.35 g isolated 168 (75% yield from 166). Mass spectrum 117 (90), 116 (100), 90 (16), 64 (19), 63 (24), 58 (19), 51 (14). The mass spectrum of the labeled indanol is as follows 135 (45), 134 (91), 118 (21), 117 (74), 116 (100), 91 (34), 77 (68), 63 (61), 58 (35), 56 (35), 59 (53).
FVP of 168

i. A sample of 3^{-13}C-indene, 42 mg, was vacuum distilled through an 800°C quartz tube at a pressure of 3×10^{-5} mm Hg. The pyrolysate, 34 mg (81% mass recovery), was analyzed in the same manner as the pyrolysate of 3^{-13}C-1-phenylpropyne. 13C (75 MHz, CDCl$_3$) 39.02 (12.00), 120.89 (0.26), 123.64 (0.24), 124.47 (0.30), 126.15 (0.27), 131.99 (10.99), 132.44 (0.15). The integration of the carbon peaks is tabulated as follows:

<table>
<thead>
<tr>
<th>Carbon</th>
<th>Peak Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.942</td>
</tr>
<tr>
<td>2</td>
<td>0.148</td>
</tr>
<tr>
<td>3</td>
<td>8.800</td>
</tr>
<tr>
<td>4</td>
<td>0.217</td>
</tr>
<tr>
<td>5</td>
<td>0.272</td>
</tr>
<tr>
<td>6</td>
<td>0.296</td>
</tr>
<tr>
<td>7</td>
<td>0.237</td>
</tr>
</tbody>
</table>

The 13C-label was found in the following amounts in the indene molecule:
ii. A sample of 3^{-13}C-indene, 26 mg, was vacuum distilled through a 895°C quartz tube at a pressure of 1×10^{-4} mm Hg. The pyrolysate, 23 mg (88% mass recovery) was analyzed in the same manner as the pyrolysate of 3^{-13}C-1-phenylpropyne. 13C (75 MHz, CDCl$_3$) 39.05 (7.54), 120.90 (1.44), 123.65 (1.50), 124.47 (1.64), 126.16 (1.63), 131.99 (12.00), 134.10 (1.20), 143.60 (0.56), 144.76 (0.19). Mass spectrum 118 (7.5), 117 (91), 116 (100), 90 (13), 89 (7.0), 64 (13), 63 (17), 58 (19). The integration of the carbon peaks is tabulated as follows:

<table>
<thead>
<tr>
<th>Carbon</th>
<th>Peak Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.200</td>
</tr>
<tr>
<td>2</td>
<td>1.370</td>
</tr>
<tr>
<td>3</td>
<td>12.066</td>
</tr>
<tr>
<td>4</td>
<td>1.402</td>
</tr>
<tr>
<td>5</td>
<td>1.670</td>
</tr>
<tr>
<td>6</td>
<td>1.523</td>
</tr>
<tr>
<td>7</td>
<td>1.447</td>
</tr>
<tr>
<td>8</td>
<td>0.165</td>
</tr>
<tr>
<td>9</td>
<td>0.290</td>
</tr>
</tbody>
</table>

The 13C-label was found in the following amounts in the indene molecule:
Synthesis of 1-^2H-indene 183

1-Indenyllithium, prepared via the method of Rakita and Davison (27) from 3.009 g indene (25.9 mmol) and 10 mL of 2.5 M n-butyllithium, was quenched with deuterium oxide. The mixture was washed with three 10 mL portions of distilled water, dried over anhydrous magnesium sulfate, and the solvent removed by rotary evaporation to yield 1.266 g product (42% isolated yield). Mass spectrum 118 (20), 117 (100), 116 (91), 115 (14), 90 (8.9), 89 (6.5), 64 (6.1), 63 (9.2), 62 (4.6), 58 (8.7). 1H NMR (300 MHz, CDCl$_3$) δ 7.10-7.50 ppm (broad mult., 4 H); 6.85-6.95 (broad d, 1 H; 6.50-6.57 ppm (broad d, 0.98 H); 3.35-3.45 ppm (broad s, 1.24 H). 2H NMR (46 MHz, CHCL$_3$) δ 3.5 ppm (d, J = 4.0 Hz, 0.93 D); 7.0 ppm (s, 0.07 D).

