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Communicating the sum of sources in a
3-sources/3-terminals network
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Raanana 43107, Israel Ames, lowa 50011
Email: mikel@openu.ac.il Email: adityar@iastate.edu

Abstract—We consider the network communication scenario correlated sources was first examined by Ho et al. [2]. The
in which a number of sources s; each holding independent work of Ramamoorthy et al. [8] showed that in general
information X; wish to communicate the sum}_ X; to @ set ganarating distributed source coding and network coding is

of terminals t;. The case in which there are only two sources or boptimal tin th f d two t )
only two terminals was considered by the work of Ramamoorthy suboptimal except In the case or two sources and two termi-

[ISIT 2008] where it was shown that communication is possibie Nals. A practical approach to transmitting correlated sources
if and only if each source terminal pair s;/t; is connected by at over a network was considered by Wu et al. [10]. Reference
least a single path. [10] also introduced the problem dfetwork Arithmeticthat

In this work we study the communication problem in general, ~ymes up in the design of practical systems that combine
and show that even for the case of three sources and three . . . . .
distributed source coding and network coding.

terminals, a single path connecting source/terminal pairs does . |
not suffice to communicate" X;. We then present an efficient [N the network arithmetic problem, there are source nodes

encoding scheme which enables the communication of X; each of which is observing independent sources. In addition

for the three sources, three terminals case, given that eachthere is a set of terminal nodes that are only interested in

source terminal pair is connected bytwo edge disjoint paths. 1ne sum of these sources i.e. unlike the multicast scenario

Our encoding scheme includes a structural decomposition of the . . . .

network at hand which may be found useful for other coding where the termlna}ls are actually mterested in recovering a!l

problems as well. the sources, in this case the terminals are only interested in
the sum of the sources.

. INTRODUCTION The rate region of the network arithmetic problem was

Network coding is a new paradigm in networking wheré&haracterized recently by an author of this work in [7] for the
nodes in a network have the ability to process informatidifSe of directed acyclic networks (DAGS) with unit capacity
before forwarding it. This is unlike routing where node§dges and independent, unit entropy sources in which the
in a network primarily operate in a replicate and forwarﬂetwork has at most two sources or twq terminals. Basically,
manner. The problem of multicast has been studied intensivéiyvas shown that as long as there exists at least one path
under the paradigm of network coding. The seminal work fgom each source to each terminal, there exists an assignment
Ahlswede et al. [1] showed that under network coding e ching vectors to each edge in the network such that the
multicast capacity is the minimum of the maximum flows fronfrminals can recover the sum of the sources. . _
the source to each individual terminal node. The work of Lj !N this work we continue the study of the network arithmetic
et al. [5] showed that linear network codes were sufficieRfoPlem for networks with more than two sources and two
to achieve the multicast capacity. The algebraic approacht%m'nals- Primarily we show that the characterization _of [7]_
network coding proposed by Koetter and Médard [3] provided longer holds when the number qf sources and termlna_\ls is
simpler proofs of these results. greater than two. We note that a similar result was obtained

In recent years there has also been a lot of interest in fige€ntly in an independent manner by [6]. We then turn to
development and usage of distributed source coding scherB&In encoding schemes for the three source three terminal
due to their applications in emerging areas such as sen§Bp€ 8s/3t). We show that as long as each source is connected
networks. Classical distributed source coding results sugj Wo edge disjoint paths to each terminal, the network
as the famous Slepian-Wolf theorem [9] usually assumeaélthm?t'c problem is solvable. Namelly, we present efficient
direct link between the sources and the terminals. Howey@icoding schemes that allow communication inihgst case.
in applications such as sensor networks, typically the sourd@dl main result can be summarized by the following theorem:
would communicate with the terminal over a network. Thus, Theorem l:Let & = (V, E) be a directed acyclic network
considering the distributed compression jointly with the nef/ith unit capacity edges and three souregss,, s; containing

work information transfer is important. Network coding fofndependent unit-entropy sourcés, X, X3 and three termi-
nalsty,to, t3. If there exist two edge disjoint paths between

Authors are in alphabetical order. each source/terminal pair, then there exists a linear network
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coding scheme in which the suki; + X, + X3 is obtained Ill. EXAMPLE OF THREE SOURCES AND THREE
at each terminat;. Moreover, such a network code can berERMINALS WITH INDEPENDENT UNIT-ENTROPY SOURCES
found efficiently. L
. Y . . We now present our counter example to the characterization
This paper is organized as follows. Section Il presents t%?

