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Abstract—We consider the network communication scenario
in which a number of sources si each holding independent
information Xi wish to communicate the sum

P

Xi to a set
of terminals tj . The case in which there are only two sources or
only two terminals was considered by the work of Ramamoorthy
[ISIT 2008] where it was shown that communication is possible
if and only if each source terminal pair si/tj is connected by at
least a single path.

In this work we study the communication problem in general,
and show that even for the case of three sources and three
terminals, a single path connecting source/terminal pairs does
not suffice to communicate

P

Xi. We then present an efficient
encoding scheme which enables the communication of

P

Xi

for the three sources, three terminals case, given that each
source terminal pair is connected by two edge disjoint paths.
Our encoding scheme includes a structural decomposition of the
network at hand which may be found useful for other coding
problems as well.

I. I NTRODUCTION

Network coding is a new paradigm in networking where
nodes in a network have the ability to process information
before forwarding it. This is unlike routing where nodes
in a network primarily operate in a replicate and forward
manner. The problem of multicast has been studied intensively
under the paradigm of network coding. The seminal work of
Ahlswede et al. [1] showed that under network coding the
multicast capacity is the minimum of the maximum flows from
the source to each individual terminal node. The work of Li
et al. [5] showed that linear network codes were sufficient
to achieve the multicast capacity. The algebraic approach to
network coding proposed by Koetter and Médard [3] provided
simpler proofs of these results.

In recent years there has also been a lot of interest in the
development and usage of distributed source coding schemes
due to their applications in emerging areas such as sensor
networks. Classical distributed source coding results such
as the famous Slepian-Wolf theorem [9] usually assume a
direct link between the sources and the terminals. However
in applications such as sensor networks, typically the sources
would communicate with the terminal over a network. Thus,
considering the distributed compression jointly with the net-
work information transfer is important. Network coding for

Authors are in alphabetical order.

correlated sources was first examined by Ho et al. [2]. The
work of Ramamoorthy et al. [8] showed that in general
separating distributed source coding and network coding is
suboptimal except in the case of two sources and two termi-
nals. A practical approach to transmitting correlated sources
over a network was considered by Wu et al. [10]. Reference
[10] also introduced the problem ofNetwork Arithmeticthat
comes up in the design of practical systems that combine
distributed source coding and network coding.

In the network arithmetic problem, there are source nodes
each of which is observing independent sources. In addition
there is a set of terminal nodes that are only interested in
the sum of these sources i.e. unlike the multicast scenario
where the terminals are actually interested in recovering all
the sources, in this case the terminals are only interested in
the sum of the sources.

The rate region of the network arithmetic problem was
characterized recently by an author of this work in [7] for the
case of directed acyclic networks (DAGs) with unit capacity
edges and independent, unit entropy sources in which the
network has at most two sources or two terminals. Basically,
it was shown that as long as there exists at least one path
from each source to each terminal, there exists an assignment
of coding vectors to each edge in the network such that the
terminals can recover the sum of the sources.

In this work we continue the study of the network arithmetic
problem for networks with more than two sources and two
terminals. Primarily we show that the characterization of [7]
no longer holds when the number of sources and terminals is
greater than two. We note that a similar result was obtained
recently in an independent manner by [6]. We then turn to
obtain encoding schemes for the three source three terminal
case (3s/3t). We show that as long as each source is connected
by two edge disjoint paths to each terminal, the network
arithmetic problem is solvable. Namely, we present efficient
encoding schemes that allow communication in the3s/3t case.
Our main result can be summarized by the following theorem:

Theorem 1:Let G = (V, E) be a directed acyclic network
with unit capacity edges and three sourcess1, s2, s3 containing
independent unit-entropy sourcesX1, X2, X3 and three termi-
nals t1, t2, t3. If there exist two edge disjoint paths between
each source/terminal pair, then there exists a linear network
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coding scheme in which the sumX1 + X2 + X3 is obtained
at each terminaltj . Moreover, such a network code can be
found efficiently.

This paper is organized as follows. Section II presents the
network coding model that we shall be assuming. In Section
III we present our counter example to the characterization of
[7] containing 3 sources and 3 terminals. In Sections IV and V
we present our main result: the proof of Theorem 1. In Section
VI we outline our conclusions.

II. N ETWORK CODING MODEL

In our model, we represent the network as a directed graph
G = (V, E). The network contains a set of source nodes
S ⊂ V that are observing independent, discrete unit-entropy
sources and a set of terminalsT ⊂ V . Our network coding
model is basically the one presented in [3]. We assume that
each edge in the network has unit capacity and can transmit
one symbol from a finite field of size2m per unit time (we are
free to choosem large enough). If a given edge has a higher
capacity, it can be treated as multiple unit capacity edges.
A directed edgee between nodesvi and vj is represented
as (vi → vj). Thus head(e) = vj and tail(e) = vi. A
path between two nodesvi and vj is a sequence of edges
{e1, e2, . . . , ek} such thattail(e1) = vi, head(ek) = vj and
head(ei) = tail(ei+1), i = 1, . . . k − 1.

Our counter-example in Section III considers arbitrary
network codes. However, our constructive algorithm for the
proof of Theorem 1 shall use linear network codes. In linear
network coding, the signal on an edge(vi → vj), is a linear
combination of the signals on the incoming edges onvi and the
source signal atvi (if vi ∈ S). In this paper we assume that the
source (terminal) nodes do not have any incoming (outgoing)
edges from (to) other nodes. If this is not the case one can
always introduce an artificial source (terminal) connectedto
the original source (terminal) node by an edge of sufficiently
large capacity that has no incoming (outgoing) edges. We shall
only be concerned with networks that are directed acyclic and
can therefore be treated as delay-free networks [3]. LetYei

(such thattail(ei) = vk andhead(ei) = vl) denote the signal
on theith edge inE and letXj denote thejth source. Then,
we have

Yei
=

∑

{ej |head(ej)=vk}

fj,iYej
if vk ∈ V \S, and

Yei
=

∑

{j|Xj observed atvk}

aj,iXj if vk ∈ S,

where the coefficientsaj,i and fj,i are fromGF (2m). Note
that since the graph is directed acyclic, it is possible to express
Yei

for an edgeei in terms of the sourcesXj ’s. Suppose
that there aren sourcesX1, . . . , Xn. If Yei

=
∑n

k=1 βei,kXk

then we say that the global coding vector of edgeei is
βei

= [βei,1 · · · βei,n]. We shall also occasionally use the
term coding vector instead of global coding vector in this
paper. We say that a nodevi (or edgeei) is downstream of
another nodevj (or edgeej) if there exists a path fromvj (or
ej) to vi (or ei).

III. E XAMPLE OF THREE SOURCES AND THREE

TERMINALS WITH INDEPENDENT UNIT-ENTROPY SOURCES

We now present our counter example to the characterization
of [7] containing 3 sources and 3 terminals. Namely, we
present a3s/3t network with at least one path connecting
each source terminal pair, in which the sum of sources cannot
(under any network code) be transmitted (with zero error
probability) to all three terminals.

Consider the network shown in Figure 1, with three source
nodes and three terminal nodes such that the source nodes
observe unit entropy sourcesX1, X2 andX3 that are also inde-
pendent. All edges are unit capacity. As showed in Figure 1 the
incoming edges into terminalt3 contain the valuesf1(X1, X2)
and f ′

1(X2, X3) wheref1 and f ′
1 are some functions of the

sources.
Suppose thatX3 = 0. This implies thatt1 should be able to

recoverX1 + X2 (that has entropy 1) from justf1(X1, X2).
Moreover note that each edge is unit capacity. Therefore the
entropy off1(X1, X2) also has to be 1. i.e. there exists a one-
to-one mapping between the set of values thatf1(X1, X2)
takes and the values ofX1 + X2. In a similar manner we
can conclude that there exists a one-to-one mapping between
the set of values thatf ′

1(X2, X3) takes and the values of
X2 + X3. At terminal t3, there needs to exist some function
h(f1(X1, X2), f

′
1(X2, X3)) =

∑3
i=1 Xi. By the previous

observations, this also implies the existence of a function
h′(X1 +X2, X2 +X3) that equals

∑3
i=1 Xi. We now demon-

strate that this is a contradiction. LetX1 = a, X2 = 0, X3 = c
andX ′

1 = a−b, X ′
2 = b, X ′

3 = c−b. In both cases the inputs to
the functionh′(·, ·) are the same. However

∑3
i=1 Xi = a + c,

while
∑3

i=1 X ′
i = a − b + c, that are in general different.