FVP of 183

i. 1-Deuteroindene, 116 mg, was vacuum distilled through a 700°C quartz tube at a pressure of 2 x 10$^{-4}$ mm Hg.
The pyrolysate (99 mg, 85% mass recovery) was analyzed by 2H NMR and mass spectrometry. 2H NMR (46 MHz, CHCL$_3$) δ 7.1-7.8 ppm (4 s, 0.046 D); 6.5-7.1 ppm (2 s, 0.471 D), 3.5 ppm (d, $J = 4$ Hz, 0.483 D).

ii. 1-Deuteroinde, 47 mg, was vacuum distilled through a 805°C quartz tube at a pressure of 5 x 10$^{-5}$ mm Hg. The pyrolysate (44 mg, 94% mass recovery) was analyzed by 2H NMR and mass spectrometry. 2H NMR (46 MHz, CHCL$_3$) δ 7.1-7.8 ppm (4 s, 0.347 D); 6.5-7.1 ppm (2 s, 0.333 D), 3.5 ppm (d, $J = 4$ Hz, 0.320 D). Mass spectrum 118 (20), 117 (100), 116 (90), 115 (14), 90 (8.9), 89 (6.1), 64 (6.2), 63 (9.1), 62 (4.6), 58 (7.8).

iii. 1-deuteroinde, 27 mg, was vacuum distilled through a 900°C quartz tube at a pressure of 5 x 10$^{-5}$ mm Hg. The pyrolysate (44 mg, 94% mass recovery) was analyzed by 2H NMR and mass spectrometry. 2H NMR (46 MHz, CHCL$_3$) δ 7.1-7.8 ppm (4 s, 0.347 D); 6.5-7.1 ppm (2 s, 0.333 D), 3.5 ppm (d, $J = 4$ Hz, 0.320 D). Mass spectrum 118 (20), 117 (100), 116 (90), 115 (14), 90 (8.9), 89 (6.1), 64 (6.2), 63 (9.1), 62 (4.6), 58 (7.8).

iii. 1-Deuteroinde, 27 mg, was vacuum distilled through a 900°C quartz tube at a pressure of 5 x 10$^{-5}$ mm Hg. The pyrolysate (26 mg, 96% mass recovery) was analyzed by 2H NMR and mass spectrometry. 2H NMR (46 MHz, CHCL$_3$) δ 7.1-7.8 ppm (4 s, 0.506 D); 6.5-7.1 ppm (2 s, 0.256 D), 3.5 ppm (d,
$J = 4.7 \text{ Hz}, 0.238 \text{ D}$). Mass spectrum 118 (24), 117 (100), 116 (93), 115 (19), 90 (9.4), 89 (6.7), 64 (6.4), 63 (10.1), 62 (4.7), 58 (9.7).

A mass spectrometry experiment was performed on the unpyrolyzed material and the pyrolysates from the 805°C and 900°C experiments. The average peak heights from at least three mass spectra runs were tabulated and the results for the largest peaks - namely the 115, 116, 117, and 118 masses - were compared. The change in the ratios of these peaks shows that a maximum value for non-deuterated material and dideuterated material is 0.2% for the 805°C experiment and 2.5% for the 900°C experiment.

<table>
<thead>
<tr>
<th>Masses</th>
<th>Unpyrolyzed</th>
<th>805°C Sample</th>
<th>900°C Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>115</td>
<td>13.50</td>
<td>13.90</td>
<td>18.57</td>
</tr>
<tr>
<td>116</td>
<td>91.21</td>
<td>90.41</td>
<td>92.67</td>
</tr>
<tr>
<td>117</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td>118</td>
<td>19.86</td>
<td>19.97</td>
<td>24.21</td>
</tr>
</tbody>
</table>

Preparation of 0.116 M solution of sodium deuterioxide

Sodium metal, 0.266 g (11.6 mmol), was cautiously added to a beaker containing 100 mL deuterium oxide. After the reaction had stopped, the solution was transferred to a
stoppered bottle and used as needed without further purification.

