Conserving Beneficial Insects with Native Plants

Kelly Gill
Iowa State University

Matthew E. O'Neal
Iowa State University, oneal@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/leopold_pubspapers
Part of the Entomology Commons, and the Natural Resources and Conservation Commons

Recommended Citation
Gill, Kelly and O'Neal, Matthew E., "Conserving Beneficial Insects with Native Plants" (2013). Leopold Center Pubs and Papers. 18.
http://lib.dr.iastate.edu/leopold_pubspapers/18

This Report is brought to you for free and open access by the Leopold Center for Sustainable Agriculture at Iowa State University Digital Repository. It has been accepted for inclusion in Leopold Center Pubs and Papers by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Conserving Beneficial Insects with Native Plants

Abstract
Habitat restoration is important for conserving and protecting beneficial insect communities and sustaining the ecosystem services they provide. Thoughtful establishment of native perennial plants will provide multiple, long-term resources that beneficial insects need to persist such as nectar, pollen, nesting habitat, and overwintering sites. Native perennial plants have several advantages compared to annual exotic plants.

Keywords
Entomology

Disciplines
Entomology | Natural Resources and Conservation
CONSERVING
BENEFICIAL INSECTS with NATIVE PLANTS

Ecosystem Services
are goods and services humans obtain from managed and natural ecosystems such as food, fuel, fiber, and recreation. **POLLINATORS & NATURAL ENEMIES** are examples of beneficial insects that play a vital role in ecological processes that support these services.

Pollinators
contribute to food production through crop pollination. The annual value of pollination services to U.S. agriculture is estimated at $20 billion. Insects also pollinate wild plants (top), which is essential for natural ecosystems. Honey bees, are the most recognized pollinator, however there are 4,000 species of wild bees in North America and several other insects are considered pollinators.

Natural Enemies
insects predators (bottom right) and parasitoids (bottom left) attack and feed on other insects. They protect cultivated and wild plants through the suppression of insect plant pests. Natural enemies can reduce the need for insecticides.

Habitat restoration is important for conserving and protecting beneficial insect communities and sustaining the ecosystem services they provide. Thoughtful establishment of native perennial plants will provide multiple, long-term resources that beneficial insects need to persist such as nectar, pollen, nesting habitat, and overwintering sites. Native perennial plants have several advantages compared to annual exotic plants.

ADVANTAGES OF NATIVE PERENNIAL PLANTS
- Adapted to local conditions
- Less likely to become invasive
- Establish for multiple years
- Promote native biodiversity
- Offer permanent refuge
- Require less maintenance
- Provide floral resources
- Contribute to ecological resilience

This information was prepared by Kelly Gill and Dr. Matt O’Neal, ISU Entomology, as part of activities related to Grant E2009-09, Optimizing buffer strips for improved ecosystem services, from the Leopold Center for Sustainable Agriculture.

January 2013
GUIDELINES FOR PLANT SELECTION

Mixtures should include:
- Local ecotypes
- Species bloom in spring, summer, and fall (at least 3 species per bloom period)
- Species that are not overly aggressive
- Flowers with a variety of shapes and colors
- Warm-season grasses (less than 30% of mixture should consist of grasses)
- Between 20 - 40 seeds per square foot

** The mixture below was developed for Iowa. Plants are suited for full sun and a range of soil conditions.

For more information and resources refer to:
- www nrsc usda gov
- http://www.xerces.org
- http://www.sare.org
- https://attra.ncat.org

The “MSU BEST BET” mixture

<table>
<thead>
<tr>
<th>Bloom period</th>
<th>image</th>
<th>Common name</th>
<th>Scientific name</th>
<th>Attractiveness rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early</td>
<td></td>
<td>Canadian anemone</td>
<td>Anemone canadensis</td>
<td>* GOOD</td>
</tr>
<tr>
<td>Mid</td>
<td>1.</td>
<td>Meadow zizia</td>
<td>Zizia aptera</td>
<td>** BETTER</td>
</tr>
<tr>
<td>Late</td>
<td>2.</td>
<td>Pinnate coneflower</td>
<td>Ratibida pinnata</td>
<td>*** BEST</td>
</tr>
<tr>
<td></td>
<td>3.</td>
<td>Swamp milkweed</td>
<td>Asclepias incarnata</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.</td>
<td>Common boneset</td>
<td>Eupatorium perfoliatum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.</td>
<td>Cup plant</td>
<td>Silphium perfoliatum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.</td>
<td>Prairie ironweed</td>
<td>Vernonia fasciculata</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.</td>
<td>New England aster</td>
<td>Symphyotrichum novae-angliae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.</td>
<td>Smooth blue aster</td>
<td>Symphyotrichum laeve</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Canada wildrye</td>
<td>Elymus canadensis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Switchgrass</td>
<td>Panicum virgatum</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Little bluestem</td>
<td>Schizachyrium scoparium</td>
<td></td>
</tr>
</tbody>
</table>

The species listed above were evaluated individually for their attractiveness to beneficial insects (bees and natural enemies) by research conducted at Michigan State University [see http://nativeplants.msu.edu/plant_facts]. This combination is the most effective for attracting diverse and abundant beneficial insect communities and was named the “MSU Best Bet” mixture. Research conducted at Iowa State University revealed that when these plants are combined they produce a habitat that attracts more beneficial insects than plants currently used to reconstruct prairies.

Photos (front, back: 4,6,8) by Adam Varenhorst and (back: 1-3, 5,7) PLANTS Database, USDA Plants [http://plants.usda.gov]