Therefore such a functionh′(·, ·) cannot exist1.

Fig. 1. Example of a network with three sources and three terminals, such
that there exists at least one path between each source and each terminal.
However all the terminals cannot compute

P

3

i=1
Xi.

1These arguments extend naturally even if we consider encoding over time.
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IV. PROOF OFTHEOREM 1

We start by giving an overview of our proof. Roughly
speaking, our proof for determining the desired network code
has three steps. In the first step, we turn our graphG into
a graphĜ = (V̂ , Ê) in which each internal nodev ∈ V̂
is of total degree at most three. We refer to such graphs
as structured graphs. Our efficient reduction follows that
appearing in [4], and has the additional following properties:
(a) Ĝ is acyclic. (b) For every source (terminal) inG there is
a corresponding source (terminal) in̂G. (c) For any two edge
disjoint pathsP1 and P2 connecting a source terminal pair
in G, there exists twovertex disjoint paths inĜ connecting
the corresponding source terminal pair. Here and throughout
we say two paths between a source/terminal pair are vertex
disjoint even though they share their first and last vertices(i.e.,
the source and terminal at hand). (d) Any feasible network
coding solution inĜ can be efficiently turned into a feasible
network coding solution inG.

It is not hard to verify that proving Theorem 1 on structured
graphs implied a proof for general graphsG as well. Indeed,
given a networkG satisfying the requirements of Theorem 1
construct the corresponding network̂G. By the properties
above,Ĝ also satisfies the requirements of Theorem 1. Assum-
ing Theorem 1 is proven for structured graphsĜ, we conclude
the existence of a feasible network code in̂G. Finally, this
network code can be converted (by property (d) above) into
a feasible network code forG as desired. We specify the
mapping betweenG and Ĝ and give proof of properties (a)-
(d) in Section IV-A. For notational reasons, from this point
on in the discussion we will assume that our input graphG is
structured — which is now clear to be w.l.o.g.

In the second step of our proof, we give edges and vertices
in the graphG certain labels depending on the combinatorial
structure ofG. This step can be viewed as a decomposition of
the graphG (both the vertex set and the edge set) into certain
classsets which may be of interest beyond the context of this
work. These classes will later play a major role in our analysis.
The decomposition ofG is given in detail in Section IV-B.

Finally, in the third and final step of our proof, using the
labeling above we evoke on a rather lengthy case analysis for
the proof of Theorem 1. Namely, based on the terminology
set in Section IV-B, we identify several scenarios, and prove
Theorem 1 assuming they hold. As the different scenarios we
consider will cover all possible ones, we will conclude our
proof. Our detailed case analysis is given in Section IV-C and
Section V.

All in all, as will be evident from the sections yet to come,
our proof is constructive, and each of its steps can be done
efficiently. This will result in the efficient construction of the
desired network code forG. We now proceed to formalize the
steps of our proof.

A. The reduction

Let G = (V, E) be our input network, and letsi and ti be
the given sources and terminals. We now efficiently construct
a structuredgraphĜ = (V̂ , Ê) in which each internal node

v ∈ V̂ is of total degree three with the additional following
properties: (a)Ĝ is acyclic. (b) For every source (terminal)
in G there is a corresponding source (terminal) in̂G. (c)
For any two edge disjoint pathsP1 and P2 connecting a
source terminal pair inG, there exists twovertexdisjoint paths
in Ĝ connecting the corresponding source terminal pair. (d)
Any feasible network coding solution in̂G can be efficiently
turned into a feasible network coding solution inG. Our
reduction follows that appearing in [4] and is given here for
completeness.

The reduction is done iteratively according to the following
procedure in which we reduce the total degree of internal
vertices to be at most3. First we note that any source
(terminal) inG is also one inĜ.

1) Reducing degrees:Let Ĝ be the graph formed fromG by
iteratively replacing each nodev ∈ G, which is not a source or
a terminal node whose degree is more than 3 by a subgraphΓv,
constructed as follows. Let{(xi, v) | i = 1, . . . , din(v)} and
{(v, yi) | i = 1, . . . , dout(v)} be the incoming and outgoing
links of v, respectively, wheredin(v) anddout(v) are the in-
and out- degrees ofv. For each incoming link(xi, v) of v, we
add toΓv a nodex̂i and a binary treeXi with root at x̂i and
dout(v) leavesx̂1

i , . . . , x̂
dout(v)
i . Similarly, for each outgoing

link (v, yi) of v, we add toΓv a nodeŷi and an inverted binary
treeYi with root atŷi anddin(v) leavesŷ1

i , . . . , ŷ
din(v)
i . Next,

for each1 ≤ i ≤ din(v) and1 ≤ j ≤ dout(v) we add an edge
(x̂j

i , ŷ
i
j) to Γv. Finally, we connectΓv to the rest of the network

by adding edges(xi, x̂i) for 1 ≤ i ≤ din(v) and (yi, ŷi) for
1 ≤ i ≤ dout(v). Figures 2 and 3 demonstrate the construction
of the subgraphΓv for a nodev with din(v) = dout(v) = 3.
Note that for any two links(xi, v) and (v, yj) there is a path
in Γv that connectsxi andyj .

Fig. 2. A nodev ∈ G.

We proceed to analyze the properties ofĜ, namely we show
that Ĝ is structured. The proof of properties (a), (b) and (c)
follow directly by our construction. For property (d) consider a
feasible network code for the network̂G. A feasible network
code forG is constructed as follows. Lete = (u, v) be an
edge inG. Let e′ be the corresponding edge betweenΓu and
Γv in Ĝ. Here we assume bothu and v were replaced by
corresponding gadgets. Other cases can be proven analogously.
The encoding functionfe for e = (u, v) is determined by the
encoding functionsfê of links ê that belong toΓu. Specifically,
let X = {(x1, x̂1), . . . , (xdin(u), x̂din(u))} be the incoming
links of Γu where din(u) is the in-degree ofu in G. The

3
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Fig. 3. The gadgetΓv for v in Figure 2.

construction ofĜ implies that the information transmitted on
the link e′ is a functionfe′ of the packets transmitted on links
X . We use this exact function as the desired encoding function
fe. The fact that the incoming links ofu in G correspond to
the links inX implies the feasibility of the resulting code for
G.

B. The decomposition

In this section we present our structural decomposition of
G = (V, E). We assume throughout thatG is directed and
acyclic, that it has three sourcess1, s2, s3, three terminals
t1, t2, t3 and that any internal vertex inV (namely, any vertex
with is neither a source or a sink) has total degree at most3.
Moreover, we assumeG satisfies the connectivity requirements
specified in Theorem 1.

We start by labeling the vertices ofG. A vertex v ∈ V
is labeled by a pair(cs, ct) specifying how many sources
(terminals) it isconnectedto. Specifically,cs(v) equals the
number of sourcessi for which there exists a path connecting
si andv in G. Similarly, ct(v) equals the number of terminals
tj for which there exists a path connectingv and tj in G.
For example, any source is labeled by the pair(1, 3), and any
terminal by the pair(3, 1). An internal vertexv labeled(·, 1)
is connected to a single terminal only. This implies that any
information leavingv will reach at most a single terminal.
Such verticesv play an important role in the definitions to
come. This concludes the labeling ofV .