Synthesis of trideuteromethyl phenyl ketone

Acetophenone, 7.656 g (63.7 mmol), was mixed with 10 mL of a 0.116 M solution of sodium deuteroxide in deuterium oxide and allowed to stir for six hours. This procedure was repeated three times -- each time discarding the spent aqueous layer and replacing with fresh. After the last six hours, the old layer was replaced with 10 mL deuterium oxide and stirred to remove any residual base. This was repeated once. The organic layer was separated and dried over anhydrous magnesium sulfate. The product was filtered from the drying agent to yield 5.986 g (76% yield) pure trideuteromethylphenylketone. The 300 MHz 1H NMR (CDCl$_3$) agrees in every way with that of acetophenone except that the methyl signal is greatly reduced. Integration of the methyl proton versus the para-hydrogen of the phenyl ring shows that this deuteration experiment was 98.5% effective. 2H NMR (46 MHz, acetone) δ 2.4 ppm (s).

Synthesis of 1,2,2,2-tetradeutero-1-phenylethanol

To a stirred suspension of 1.03 g (24.5 mmol) lithiumtetradeuteroaluminate in THF cooled to -78°C was slowly added 5.174 g (42.0 mmol) of trideuteromethylphenylketone. The solution was slowly allowed to come to room
temperature over the next three hours and 5 mL saturated ammonium chloride was added along with 30 mL diethyl ether. The layers were separated and the organic layer was washed with two 5 mL portions of distilled water. The organic layer was dried over anhydrous sodium sulfate and the solution filtered from the drying agent. The solvent was removed by rotary evaporation to yield 4.435 g (84%) isolated alcohol 218. 1H NMR (300 MHz, CDCl$_3$) δ 7.1-7.4 ppm (broad mult., 5 H); 1.76 ppm (s, 1 H). 2H NMR (46 MHz, acetone) δ 4.9 ppm (s, 1 D); 1.2 ppm, (s, 3 D).

Preparation of anhydrous copper sulfate

A 66.53 g (0.2665 mol) sample of copper sulfate pentahydrate was placed in a porcelain dish and heated in a muffle furnace between the temperatures of 200°C and 330°C for four hours. While the heating process took place, the solid material was stirred every 0.5 hr. After the four hours of heating, the weight of the material showed a loss equivalent to the weight loss of five moles of water per mole of CuSO$_4$·5H$_2$O. The light, blue-gray powder, 42.50 g (100% yield), was stored in a stoppered bottle in a dessicator.

Synthesis of α,β,β-trideuterostyrene 196

Alcohol 195, 1.049 g (8.312 mmol), was converted into α,β,β-trideuterostyrene using anhydrous copper sulfate
following the procedure of Hoffman et al. (68). Isolated yield was 327 mg (37%). 2H NMR (46 MHz, acetone) δ 6.68 ppm (s, 1 D); 5.70 ppm (s, 1 D), 5.20 ppm (s, 1 D). Mass spectrum 107 (100), 106 (35), 105 (17), 81 (20), 80 (37), 79 (33), 53 (22), 52 (38), 51 (39), 50 (25), 40 (15), 39 (19), 38 (12).

FVP of 196

i. A sample of α,β,β-trideuterostyrene, 61 mg, was vacuum distilled through an 805°C quartz tube at a pressure of 1×10^{-4} mm Hg. The pyrolysate, 60 mg (98% mass recovery), was analyzed by 2H NMR. The 46 MHz 2H NMR was identical to that of the unpyrolyzed material.

ii. A sample of α,β,β-trideuterostyrene, 113 mg, was vacuum distilled through a 900°C quartz tube at a pressure of 4×10^{-4} mm Hg. The pyrolysate, 107 mg (95% mass recovery), was analyzed by 2H NMR. The 46 MHz 2H NMR was identical to that of the unpyrolyzed material.