) . .0f [7] containing 3 sources and 3 terminals. Namely, we
network coding model that we shall be assuming. In Section . .
. resent a3s/3t network with at least one path connecting
[l we present our counter example to the characterization

[7] containing 3 sources and 3 terminals. In Sections IV and ?fmh source terminal pair, in which the sum of sources cannot

we present our main result: the proof of Theorem 1. In Secti(glr%nder any network code) _be transmitted (with zero_error
VI we outline our conclusions. probability) to all three terminals.

Consider the network shown in Figure 1, with three source
II. NETWORK CODING MODEL nodes and three terminal nodes such that the source nodes

In our model, we represent the network as a directed grapRserve unit entropy sources , X» and X3 that are also inde-
G = (V,E). The network contains a set of source noddendent. All edges are unit capacity. As showed in Figureel th
S C V that are observing independent, discrete unit-entroffjeoming edges into termina} contain the valueg; (X1, X»)
sources and a set of terminals C V. Our network coding and fi(X2, X3) where f; and f; are some functions of the
model is basically the one presented in [3]. We assume tI$&UrCes.
each edge in the network has unit capacity and can transmiBuppose thak'; = 0. This implies that, should be able to
one symbol from a finite field of siz& per unit time (we are recoverX; + X, (that has entropy 1) from just; (X, X2).
free to choosen large enough). If a given edge has a highévloreover note that each edge is unit capacity. Therefore the
capacity, it can be treated as multiple unit capacity edgefitropy off1(X1, X») also has to be 1. i.e. there exists a one-
A directed edgee between nodes; and v, is represented to-one mapping between the set of values thigtXy, X»)
as (v; — v;). Thus head(e) = v; and tail(e) = v;. A takes and the values of; + X5. In a similar manner we
path between two nodes and v; is a sequence of edgescan conclude that there exists a one-to-one mapping between
{e1,e,... e} such thattail(e;) = v;, head(ey,) = v; and the set of values thaf| (X, X3) takes and the values of
head(e;) = tail(ej11),i=1,...k — 1. X5 + X3. At terminal t3, there needs to exist some function
Our counter-example in Section Il considers arbitrarh(f1(X1,X2), f{(X2, X3)) = >, X;. By the previous
network codes. However, our constructive algorithm for thebservations, this also implies the existence of a function
proof of Theorem 1 shall use linear network codes. In line&f(X1 + X2, X» + X3) that equals;_; X;. We now demon-
network coding, the signal on an edge — v,), is a linear strate that this is a contradiction. L& = a, X, =0, X3 =c¢
combination of the signals on the incoming edgesoand the andXj = a—b, X3 = b, X3 = c—b. In both cases the inputs to
source signal at; (if v; € S). In this paper we assume that théhe function?/(-, -) are the same. Howevér,_, X, = a+c,
source (terminal) nodes do not have any incoming (outgoinghile 337 | X/ = a — b + ¢, that are in general different.
edges from (to) other nodes. If this is not the case one caherefore such a functioh'(-,-) cannot exist
always introduce an artificial source (terminal) connedted
the original source (terminal) node by an edge of sufficient! X, X, Xs
large capacity that has no incoming (outgoing) edges. Wk sha
only be concerned with networks that are directed acyclit an
can therefore be treated as delay-free networks [3]. Y.et
(such thattail(e;) = vy, andhead(e;) = v;) denote the signal
on thei'" edge inE and letX; denote thej*" source. Then,
we have