An edge e = (u, v) for which v is labeled (·, 1) will
be referred to as aterminal edge. Namely, any information
flowing on e is bounded to reach at most a single terminal. If
this terminal istj then we will say thate is a tj-edge. Clearly,
the set oft1-edges is disjoint from the set oft2-edges (and
similarly for any pair of terminals). An edge which is not a
terminal edge will be referred to as aremainingedge or an
r-edge for short.

We now prove some structural properties of the edge sets
we have defined. First of all, there exists an ordering of edges
in E in which anyr-edge comes before any terminal edge,
and in addition there is no path from a terminal edge to an
r-edge. This is obtained by an appropriate topological order
in G. Moreover, for any terminaltj , the set oftj-edges form a
connected subgraph ofG rooted attj . To see this note that by
definition eachtj-edgee is connected totj and all the edges
on a path betweene and tj are tj-edges. Finally, the head
of an r-edge is either of type(·, 2) or (·, 3) (as otherwise it
would be a terminal edge).

For each terminaltj we now define a set of vertices referred
to as the leaf setLj of tj . This definition shall play an
important role in our discussions.

Definition 1: Leaf set of a terminal.Let P = (si =
v1, v2, . . . , vℓ = tj) be a path fromsi to tj . Consider the
intersection ofP with the set oftj-edges, This intersection
consists of a subpathP ′, (vP , . . . , vℓ = tj) of P for which
the label ofvP is either(·, 2) or (·, 3), and the label of any
other vertex inP ′ is (·, 1). We refer tovP as the leaf oftj
corresponding to pathP , and the set of all leaves oftj as the
leaf setLj . Recall that we assume for each source terminal pair
(si, tj) the existence of two (vertex) disjoint paths connecting
si and tj .

We remark that (a) the leaf set oftj is the set of nodes
of in-degree 0 in the subgraph consisting oftj-edges and
(b) a source node can be a leaf node for a given terminal.
Furthermore, we have the following claim about leaf nodes.

Claim 1: A leaf node which is not a source node has in-
degree = 1 and out-degree = 2.

Proof: Assume otherwise, i.e. that the leafℓ has out-
degree = 1 and suppose that the outgoing edge is denoted
(ℓ, v). Note that this implies thatct(v) = ct(ℓ) ≥ 2, sinceℓ
has only one outgoing edge. This is a contradiction sinceℓ
is a leaf node and has to be connected to at least one node
of type (·, 1). Therefore out-degree(ℓ) = 2 and since it is an
internal node, it has in-degree = 1.

C. Case analysis

We now present a classification of networks based on the
node labeling procedure presented above. For each class of
networks we shall argue that each terminal can compute the
sum of the sources(X1 + X2 + X3). Our proof shall be
constructive, i.e. they can be interpreted as an algorithm for
finding the network code that allows each terminal to recover
(X1 + X2 + X3).

1) Case 0: There exists a node of type(3, 3) in G.
Suppose nodev is of type (3, 3). This implies that there
exist path(si − v), for i = 1, . . . , 3 and path(v − tj), for
j = 1, . . . , 3. Consider the subgraph induced by these paths
and color each edge on∪3

i=1path(si − v) red and each edge
on ∪3

j=1path(v − tj) blue. We claim that asG is acyclic, at
the end of this procedure each edge gets only one color. To see
this suppose that a red edge is also colored blue. This implies
that it lies on a path from a source tov and a path fromv
to a terminal, i.e. its existence implies a directed cycle inthe
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graph. Now, we can find an inverted tree that is a subset of the
red edges directed intov and similarly a tree rooted atv with
t1, t2 and t3 as leaves using the blue edges. Finally, we can
compute(X1 +X2 +X3) at v over the red tree and multicast
it to t1, t2 and t3 over the blue subgraph. More specifically,
one may use an encoding scheme in which internal nodes of
the red tree receivingY1 andY2 send on their outgoing edge
the sumY1 + Y2.

2) Case 1: There exists a node of type(2, 3) in G. Note
that it is sufficient to consider the case when there does not
exist a node of type(3, 3) in G. We shall show that this case
is equivalent to a two sources, three terminals problem.

Without loss of generality we suppose that there exists a
(2, 3) node v that is connected tos2 and s3. We color the
edges onpath(s2 − v) andpath(s3 − v) blue. Next, consider
the set of paths∪3

i=1path(s1 − ti). We claim that these paths
do not have any intersection with the blue subgraph. This is
because the existence of such an intersection would imply that
there exists a path betweens1 andv which in turn implies that
v would be a(3, 3) node. We can now compute(X2+X3) atv
by finding a tree consisting of blue edges that are directed into
v. Suppose that the blue edges are removed fromG to obtain
a graphG′. SinceG is directed acyclic, we have that there
still exists a path fromv to each terminal after the removal.
Now, note that (a)G′ is a graph such that there exists at least
one path froms1 to each terminal and at least one path fromv
to each terminal, and (b)v can be considered as a source that
contains(X2 + X3). Now, G′ satisfies the condition given in
[7] (which addresses the two sources version of the problem
at hand), therefore we are done.

3) Case 2: There exists a node of type(3, 2) in G. As
before it suffices to consider the case when there do not exist
any (3, 3) or (2, 3) nodes in the graph. Suppose that there
exists a (3,2) nodev and without loss of generality assume
that it is connected tot1 andt2. We consider the subgraphG′

induced by the union of the following sets of paths

1) ∪3
i=1path(si − v),

2) ∪2
i=1path(v − ti), and

3) ∪3
i=1path(si − t3).

Note that as argued previously, a subset of edges of
∪3

i=1path(si−v) can be found so that they form a tree directed
into v. For the purposes of this proof, we will assume that this
has already been done i.e. the graph∪3

i=1path(si−v) is a tree
directed intov.

The basic idea of the proof is to show that the paths from
the sources to terminalt3 i.e. ∪3

i=1path(si − t3) are such that
their overlap with the other paths is very limited. Thus, the
entire graph can be decomposed into two parts, one over which
the sum is transmitted tot1 and t2 and another over which
the sum is transmitted tot3. Towards this end, we have the
following two claims.

Claim 2: The path,path(s1 − t3) cannot have an intersec-
tion with eitherpath(s2 − v) or path(s3 − v).

Proof: Suppose that such an intersection occurred at a
nodev′. Then, it is easy to see thatv′ is connected to at least

two sources and to all three terminals and therefore is a node
of type (2, 3), which is a contradiction.

In an analogous manner we can see that (a)path(s2 − t3)
cannot have an intersection with eitherpath(s1 − v) or
path(s3−v), and (b)path(s3−t3) cannot have an intersection
with eitherpath(s1 − v) or path(s2 − v).

Claim 3: The paths,path(s1 − t3), path(s2 − t3) and
path(s3−t3) cannot have an intersection with eitherpath(v−
t1) or path(v − t2).

Proof: To see this we note that if such an intersection
happened, thenv would also be connected tot3 which would
imply that v is a (3, 3) node. This is a contradiction.

Let vi be the node closest tov that belongs to bothpath(si−
v) andpath(si− t3) (notice thatvi may equalsi but it cannot
equalv). Consider the following coding solution onG′. On
the pathspath(si − vi) sendXi. On the pathspath(vi − v)
send information that will allowv to obtainX1 + X2 + X3.
This can be easily done, as these (latter) paths form a tree
into v. Namely, one may use an encoding scheme in which
internal nodes receivingY1 andY2 send on their outgoing edge
the sumY1 + Y2. By the claims above (and the fact thatG′

is acyclic) it holds that the information flowing on edgese in
the pathspath(vi− t3) has not been specified by the encoding
defined above. Thus, one may send information on the paths
path(vi− t3) that will allow t3 to obtainX1 +X2 +X3. Here
we assume the pathspath(vi − t3) form a tree intot3, if this
is not the case we may find a subset of edges in these paths
with this property. Once more, by the claims above (and the
fact thatG′ is acyclic) it holds that the information flowing
on edgese in the pathspath(v− t1) andpath(v− t2) has not
been specified (by the encodings above). On these edges we
may transmit the sumX1 + X2 + X3 present atv.