Synthesis of α-deuterotoluene 198

A solution of 2.85 g (22.5 mmol) of benzyl chloride in 5 mL diethyl ether was slowly added to a round bottom flask containing 0.63 g (26.0 mmol) magnesium turnings in 10 mL diethyl ether. After the reaction had subsided, the grignard was quenched with 1.0 g deuterium oxide. The reaction was allowed to stir for one hour before adding
concentrated hydrochloric acid to hydrolyze the excess magnesium and the magnesium salts. The layers were separated and the organic layer was washed three times with 10 mL portions of distilled water. The organic layer was dried over anhydrous magnesium sulfate, filtered from the drying agent, and the solvent removed by rotary evaporation. The product was separated from the bibenzyl impurity by bulb-to-bulb vacuum distillation at room temperature. 2H NMR (46 MHz, acetone) δ 2.49 ppm (s). Mass spectrum 93 (64), 92 (100), 66 (11), 65 (7), 64 (8), 63 (8), 51 (9).

FVP of 198

i. A sample of α-deuterotoluene, 83 mg, was vacuum distilled through a 800°C quartz tube at a pressure of 3×10^{-4} mm Hg. The pyrolysate, 81 mg (98% mass recovery), was analyzed by 2H NMR to show no change between the starting material and the pyrolysate.

ii. A sample of α-deuterotoluene, 33 mg, was vacuum distilled through a 900°C quartz tube at a pressure of 4×10^{-4} mm Hg. The pyrolysate, 33 mg (100% mass recovery), was analyzed by 2H NMR to show no change between the starting material and the pyrolysate.

Synthesis of 4-deuterotoluene 209

A solution containing 10.50 g (61.39 mmol) 4-bromotoluene was slowly added to a round bottom flask
containing 1.70 g (69.92 mmol) magnesium turnings. When the reaction has subsided, 2.0 g deuterium oxide was added and the mixture was allowed to stir for one hour. Concentrated hydrochloric acid was added to hydrolyze the excess magnesium and the magnesium salts. The layers were separated and the organic layer was washed with three 10 mL portions of distilled water. The organic layer was dried over anhydrous magnesium sulfate, filtered from the drying agent, and the solvent removed by rotary evaporation. The product was removed from the impurity 4-4'-dimethylbiphenyl by bulb-to-bulb distillation at room temperature. 2H NMR 7.125 ppm (apparent t, J = 1.072 Hz). 1H NMR (300 MHz, d_6-acetone) δ 7.219 ppm (apparent d, J = 7.5 Hz, 2 H); 7.153 ppm (apparent d, J = 7.8 Hz, 2 H); 2.298 ppm (s, 3 H).

NMR study of octadeuterotoluene

An NMR study was done to demonstrate that 46 MHz 2H NMR could distinguish between ortho-, meta-, and para-deuterotoluene. After conducting 1H NMR experiments on toluene in various deuterated solvents, it was concluded that hexadeuteracetone separated the phenyl shifts of toluene the best. A 2H NMR experiment of octadeuterotoluene in acetone showed three phenyl shifts: 7.22 ppm (s, 2 D); 7.15 ppm (s, 2 D); 7.12 ppm (s, 1 D). These shifts were easily separated and it was concluded that the three isomers of deuterotoluene could probably be separated by this method.
FVP of 209

i. A sample of 4-deuterotoluene, 192 mg, was vacuum distilled through an 803°C quartz tube at a pressure of 4 x 10^{-4} mm Hg. The pyrolysate, 186 mm Hg (97% mass recovery), was analyzed by 2H NMR and 1H NMR to show no change between the pyrolysate and the starting material.

ii. A sample of 4-deuterotoluene, 217 mg, was vacuum distilled through a 902°C quartz tube at a pressure of 8.5 x 10^{-4} mm Hg. The pyrolysate, 204 mm Hg (94% mass recovery), was analyzed by 2H NMR and 1H NMR to show no change between the pyrolysate and the starting material.

