Re-precipitation of Mg-Cd-Yb quasicrystals in Mg matrix and their interfaces

Satoshi Ohhashi
Tohoku University, s-ohhashi@tohoku.ac.jp

Koh Saitoh
Nagoya University

Akira Kato
Toyota Motor Corporation

An Pang Tsai
Tohoku University

Follow this and additional works at: https://lib.dr.iastate.edu/aperiodic2018

Part of the Chemistry Commons, and the Materials Science and Engineering Commons
Re-precipitation of Mg-Cd-Yb quasicrystals in Mg matrix and their interfaces

Satoshi Ohhashi¹, Koh Saitoh², Akira Kato³, An Pang Tsai¹

¹Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku Univ., Sendai 980-8577, Japan
²Institute of Materials and Systems for Sustainability (IMaSS), Nagoya Univ., Nagoya 464-8603, Japan
³Advanced materials engineering div., Toyota Motor Corporation, Susono 410-1193, Japan
s-ohhashi@tohoku.ac.jp

Mg-Cd-Yb quasicrystal (Qc) [1] is derived from stable binary Cd-Yb quasicrystal [2] by partially replacing Cd with Mg. Stable Qc was identified in the compositional region of Mg₅₆Cd₄₄Yb₁₆ (x=0~60), which is much wider than that of the Zn-Mg-Y system or Zn-Mg-Zr systems. Two-phase equilibrium region of Qc and α-Mg (Mg) is also much wide and their eutectic reaction occurs at 460°C, Mg₆₈Cd₂₅Yb₉. A unique orientation relationship between Qc and Mg has been recognized for Qc particle in Mg and eutectic structure in this system [3, 4]. Recently, we found that an alternative solutionizing and annealing treatments can reduce eutectic structure and promote re-precipitation of Qc particles in the Mg matrix. In this case, the Qc/Mg interface is expected to be equilibrium. In this study, the equilibrium interface structure is investigated by means of high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) in order to get insights into the role of interface in stability of the Qc in Mg matrix.

Mg-Cd-Yb alloys prepared with induction furnace have been annealed at 460~520 °C for 1~6h and subsequently quenched into water. Annealing for re-precipitation of Qc particles was performed at 300 °C. Qc grains and microstructure have been observed and analysed with SEM (HITACHI SU6600) and TEM (TOPCON EM-002B, JEOL JEM-ARM 200F Cold).

Re-precipitated Qc particles in Mg matrix possessed clear facets showing a rectangle shape along Mg a-axis direction on Qc{2-[f]}// Mg c-axis direction for Mg₅₆Cd₄₄Yb₁₆ alloy. Sometimes, irregular hexagons or rectangles with twinning boundaries were observed. These precipitates and surrounding Mg matrix have the unique orientation relationship as previous reported: mutually perpendicular three [2-[f]] axes of Qc and a-axis, [01-10], c-axis of α-Mg are parallel respectively. Excellent matching of Qc {2-[f]} and Mg (0002) have been observed at the Qc/Mg interface with HAADF-STEM. These results are coincident with the interfacial stability in terms of the lattice matching of atomic plane estimated by means of X-ray diffraction [3, 4]. Stable interfaces of Qc{2-[f]}/Mg(0002), Qc{2-[f]}/Mg(01-10) could be the result of the shape of precipitates.