4) Case 3:There do not exist(3, 3), (2, 3) and(3, 2) nodes
in G. Note that thus far we have not utilized the fact that
there exist two edge-disjoint paths from each source to each
terminal inG. In previous cases, the problem structure that has
emerged due to the node labeling, allowed us to communicate
(X1 + X2 + X3) by using just one path between eachsi − tj
pair. However, for the case at hand we will indeed need to use
the fact that there exist two paths between eachsi − tj pair.
As we will see, this significantly complicates the analysis.As
this case in the main technical contribution of our work, we
present it in the upcoming section:

V. A NALYSIS OF CASE 3

The basic idea of the proof is as follows. We first label
each edge in the graph as atj-edge or anr-edge. Next, using
the topological ordering on the edges, we performgreedy
encoding vector assignmentat everyr-edge, i.e. the outgoing
edge contain the largest sum that one can possibly obtain from
the input edges. For example, in our greedy encoding, if the
input edges containX1 andX2, then the outgoing edge will
carryX1+X2 and if they carryX1 andX1+X2, the outgoing
edge will still carryX1 + X2. The greedy encoding will be
specified in detail shortly (in Section V-A). We then examine
the state of the leaves of each terminal to see whether each
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terminal can recover
∑3

i=1 Xi using the information available
on its leaves. If this is the case then we are done, otherwise
we perform a procedure that consists of a sequence of careful
modifications to the current encoding vector assignments on
the edges so that at the end of it, each terminal is satisfied i.e.
it can recover

∑3
i=1 Xi from its leaves. Towards this end we

first establish some specific properties of the terminal leaves
under this case.

Claim 4: Each leaf is of type either(2, 2), (1, 2) or (1, 3).
Proof: A leaf node is of type(·, 2) or (·, 3). Since

(3, 3), (2, 3) and(3, 2) nodes are ruled out, the claim follows.

Claim 5: There exist at least three leaves for each terminal.
Proof: Recall that there exist two vertex disjoint paths

between each source and each terminal. Each such path has a
corresponding leaf. For each terminal, different sources may
share leaves but there must be two distinct leaves for each
source (the corresponding paths are vertex disjoint). By Claim
4 the source label of each leaf can be at most two. This implies
that each terminal must have at least three leaves.

A. Initial Greedy Encoding

We now specify our initial encoding procedure. We perform
our greedy encoding vector assignment on ther-edges ordered
in topological order. More formally, we perform the following
steps.

i) Suppose the tail of the edge at hand is a node of in-degree
1. The encoding vector on it is a copy of the encoding
vector of the incoming edge.

ii) Suppose the tail of the edge at hand is a node of in-degree
2. Let the encoding vectors (of length-3) on the incoming
edges be denotedβ1 andβ2 and let supp(βi) denote the
support ofβi. The support of the encoding vector on the
outgoing edge is∪2

i=1supp(βi) and every element in the
support takes the value1.

We remark that there are at most two sources connected
by a path to the tail of anyr-edge. This follows since,
otherwise by definition, as the head of anr-edge has terminal
label 2 (or 3) this would imply the existence of a(3, 2) (or
(3, 3)) node. We conclude that for anyr-edgee, the encoding
vectors corresponding to its incoming edges span a subspace
of dimension at most2. This will allow (by simple forwarding
or addition) to obtain the encoding vector fore specified in
ii) above.

We now outline the conditions under which a terminal can
recover

∑3
i=1 Xi from its leaves.

Claim 6: A terminal can recover
∑3

i=1 Xi under the fol-
lowing conditions. i) At least one of the leaves of the terminal
is of type(1, 2) or (1, 3). Henceforth we refer to such leaves
as singleton leaves. ii) There exist three leaves of type(2, 2)
such that one is connected tos1 ands2, one tos2 ands3 and
one tos1 ands3.

Proof: W.l.og. we assume the terminal to bet1. We
shall demonstrate the existence of encoding vector assignments
downstream of the leaves on thet1-edges that allows the
recovery of

∑3
i=1 Xi at t1. Suppose that the first condition

holds i.e. there exists at1-leaf that has source label1. Note
that this can happen in the following ways.

a) There exist three singleton leaves containing each of the
Xi’s. In this case, each of the leaves has a path consisting
of t1-edges tot1. We can find a subset of the edges on
these paths that form a tree directed intot1 over which∑3

i=1 Xi can be constructed.
b) There exist two singleton leaves containing w.l.o.g.X1

and X2 and no singleton leaf forX3. This implies that
there exists at least one other(2, 2) leaf connected toX3.
Suppose that the leaf containsX1 + X3. In this case we
form the directed tree intot1 by considering the paths
from this leaf and the leaf containingX2. The other case
can be handled in an identical manner.

c) There exists one singleton leaf containing w.l.o.gX1 and
no singleton leaf for the other sources. It is not hard
to verify that t1 will have leaves connected toX2 and
X3 as well. This follows directly by our connectivity
requirements. If there exists a leaf containingX2 + X3

then we are done by the approach suggested above. Al-
ternatively there have to exist leaves containingX2 +X1

andX1 +X3. In this case once again we form a directed
tree rooted intot1 by finding an appropriate subset of the
t1-edges. Over this tree, we can assign encoding vectors
such thatt1 obtains(−X1)+ (X2 +X1)+ (X1 +X3) =∑3

i=1 Xi.
Likewise, if the leaves oft1 containX1 + X2, X2 + X3

and X1 + X3, then we can form a directed tree intot1 so
that it can recover2

∑3
i=1 Xi. Here we need the field to be

of characteristic> 2.
We say that a sourceXi appears at a node if the node

contains a sum of the subset of the sources that includesXi.
Corollary 1: Consider an assignment of coding vectors at

every edge of G. Suppose that for a given terminal (w.l.o.g.
t1), (a) each sourceXi, i = 1, . . . , 3 appears at least once
in the set oft1-leaves, and (b) at least one source appears
as a singleton at one of thet1-leaves. Thent1 can compute∑3

i=1 Xi.
Proof: This follows directly from the proof of Claim 6.

We are left to consider the case in which the conditions
of Claim 6 do not hold. Namely, the case in which a given
terminal has only leaves of type(2, 2), and does not have
leaves containing all three combinationsX1 + X2, X2 + X3

andX1 +X3. This may only hold if a given terminal has four
(2, 2) leaves such that (w.l.o.g.) two of them containX1 +X2

and two containX2 + X3. In this situation it is clear that
there is no way that

∑3
i=1 Xi can be computed using the

information available at the leaves (see Section III). We shall
now outline a sequence of modifications that will eventually
result in the terminal being able to compute

∑3
i=1 Xi.

We say that a terminal is unsatisfied if it does not satisfy the
conditions of Claim 6. It may be the case that a single terminal,
two terminals or all three terminal are unsatisfied after the
initial greedy encoding. In what follows we present twomod-
ification procedures that modify the initial greedy encoding as
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to satisfy unsatisfied terminals. “Modification Procedure 1” is
discussed in detail in Section V-B and “Modification Procedure
2” is discussed in detail in Section V-C. The two modification
procedures are designed to fit a certain case analysis that will
be specified shortly. To present our need for both procedures,
for the remainder of this section we assume that all three
terminals are unsatisfied after the initial encoding. We will
discuss the (easier) cases in which only two terminals are
unsatisfied or only a single terminal is unsatisfied at the end
of the section. W.l.o.g. we assume that the leaves oft1 contain
only X1+X2 andX2+X3 (after our greedy encoding process).