Synthesis of trans-cinnamyl chloride

To a flask containing 13.9 g trimethylchlorosilane (128 mmol) was slowly added 16.40 g (122 mmol) trans-cinnamyl alcohol. After stirring for one hour, the product was separated from the excess trimethylchlorosilane by vacuum distillation to yield 12.0 g (65%) trans-cinnamyl chloride. Identification was made by comparison of 1H NMR mass spectrum with that of authentic material.

Synthesis of trans-8-(deuteromethyl)-styrene

To a suspension of 0.48 g (45.7 mmol) lithium tetrahydroaluminate in 30 ml THF cooled to -78°C was slowly added 4.36 g trans-cinnamyl chloride. The mixture was allowed to come to room temperature and stir one additional hour.
After quenching with distilled water and extracting the organic product, much of the starting material remained. The mixture of product and starting material was redissolved in THF and treated with 1.20 g lithiumtetrahydroaluminate and the mixture refluxed for three hours. After aqueous workup, the trans-β-(deuteromethyl)-styrene was isolated in 82% yield (2.5 g). 1H NMR (300 MHz, d$_6$-acetone) δ 7.3-7.4 ppm (d, J = 7.6 Hz, 2 H); 7.2-7.3 ppm (apparent t, J = 7.8 Hz, 7.2 Hz, 2 H); 7.1-7.2 ppm (apparent t, J = 7.1 Hz, 7.2 Hz, H); 6.41 ppm (d, J = 15.8 Hz, 1 H); 6.27 ppm (d of t, J = 15.8 Hz, 6.3 Hz, 1 H); 1.78-1.86 ppm (broad mult., 2 H). Mass spectrum 119 (71), 118 (100), 117 (16), 116 (34), 115 (12), 93 (19), 92 (35), 91 (24), 77 (16), 51 (15).

FVP of trans-β-(deuteromethyl)-styrene

i. A sample of trans-β-(deuteromethyl)-styrene, 49 mg, was vacuum distilled through a 703°C quartz tube at a pressure of 2×10^{-4} mm Hg. The pyrolysate, 44 mg (88% mass recovery), was analyzed by 2H NMR. A very small amount of deuterium was present in the phenyl region of the 2H NMR.

ii. A sample of trans-β-(deuteromethyl)-styrene, 45 mg, was vacuum distilled through an 800°C quartz tube at a pressure of 6×10^{-4} mm Hg. The pyrolysate, 42 mg (93% mass recovery), was analyzed by 2H NMR. Approximately 10% of the 2H signal was present in the phenyl region of the 2H NMR.
iii. A sample of trans-β-(deuteromethyl)-styrene, 80 mg, was vacuum distilled through a 900°C quartz tube at a pressure of 6×10^{-4} mm Hg. The pyrolysate, 67 mg (84% mass recovery), was analyzed by 2H NMR. Approximately 50% of the 2H signal was present in the phenyl region of the 2H NMR. There were too many shifts in the phenyl region to identify the compounds present in the pyrolysate. Gas chromatography showed that there was more than one compound present.

FVP of trans-β-methylstrene 211a

i. A sample of 211a, 73 mg, was vacuum distilled through a 700°C quartz tube at a pressure of 2.5×10^{-5} mm Hg. The pyrolysate, 69 mg (95% mass recovery), was analyzed by GC and 300 MHz 1H NMR to show a 23% conversion to cis-β-methylstyrene.

ii. A sample of 211a, 72 mg, was vacuum distilled through an 800°C quartz tube at a pressure of 2×10^{-4} mm Hg. The pyrolysate, 71 mg (99% mass recovery), was analyzed by GC and 300 MHz 1H NMR to show a 31% conversion to the following products: cis-β-methylstyrene, 28%; indene, 1%; styrene, 1%; and unidentifiable isomer of starting material, 1%.

iii. A sample of 211a, 86 mg, was vacuum distilled through a 900°C quartz tube at a pressure of 6×10^{-4} mm Hg. The pyrolysate, 72 mg (84% mass recovery), was analyzed by GC and 300 MHz 1H NMR to show a 58% conversion to the
following products: cis-\(\beta\)-methylstyrene, 19%; indene, 15%; styrene, 14%; an unidentifiable isomer of starting material, 7%.