B. Modification Procedure 1

As our graphG is structured, note that there exist two node-
disjoint paths froms1 to t1 that we denoteP1 andP2. Let ℓ11

andℓ12 denote the (2,2) type,t1-leaves that haveX1 +X2 on
these paths (note that the leaves corresponding to these paths
cannot holdX2 + X3). Next perform the following steps.

i) Follow P1 upwards fromℓ11 (i.e. towardss1) and find
the first in-degree 2, out-degree 1 node such that both
its incoming edges do not have the encoding vector
assignment[1 1 0]. Call this nodev11. Repeat the process
for P2 and call the corresponding nodev12. We remark
that such av11 has to exist sinceP1 starts ats1 and
therefore at least one edge on it has a coding vector
[1 0 0].

ii) If v11 is downstream ofv12 or vice versa, call the
downstream node thewinner. More formally, for a fixed
topological order on the nodes ofG, if the value ofv11

is greater than that ofv12 then declarev11 as the winner,
otherwisev12 will be declared as the winner. W.l.o.g.
we assume thatv11 is the winner for our subsequent
discussion.

Now, ℓ11 is a (2,2) node, which means that it is connected
to another terminal distinct fromt1. W.l.o.g. suppose that the
other terminal ist2. Our strategy will be to modify coding
vectors downstream ofv11 such thatℓ11 becomes a singleton
leaf (containing eitherX1 or X2), and then modifying coding
vectors downstream ofℓ11 so that at least one leaf oft2 also
becomes a singleton leaf.

We now turn to better understand the leaves oft2. By our
assumption,t2 is also unsatisfied and since it is connected
to ℓ11, this implies that one of its leaves containsX1 + X2.
Therefore its leaves contain one of the following combinations.

i) At least two leaves containingX1 + X2 and at least two
leaves containingX2 + X3. In this case we say thatt2
requestsa singleton leaf containingX1.

ii) At least two leaves containingX1 + X2 and at least two
leaves containingX1 + X3. In this caset2 requests a
singleton leaf containingX2.

Loosely speaking, turning at2 leaf containingX1 + X2

into a singleton leaf containing the request oft2 will allow to
satisfyt2. Next, once we have identified which type of leaft2
requests, we perform the following modification to our greedy
encoding, that will satisfy botht1 and t2. Our modification
proceeds according to the cases presented below.

Modification Procedure 1

i) Case 1.The path betweenℓ11 and t2 intersectsP2. In
this case, notice that there could be multiple intersections.
However, we can always find a new path betweenℓ11 and
t2 that intersects a contiguous set of edges onP2 after
which it does not intersectP2 again. We shall assume that
thepath(ℓ11−t2) is of this type. Let the first intersection
betweenpath(ℓ11 − t2) andP2 occur at nodev′, and the
last at nodev′′. Observe thatv′ is necessarily strictly
downstream ofv12, otherwise this would contradict the
fact thatv11 was the winner in the procedure specified
previously. In turn this implies that the coding vectors on
the edges betweenv12 and v′ are [1 1 0]. It also holds
that v′′ is equal to or aboveℓ12, otherwiseℓ12 wouldn’t
be at1-leaf.

Suppose thatt2 requested anX1 singleton leaf (the
analysis is similar in the other case). Note that the coding
vectors at the incoming edges ofv11 are such that the
coding vector on its outgoing edge can be made either
[1 0 0] or [0 1 0]. We change the coding vector on the
outgoing edge ofv11 and on all other edges on the path
P1 betweenv11 andℓ11 to [0 1 0]. In addition, we change
the coding vector onpath(ℓ11 − v′) to [0 1 0]. We know
that at v′ the other incoming edge has a coding vector
of [1 1 0]. Let ℓ′ be the firstt2-leaf on path(v′ − t2).
We change the coding vector onpath(v′ − ℓ′) to [1 0 0].
Similarly we propagate[1 0 0] on P2 betweenv′ andℓ12.

ii) Case 2.The path betweenℓ11 and t2 does not have
an intersection withP2. Suppose thatt2 requested an
X1 singleton leaf (the analysis is similar in the other
case). Then simply change the coding vectors on pathP1

betweenv11 andℓ11 and betweenℓ11 and thet2-leaf on
path(ℓ11 − t2) to [1 0 0]. We observe thatℓ12 continues
to receive[1 1 0] as coding vectors on it are not changed.

At the end of this modification procedure, it may be the
case that some coding vector assignments downstream ofv11

become inconsistent. In this case, we re-perform the greedy
encoding step on those edges, while retaining whatever coding
vectors we have assigned in the previous step. For example
consider an internal nodev that initially had two incoming
encoding vectors, one of value[1 1 0] and the other of value
[1 0 0], and an outgoing encoding vector of value[1 1 0].
It might be the case that after our modification procedure it
now has incoming encoding vectors, both of value[1 0 0].
The outgoing encoding vector is now inconsistent with the
incoming ones and thus must be modified. Our re-encoding
(preformed onr-edges only) will follow the greedy procedure
outlined previously while we preserve any modification made
in “Modification Procedure 1”.

Next, we establish that we are in a position wheret1 and
t2 are satisfied. In what follows we refer to Modification
Procedure 1 and the re-encoding as “Modification 1”.

Claim 7: Any leaf that containedX2 + X3 or X1 + X3

before Modification 1, continues to do so at the end of it.
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Proof: Note that all modifications are performed down-
stream ofv11 which is a(2, 2) node since it is connected to
ℓ11 which is a (2,2) leaf, and since by definition it is connected
to boths1 ands2. If any leaf containingX2 +X3 or X1 +X3

was modified, it must be connected tov11, and thus tos1 and
s2. However, such a leaf is also connected tos3. This which
would make it a (3,2) node, a contradiction to our assumption
that such a node does not exist inG.

Claim 8: At the end of Modification 1, botht1 and t2 are
satisfied.

Proof: Before the procedure was performed,ℓ11 andℓ12

were (2,2) nodes containingX1 + X2. At the end of the
procedure,ℓ11 becomes a singleton leaf containing eitherX1

or X2. The leafℓ12 either containsX1 + X2 or becomes a
singleton leaf depending upon whether Case 1 or Case 2 is
performed in Modification Procedure 1. If Case 1 occurred
then ℓ11 and ℓ12 obtain distinct sources because of theflip
that occurs at nodev′. In Case 2,ℓ12 continues to obtain
X1 + X2. Moreover by Claim 7 above, the other leaves
of t1 containing X3 are undisturbed. Therefore, we have
successfully introduced a singletont1-leaf, which implies that
it is satisfied (Corollary 1).

The argument fort2 is a little more subtle. Recall, that in
Modification Procedure 1, we considered the “request” oft2.
Thus if it requestedX1, this was because it already had a
X2 + X3 leaf. Now, at the end of the procedure, we have
successfully introduced a singleton leaf att2 containingX1

(the “request”). Again, by Claim 7 above, its other leaves
containing X3 are undisturbed. Therefore it can compute∑3

i=1 Xi by usingX2 + X3 from the other leaf.

Having ensured thatt1 andt2 are satisfied, we now propose
further modifications to ensure thatt3 is satisfied. We start by
proving some properties of Modification 1.

Claim 9: Modification 1 does not affect anyt3-leaf.
Proof: Our proof follows the line of proof given in

Claim 7. First notice that there cannot be a path between the
nodev11 and anyt3-leaf. This follows from the fact thatv11

is connected tot1 and t2 and tos1 ands2. The existence of
a path betweenv11 and t3 would imply thatv11 is a (2, 3)
node (connected tot3 also) in contradiction to our assumption
that such nodes are not present inG. As all modifications are
performed downstream ofv11, and t3 nodes do not appear
downstream ofv11 we conclude our assertion.

In a similar manner we also claim that any coding vector
that originally had a1 in the third component (corresponding
to X3) remains unchanged after Modification 1.

Claim 10: If a coding vector on an edge had a 1 in the
third component (corresponding toX3) originally, it remains
unchanged after Modification 1.

Proof: Our proof follows that of Claim 7. All modifica-
tions are performed downstream ofv11 which is connected
to X1 and X2. Therefore if there is an edge that originally
contained a 1 in the third component, it implies that this edge is
connected to all the three sources. Next, this edge has to have
a terminal label of2 since we have performed the encoding

only on ther-edges. This is a contradiction since it implies
the existence of a (3,2) node.

C. Modification Procedure 2

We now turn to describe our second modification procedure
that will allow to satisfy terminalt3 while preserving satisfac-
tion of t1 andt2. As the information reachingt3 has not been
modified its leaves contain one of the following combinations.
i) At least two leaves containingX1 +X2, at least two leaves
containingX2+X3 and no other combinations at other leaves.
ii) At least two leaves containingX1 +X2, at least two leaves
containingX1+X3 and no other combinations at other leaves.
iii) At least two leaves containingX1+X3, at least two leaves
containingX2+X3 and no other combinations at other leaves.

We start by considering Case i) above (the remaining cases
will be discussed at the end of the section). As before we
define the verticesv31, v32, ℓ31 and ℓ32 as follows. Consider
the two node disjoint paths connectings3 to t3, we denote
these paths byP1 and P2. Let ℓ31 and ℓ32 denote the (2,2)
type t3-leaves on these paths. It is not hard to verify that
they must contain informationX2 + X3. Next, perform the
following steps.

i) Follow P1 upwards fromℓ31 (i.e. towardss3) and find
the first in-degree 2, out-degree 1 node such that both
its incoming edges do not have the encoding vector
assignment[0 1 1]. Call this nodev31. Repeat the process
for P2 and call the corresponding nodev32.

ii) If v31 is downstream ofv32 or vice versa, call the
downstream node thewinner. W.l.o.g. we assume that
v31 is the winner for our subsequent discussion.

We now show how to modify the encoding vectors of the
network such thatall terminals will be satisfied. Assume
w.l.o.g. thatt2 is the additional terminal connected tov31. We
emphasize that this is w.l.o.g since we assume very little on
Modification 1 in the analysis to come. Specifically, our proof
goes without change ift1 is the additional terminal connected
to v31.

We begin by outlining the basic procedure and providing
intuition about it. The purpose of Modification 1 was to ensure
that both terminalst1 and t2 are satisfied. However, the aim
of the current procedure is only to satisfyt3 while ensuring
that t2 continues to remain satisfied. Towards this end we first
examine the structure of the leaves on the two-edge disjoint
paths betweens3 and t2. Depending on the combinations
available on the leaves we decide the source symbol that will
be propagated onpath(v31 − ℓ31) and finally argue that both
t2 and t3 remain satisfied.

Modification Procedure 2
First consider the two edge-disjoint paths betweens3 and t2
denotedP ′

1 andP ′
2. Identify thet2-leaves,ℓ21 andℓ22 on these

paths and the information contained in them. Note that both
leaves necessarily need to contain a component ofX3 (either
by itself or as a sum with another source). This is true in the
original “greedy” encoding (before Modification 1) and also
true after Modification 1 by Claim 7.

8



i) At least one leaf containsX1+X3. We propagate the cod-
ing vector[0 1 0] on path(v31 − ℓ31). Next, we perform
the greedy re-encoding step downstream ofv31 while
retaining the coding vectors assigned onpath(v31− ℓ31).

ii) At least one leaf contains justX3. In this case again, we
propagate the coding vector[0 1 0] onpath(v31−ℓ31) and
perform the greedy re-encoding step downstream ofv31

while retaining the coding vectors assigned onpath(v31−
ℓ31).

iii) Both leaves containX2 + X3. In this case we need to
be careful about how we modify the encoding vectors as
there is a possibility that we cause terminalt2 to stop
receiving a particular source. In order to handle this we
examine the possible intersections betweenP ′

1, P
′
2 (the

edge-disjoint paths betweens3 andt2) and thepath(v31−
ℓ31).

a) If both P ′
1 and P ′

2 intersectpath(v31 − ℓ31), then
perform the following steps.
In general pathP ′

1 (andP ′
2) can intersectpath(v31−

ℓ31) at multiple locations. We say that there is aP ′
1

type intersection (likewiseP ′
2 type intersection) on a

set of edges if these edges are connected and belong
to bothP ′

1 andpath(v31 − ℓ31).
We claim that there is no loss of generality in assum-
ing that the intersections alternate between the two
types when we examine the edges onpath(v31−ℓ31).
To see this, note that if this is not the case, we have
a situation where two consecutive intersections are
of type P ′

1 (w.l.o.g.). However in this case we can
simply modify the pathP ′

1 so these two intersections
can be collapsed into one intersection. Thus, we will
assume that the intersections alternate.
Next, color the pathP ′

1 red and the pathP ′
2 blue

(by convention all other edges are called uncolored).
W.l.o.g. we assume that the first intersection (i.e.
closest and downstream tov31) is of typeP ′

1. Then
perform the following steps

1) Propagate coding vector[0 1 0] from v31

downwards till the node where the blue path
and P1 first meet. Assign coding vector[0 0 1]
to the outgoing edge. Assign a variable curr-
intersection-color = blue. Perform greedy
re-encoding downstream of all edges that have
been modified thus far while retaining the coding
vectors assigned onpath(v31 − ℓ31).

2) Repeat the following steps (iteratively down-
stream on the pathpath(v31−ℓ31)) until all edges
on path(v31 − ℓ31) are assigned a new coding
vector. For edgee ∈ path(v31− ℓ31) that has not
been assigned a coding vector do the following.

2a) If e is either uncolored orcolor(e) =
curr-intersection-color, then propagate the
coding vector of the parent ofe that lies on
path(v31 − ℓ31).

2b) Otherwise, perform aflip operation. If the
parent of e on path(v31 − ℓ31) had a cod-
ing vector [0 0 1], then e is assigned
[0 1 0] and vice versa. Alsoflip the value of
curr-intersection-colori.e. if it was blue, make
it red and vice versa.

2c) Perform greedy re-encoding downstream of all
edges that have been modified thus far, without
changing the new coding vector assignments
on path(v31 − ℓ31).

b) Otherwise, propagate the coding vector[0 1 0] on
path(v31 − ℓ31) and perform the greedy re-encoding
step downstream ofv31 while retaining the coding
vectors assigned onpath(v31 − ℓ31).

We now prove that at the end of Modification Procedure 2,
all terminals are satisfied. Namely,t3 becomes satisfied and
t1 and t2 remain satisfied.

For t1, we follow the line of proof given in Claim 9. Namely,
it is not hard to verify that any change in the encoding vector
of v31 cannot effect the encoding vectors of the leaves oft1
(otherwise there will be a(2, 3) node inG). This implies that
t1 remains satisfied after Modification 2. Fort3, we now show
that (after Modification 2)ℓ31 receives a singleton (eitherX2

or X3) andℓ32 continues to receiveX2 + X3, this will imply
that t3 is satisfied.

Claim 11: At the end of Modification Procedure 2,t3 is
satisfied.

Proof: Recall that we assumet3 has leaves with infor-
mationX1 + X2 andX2 + X3. As in the proof of Claim 7 it
can be shown that all the leaves thatoriginally (in the initial
encoding) containX1 in any form, will not be modified by
Modification 2. This implies that, after Modification 2,t3 will
still receiveX1 + X2. In addition, after Modification 2 leaf
ℓ31 will receive either the singletonX2 or X3. Finally, by our
choice ofv31 there does not exist a path fromv31 to v32. This
implies that the outgoing edge ofv32 on P2 continues to carry
X2 +X3 after the procedure. This outgoing edge is connected
to ℓ32. Therefore, the greedy re-encoding process ensures that
ℓ32 receivesX2 + X3. We conclude (using Corollary 1) that
t3 is satisfied after Modification 2.

We now address terminalt2. Our analysis follows the cases
outlined in the description of Modification Procedure 2 given
above. In each case, we assume thatt2 was satisfied before the
modification procedure, and prove that it remains satisfied after
the procedure. We first present a general Claim which analyzes
the changes in the leaf information oft2 after Modification
Procedure 2.