Synthesis of 1-trimethylsilylindene

1-trimethylsilylindene was prepared by the method of Rakita and Davison (27) and purified by preparatory GC. \(^1\)H NMR (300 MHz, \(d_6\)-acetone) \(\delta\) 7.1-7.5 (two complex multiplets, 4 H); 6.9 ppm (d of d, \(J = 5.4\) Hz, 1.2 Hz, 1 H); 6.7 ppm (d of d, \(J = 5.3\) Hz, 1.9 Hz, 1 H); 3.6 ppm (s, 1 H); -0.05 ppm (s, 9 H). Mass spectrum 188 (8), 173 (2), 115 (12), 75 (5), 74 (11), 73 (100), 45 (18), 43 (10).

Pyrolysis of 1-trimethylsilylindene

1-trimethylsilyl indene was vacuum distilled through a 600°C quartz tube at a pressure of \(1 \times 10^{-5}\) mm Hg. Analysis by \(^1\)H NMR and GC/MS showed the presence of 3-dimethylsilyl-indene and another isomeric compound which could not be identified or separated from the reaction mixture.

Higher temperatures (650°C, 700°C) yielded the decomposition products indene and m/e 130 products mentioned in earlier research.

Copyrolysis of 1-methoxypentamethyldisilane \(221\) and allene \(10\)

Ninety-seven mg of \(221\) was pyrolyzed through a 475°C quartz tube with 30 mL/min allene as the carrier gas. No
silicon containing products other than methoxytrimethylsilane were observed by GC/MS.

SFR pyrolysis of 221 and 10

i. SFR pyrolysis of 0.5 torr 221 and 5.0 torr 10 at 475°C yielded only methoxytrimethylsilane and the insertion product of dimethylsilylene into starting material. Identification was made by mass spectrometry.

ii. Repeat of i with 0.5 torr 221 and 50 torr 10 did not change the results.

SFR pyrolysis of 221 and trimethylsilylacetylene

475°C SFR pyrolysis of 0.5 torr 221 and 5.0 torr trimethylsilylacetylene yielded dimethylsilyltrimethylsilylacetylene by mass spectrometry demonstrating that dimethylsilylene can be trapped under these conditions.

SFR of 221 and 1,2-butadiene

0.5 torr 221 and 5.0 mm 1,2-butadiene yielded an adduct of m/3 112 by mass spectrometry. Mass spectrum 112 (5), 97 (40), 73 (20), 72 (18), 71 (40), 70 (18), 59 (100), 58 (40), 55 (22), 53 (22).

Copyrolysis of 223 and 3-methyl-1,2-butadiene 224

Copyrolysis of 373 mg 1,2-dimethoxytetramethyldisilane and 1.254 g 3-methyl-1,2-butadiene yielded 39% dimethyldimethoxysilane and 31% 2-dimethylsilyl-3-methyl-
1,3-butadiene. 1H NMR (300 MHz, CDCl$_3$) δ 5.8 ppm (d, $J = 2.06$ Hz, 1 H); 5.5 ppm (s, 1 H); 5.06 ppm (s, 1 H); 5.04 ppm (g, $J = 1.25$ Hz, 1 H); 4.26 ppm (heptet, $J = 3.7$ Hz, 1 H); 1.90 ppm (s, 3 H); 0.22 ppm (d, $J = 3.8$ Hz, 6 H). 13C NMR (75 MHz, CDCl$_3$) δ -3.67 (59), 21.07 (53), 114.80 (63), 125.77 (100), 145.43 (40), 149.50 (19). Mass spectrum 126 (15), 112 (11), 111 (100), 109 (22), 85 (28), 83 (38), 73 (12), 71 (14), 69 (14), 67 (19), 59 (89), 58 (25), 55 (17), 53 (21), 45 (21), 44 (15), 43 (85), 42 (14), 41 (24). Exact mass calculated for C$_7$H$_{14}$Si (M$^+$) 126.08648, measured 126.08699. GCIR 3094, 2970, 2129 (strong), 1258, 895 (very strong). Anal. Calcd. for C$_7$H$_{14}$Si: C, 66.64; H, 11.18. Measured: C, 66.44; H, 11.37.