Claim 12: t2-leaves receivingX2 + X3 before Modifica-
tion Procedure 2 may receive eitherX2 or X3 after the
modification. All remainingt2-leaves receive the exact same
information before and after Modification Procedure 2.

Proof: We start by considering theoriginal information
present at leaves oft2, namely the information present before
Modification Procedure 1. This information satisfies the greedy
encoding specified in the beginning of the section.t2 leaves
which before Modification 1 received information including
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X1 in their support, cannot be effected by Modification 2. This
follows by arguments similar to those of Claim 7. We are left
to consider leaves that originally received the singletonX2,
the singletonX3 or X2 + X3. Leaves receiving a singleton
X2 or X3 cannot be downstream ofv31 (and thus effected
by Modification 2) as in such a case (due to greedy encoding)
they would have receivedX2+X3. Leaves receivingX2+X3,
may indeed be effected by Modification 2. As Modification
Procedure 2, starts by either forwarding the encoding vector
[0 1 0] or [0 0 1] on path(v31 − ℓ31) instead of the original
encoding vector[0 1 1], it is not hard to show by induction
that any edge downstream ofv31 is effected by (at most)
zeroing outthe entry corresponding to eitherX2 or X3 in their
encoding vectors. We conclude that the only leaves oft2 that
can be modifies are those that originally receivedX2 + X3 in
our greedy encoding. By Claim 7 these leaves receiveX2+X3

after Modification 1 also.
Claim 13: If t2 is unsatisfied after Modification Procedure

2, then after the modification eitherX2 or X3 do not appear
in the support of the information appearing in any of thet2-
leaves.

Proof: We assume thatt2 was satisfied before Modifica-
tion Procedure 2. By Claim 12 the only leaves that may have
changed are those that carryX2 + X3. If after Modification
Procedure 2, at least one leaf still carriesX2 + X3 then the
total information present att2 has not changed andt2 is still
satisfied. If some leaf that previously receivedX2 + X3 now
receivesX2 and another leaf that was previously receiving
X2 +X3 now receivesX3, then again we claim thatt2 is still
satisfied. Indeed, consider the flow of information from thet2-
leaves to terminalt2 in the satisfying network coding solution
(prior to Modification 2), if in this solutiont2 was satisfied
by adding information from a leaf containingX2 +X3, it can
now be satisfied by adding the (new) information from the
leaves containingX2 andX3.

It is left to consider the case in which all leaves that
previously receivedX2 + X3 now receive (w.l.o.g)X2 (a
single source). Now using Claim 1 we know that if all sources
continue to appear at the leaves oft2,

∑3
i=1 Xi can be

computed at it. Therefore we can conclude thatX3 is not
available at the leaves oft2 after modification procedure 2.

Using the Claims above, we now show that during Modi-
fication Procedure 2,t2 remains satisfied. We start with Case
i) of Modification Procedure 2:

Claim 14: Assuming Case i) of Modification Procedure 2:
at the end of the modification proceduret2 is satisfied.

Proof: By Claim 13 it suffices to show thatX2 andX3

appear in the support of the information appearing in any of
the t2-leaves. By Claim 12, the leaf carryingX1 + X3 is not
changed during Modification Procedure 2, and thus hasX3 in
its support. If prior to the modification,t2 had a leaf carrying
X2 or X1 + X2, then by Claim 12, the leafs would remain
unchanged during Modification Procedure 2, and thust2 would
haveX2 in its support. Finally, ast2 was satisfied it must have
hadX2 somewhere in the support of (the information of) its
leaves, and thus we are left to consider the case in whicht2 had

a leaf with informationX2+X3. In this case, by our encoding
scheme in Case i) this leaf may either remain unchanged or
have informationX2 after Modification Procedure 2 — in both
casesX2 appears in the support.

Claim 15: Assuming Case ii) of Modification Procedure 2:
at the end of the modification proceduret2 is satisfied.

Proof: The proof is very similar to Claim 14. By Claim 13
it suffices to show thatX2 andX3 appear in the support of the
information appearing in any of thet2-leaves. By Claim 12,
the leaf carryingX3 is not changed during Modification
Procedure 2, and thus hasX3 in its support. If prior to
the modification,t2 had a leaf carryingX2 or X1 + X2,
then by Claim 12, the leafs would remain unchanged during
Modification Procedure 2, and thus haveX2 in its support.
Finally, ast2 was satisfied it must have hasX2 somewhere in
the support of (the information of) its leaves, and thus we are
left to consider the case in whicht2 had a leaf with information
X2 + X3. In this case, by our encoding scheme in Case ii)
this leaf may either remain unchanged or have informationX2

after Modification Procedure 2 — in both casesX2 appears
in the support.

Claim 16: Assuming Case iii) (b) of Modification Proce-
dure 2: at the end of the modification proceduret2 is satisfied.

Proof: In this case at least one ofP ′
1 or P ′

2 do not have
an intersection withpath(v31 − ℓ31). Suppose w.l.o.g. thatP ′

1

is such a path andℓ21 is the corresponding leaf containing
X2 + X3. We will first show that at the end of the procedure,
ℓ21 continues to receiveX2 + X3 and then use Claim 13.
Suppose that none of the edges ofP ′

1 are downstream ofv31.
In this case it is clear that the modification procedure does
not affect ℓ21. In the other case, when there is a path from
v31 to an edge onP ′

1 we argue as follows. By Claim 10, we
know that the coding vectors onP ′

1 were not altered at the
end of Modification 1. Therefore all coding vectors on edges
in P ′

1 have a1 in the third component (corresponding toX3).
Next, consider the edge closest tos3 onP ′

1 that is downstream
of v31. The greedy re-encoding step ensures that the coding
vector on this edge is[0 1 1] since the coding vectors on edges
downstream ofv31 are guaranteed to have a1 in the second
component (corresponding toX2). Likewise the greedy re-
encoding ensures that this coding vector is propagated toℓ21.

It remains to provide the proof of correctness when Case
iii)(a) occurs while running Modification Procedure 2. We start
by showing that all operations outlined in Steps 1 and 2 in this
case are valid.

Claim 17: The coding vector assignment, in Step 1 of Case
iii)(a) is valid.

Proof: Denote the edge where the blue path and
path(v31 − ℓ31) first meet asb1. We need to show that
the vector [0 0 1] is in the vector space spanned by the
coding vectors of the edges feeding intob1. According to
the algorithm[0 1 0] is propagated downstream ofv31 on
path(v31 − ℓ31). Therefore we need to show that the coding
vector on the blue incoming edge feeding intob1 is either
[0 0 1] or [0 1 1]. This blue edge is downstream ofs3.
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Therefore before the start of the Modification procedure 2,
by Claim 10, we know that the coding vector on it will have
a 1 in the third component (corresponding toX3). If this
coding vector does not change when[0 1 0] is propagated
downstream ofv31, then it is clear that we have the required
property. This coding vector will only change if the edge is
downstream ofv31. However, even in this case the greedy re-
encoding property will ensure that the blue edge continues to
have a coding vector that has a1 in the third component.

Claim 18: In Case iii)(a) the colored paths are such that be-
tween any two contiguous sets of colored edges onpath(v31−
ℓ31), we have a contiguous set of uncolored edges.

Proof: Our graphs are such that they have total degree
at most three. Recall that, this implies that edge-disjointpaths
are also node-disjoint. Since the blue and the red paths under
consideration are edge-disjoint, by this property, they are also
node-disjoint. Since these paths do not have any node in
common, onpath(v31 − ℓ31), we cannot have two successive
edges of different colors.

Claim 19: Step 2b) of Case iii)(a) is valid i.e. the coding
vectors on the edges feeding intoe are such that the flip
operation can take place.

Proof: We shall show this by using induction. Our aim
is to prove the following statement. Under the modification
procedure, Case iii)(a), in Step 2, for a given edgee, if
color(e) 6= curr-intersection-color, then the space spanned by
the coding vectors on the incoming edges intoe contain the
vectors[0 1 0] and [0 0 1].

The base case is true by the result of Claim 17. For the
induction step, suppose that this is true at thekth intersection
at an edge denotedek, where the edges feeding intoek are
denotedec

k and eunc
k (the superscripts denote colored and

uncolored respectively). Note that by Claim 18 we cannot have
both edges feeding intoek to be colored. W.l.o.g. we assume
that ec

k = blue. Now consider the closest red edge that is
upstream ofeunc

k on path(v31 − ℓ31). By Step 2(a) and using
the fact that the intersection types alternate, we claim that the
coding vector on this red edge is the same aseunc

k , equal to
[0 1 0] (the other case can be handled similarly). Denote the
head and tail of this red edge byv′1 andv′2 respectively. Note
that v′1 has to be an in-degree 1 and out-degree 2 node since
the red path branches off frompath(v31 − ℓ31) at this point.
Further we note that the outgoing red edge fromv′1 is such that
its coding vector is[0 1 0]. This implies that the coding vector
on the red edges downstream ofv′1 before the next intersection
with path(v31−ℓ31) are either[0 1 0] or [0 1 1], which means
the incoming colored edge at thek + 1 intersection,ec

k+1 has
a coding vector either[0 1 0] or [0 1 1]. Now, by the induction
hypothesis, the coding vector assignment[0 0 1] on ek is valid.
This further means thateunc

k+1 = [0 0 1]. Thus we have shown
that the space spanned by the incoming edges ofek+1 contain
the vectors[0 1 0] and [0 0 1]. Therefore we are done.

Claim 20: Assuming Case iii) (a) of Modification Proce-
dure 2: at the end of the modification proceduret2 is satisfied.

Proof: The previous Claims 17 and 19 show that each
of the operations are valid. We only need to demonstrate that

at the end of the procedureX2 and X3 continue to appear
in the support of the information available att2’s leaves. For
this we argue in a manner similar to the proof of Claim 19.
Let the last intersection (P ′

1 or P ′
2 type) withpath(v31 − ℓ31)

be at edgeen. W.l.o.g. suppose thaten is colored blue. We
let ec

n and eunc
n denote the colored and the uncolored edges

feeding intoen. As in the proof of Claim 19, suppose that
the coding vector oneunc

n be [0 1 0]. Then we know that the
closest red edge upstream ofeunc

n also has a coding vector
[0 1 0]. This further implies that thet2-leaf over the red path
contains eitherX2 or X2 + X3. Now, after the flip operation,
en will have the coding vector[0 0 1] which in turn means
that thet2-leaf over the blue path will contain eitherX3 or
X2 + X3. Therefore we have shown that in all cases bothX2

andX3 continue to appear in the support of the information
in t2’s leaves. By Claim 13 we are done.

D. Remaining Cases

1) Information oft3: Throughout Section V-C we consid-
ered the case in whicht3 has at least two leaves containing
X1 + X2, at least two leaves containingX2 + X3 and no
other combinations at other leaves. The second case in which
at least two leaves containX1 + X2 and at least two leaves
containX1 + X3, is symmetric. The proof for the third case
in which at least two leaves containX1 +X3 and at least two
leaves containX2 + X3 slightly differs from that proven in
Section V-C. Details follow.

As before we defineℓ31 andℓ32. If the information present
at ℓ31 andℓ32 equalsX2+X3 then the proof is identical to that
appearing in Section V-C. The same holds if the information
present atℓ31 andℓ32 equalsX1 +X3 (as this is a symmetric
case). If the information present atℓ31 equalsX1 + X3 and
that atℓ32 equalsX2 + X3 (or visa versa) we slightly change
Modification Procedure 2 and exclude Case iii a). It is possible
to exclude Case iii a) for the following reasons: (a) Using the
notation of Section V-C, it is not hard to verify that there will
not be any path connectingv31 to ℓ32 (or visa versa) as such a
path would imply a(3, 2) node. Thus we may define eitherv31

or v32 to be the “winner”. (b) It now holds that either at most
one pathP ′

i intersectspath(v31 − ℓ31) or at most one pathP ′
i

intersectspath(v32 − ℓ32). Again, otherwise there would be a
path connectingv31 to ℓ32 (or visa versa). After the exclusion
above, we note that in Claim 11,t3 is guaranteed to receive a
singleton and have the information of all sources at the support
of its leaves (and thus will be satisfied).

2) Number of unsatisfied terminals after initial greedy
encoding: As mentioned in Section V-A, it may be the case
that a single terminal, two terminals or all three terminal are
unsatisfied after the initial greedy encoding. In our presentation
we assumed all terminals were satisfied, and proved using
both Modification Procedure 1 and 2 that we may modify
the greedy encoding as to satisfy all terminals. The reader
may have noticed that Modification 1 can be used when we
would like to satisfy an unsatisfied terminal, sayt1, together
with an additional unsatisfied terminal, sayt2, under the
restriction thatt2 is connected to the leaf corresponding to
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the “winner” amongv11 andv12. In the discussion to follow,
we refer to sucht2 as the terminalcorrespondingto t1. Recall
that Modification 1 does not alter the information present at
the remainingt3. In addition, we associate Modification 1
with two sources (sayX1 and X2) and we do not change
information on edges including the remaining source (X3) in
their support.

Modification 2 can be used to satisfy a single unsatisfied
terminal, sayt3. We use Modification 2 on an encoding func-
tion that may differ from the original initial greedy encoding.
Nevertheless, it is not hard to verify that Modification 2 will
succeed if fort3 and some source, sayX3, the greedy encoding
is preserved. Namely, if any edge that containedX3 in its
support after the greedy encoding will have exactly the same
information in the encoding considered prior to Modification
2; and if all leaves oft3 contain the exact same information
they contained in the initial greedy encoding. We refer to
such an encoding as a(t3, X3)-preserved encoding. As in
Modification 1, there is a terminal that corresponds to the
terminalt3 being considered (in Section V-C this terminal was
t2). The information present at the leaves of the third terminal
(that is neithert3 or the terminal that corresponds tot3) is
not changed during Modification 2. In addition, we associate
Modification 2 with two sources (sayX2 and X3) and we
do not change information on edges including the remaining
source (X1) in their support.

Now, if only once terminal, sayt1, is unsatisfied after
the greedy encoding, then all we need to do is preform
Modification 2. Notice that trivially the initial greedy encoding
is (ti, Xj)-preserved for alli and j. If two terminals, say
t1 and t2 are unsatisfied after the initial greedy encoding,
then we consider two cases. Ift2 corresponds tot1 then we
may perform Modification 1 and satisfy both of them without
changing the information present att3. If t2 does not corre-
spond tot3, then we will preform Modification 2 twice. First
we perform Modification 2 ont1. As t2 does not correspond
to t1 (in both Modification 1 and 2 correspondence is defined
in an equivalent manner), it holds that after the modification
process there is a sourcesj for which the resulting encoding
is (t2, Xj)-preserved. Moreover, after the modification process
botht1 andt3 are satisfied. Now applying Modification 2 ont2
is possible, and after its completion all terminals are satisfied.

VI. CONCLUSION

In this work we have addressed the network arithmetic
problem in the scenario in which the network has three sources
and three terminals. We have shown that the characterization
obtained in [7] no longer holds for the case in which there are
more than two sources and two terminals. For the3s/3t case
we show that the network arithmetic problem is efficiently
solvable if each source terminal pair is connected by at least
two edge disjoint paths.

Several questions remain open. Primarily, is the 2-
connectivity condition (betweensi/tj pairs) necessary or can
other combinatorial connectivity requirements characterize the
capacity of the network arithmetic problem for the3s/3t case.

Secondly, as our proof involves a tedious case analysis it would
be very interesting to see a simpler more accessible proof for
the 2-connectivity case. Finally, the case of more sources and
terminals is completely left open in this work.
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