Synthesis of 2H-1-trimethylsilylethylene

To a flask containing 1.985 g (81.7 mmol) magnesium turnings and 50 mL THF was added a solution of 11.850 g (66.0 mmol) 1-bromo-1-trimethylsilylethylene and 10 mL THF. After the reaction subsided, the grignard was quenched with 10 g (500 mmol) deuterium oxide and allowed to stir for one hour. Concentrated hydrochloric acid was added to hydrolyze the excess magnesium and the magnesium salts. The layers were separated and the organic layer was washed with three 10 mL portions of distilled water and dried over anhydrous magnesium sulfate. The drying agent was removed via filtration and the solvent removed by rotary evaporation to
yield 4.8 g (72%) \(^{2}\)H-1-trimethylsilylethylene. Mass spectrum 101 (3.2), 87 (9.3), 86 (100), 73 (17), 60 (42), 59 (89), 45 (23), 43 (56). \(^1\)H NMR (300 MHz, CDCl₃) δ 5.87-5.95 ppm (overlapping d of t, \(J = 3.6 \text{ Hz}, 2.4 \text{ Hz}, 1 \text{ H})\); 5.62-5.67 ppm (overlapping d of t, \(J = 3.3 \text{ Hz}, 3.3 \text{ Hz}, 1 \text{ H})\); 0.05 ppm (s, 9 H).

Synthesis of \(^{2}\)H-1-trimethylsilylcyclopropane

This procedure is an adaptation of Seyferth's synthesis of trimethylsilylcyclopropane from vinyltrimethylsilane (83). Cuprous chloride, 1.130 g (11.42 mmol), zinc dust, 6.950 g (10.63 mmol), and methylene iodide, 16.250 g (60.67 mmol), were mixed in a round bottom flask along with 15 mL di-n-butyl ether. The mixture was heated to reflux and cooled to 65°C. A few crystals of sublimed iodine were added and the purple color was allowed to dissipate. After 0.5 hour, 3.679 g (36.18 mmol) \(^{2}\)deutero-1-trimethylsilyl-ethylene was added and the reaction was kept at 65°C for 27 hours. The liquid was simply distilled from the salts to yield 2.54 g \(^{2}\)H-1-trimethylsilylcyclopropane (2.54 g, 61% yield) as a solution in di-n-butyl ether. The product was purified by preparatory gas chromatography as needed. \(^1\)H NMR (300 MHz, CDCl₃) δ 0.509 ppm (broad s, 2 H); 0.142 ppm (broad s, 2 H); -0.750 ppm (s, 9 H). \(^2\)H NMR (46 MHz, CHCl₃) δ -0.42 ppm (s). Mass spectrum 100 (83), 73 (100), 72 (27), 60 (46), 59 (44), 45 (36), 43 (58).
FVP of 256

1-deutero-1-trimethylsilyl cyclopropane, 44 mg, was vacuum distilled through a 700°C quartz tube at a pressure of 2×10^{-4} mm Hg. The pyrolysate, 41 mg (93% mass recovery), was analyzed by mass spectrometry and 46 MHz 2H NMR. Mass spectrum 115 (2), 100 (70), 74 (10), 73 (100), 60 (8), 59 (10), 45 (29), 43 (28). 2H NMR (46 MHz, CHCl$_3$) 5.85 ppm (broad s, approximately 95% of total deuterium signals); 1.50 ppm (broad s, approximately 5% of total deuterium signals.)
REFERENCES

 d. Figuera, J. M.; Martin, M.; Menendez, V. Afinidad 1977, 34, 130.
37. Although the researchers were not clear on which ^{13}C NMR methodology was used, the experiment could have been INADEQUATE. This author thanks Dr. Vinko Rutan for his helpful discussion on this matter.

72. Gajewski, J. J., Department of Chemistry, University of Indiana, Bloomington, Indiana, personal communication.