Y, = Z fiiYe, if vy € V\S, and
{ejlhead(e;)=vi}
Yei = Z aj,in if vV € 57
{j|X; observed aty, }
where the coefficients,; ; and f;; are fromGF(2™). Note )
that since the graph is directed acyclic, it is possible joress
Y., for an edgee; in terms of the sources(;'s. Suppose
that there are: sourcesXy, ..., X,. If Yo, = >0 Be, 1 Xk ts
then we say that the global coding vector of edgeis _ _
. Fig. 1. Example of a network with three sources and threeit&ls) such
/361', = [661,1 6611771]' We shall also occaS|onaIIy use thethat there exists at least one path between each source ahdezeninal.

term coding vector instead of global coding vector in thisowever all the terminals cannot compdie?_, X;.

paper. We say that a nodeg (or edgee;) is downstream of

another node; (or edgee;) if there exists a path from; (or

ej) to v; (OI‘ ei). 1These arguments extend naturally even if we consider engamlier time.
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IV. PROOF OFTHEOREM 1 veVis of total degree three with the additional following
We start by giving an overview of our proof. RoughlyProperties: (a) is acyclic. (b) For every source (terminal)
speaking, our proof for determining the desired networkecod? G there is a corresponding source (terminal)Gh (c)
has three steps. In the first step, we turn our grapinto For any two edge disjoint path#: and P, connecting a
a graphG = (V, E) in which each internal node e / Source terminal pair ir, there exists twoertexdisjoint paths
is of total degree at most three. We refer to such graplisG connecting the corresponding source terminal pair. (d)
as structured graphs. Our efficient reduction follows thatAnY feasible network coding solution i’ can be efficiently
appearing in [4], and has the additional following propesti turned into a feasible network coding solution @. Our
(a) G is acyclic. (b) For every source (terminal) @ there is reduction follows that appearing in [4] and is given here for
a corresponding source (terminal)Gh (c) For any two edge Completeness. o _ .
disjoint pathsP; and P, connecting a source terminal pair The redu_ct|on is done iteratively according to the fol_lognn
in G, there exists twovertex disjoint paths inG; connecting Procedure in which we reduce the total degree of internal
the corresponding source terminal pair. Here and throughd@§'tices to be at mos8. First we note that any source

we say two paths between a source/terminal pair are ver@@&minal) inG is also one inG;.
disjoint even though they share their first and last vertites 1) Reducing degreed:et - be the graph formed fro by

the source and terminal at hand). (d) Any feasible netwoli€ratively replacing each nodec ¢, which is not a source or

coding solution in(; can be efficiently turned into a feasible? terminal node whose degree is more than 3 by a subgraph

network coding solution irG. constructed as follows. Lef(z;,v) | z‘_ =1, S din(v)} anq
It is not hard to verify that proving Theorem 1 on structured(v>¥i) | @ =1,...,doui(v)} be the incoming and outgoing
graphs implied a proof for general grapfisas well. Indeed, 'Nks of v, respectively, wheré, (v) andd.:(v) are the in-
given a network(z satisfying the requirements of Theorem £Nd out- degrees of. For each incoming linkz;, v) of v, we
construct the corresponding netwotk. By the properties @dd tol', a nodez; and a ?Lr)'ary. treeX; with root at; and
above(; also satisfies the requirements of Theorem 1. Assuffeut (V) leavesaj, ... a;""". Slmljarly, for each outgoing
ing Theorem 1 is proven for structured graghiswe conclude INK (v;4:) of v, we add tal’, a nodej; and an |n(\i/verted binary
the existence of a feasible network codedh Finally, this treeY; with root aty; andd;, (v) leavesy;, . .., g () Next,
network code can be converted (by property (d) above) infer €achl < i < d;,(v) and1 < j < dow(v) we add an edge
a feasible network code fof as desired. We specify the (%7, 9;) toT',. Finally, we connecI’, to the rest of the network
mapping betweeit? and G and give proof of properties (a)- by adding edgesz;, ;) for 1 < i < d;,(v) and (y;, ;) for
(d) in Section IV-A. For notational reasons, from this point < @ < dout(v). Figures 2 and 3 demonstrate the construction
on in the discussion we will assume that our input grépts ~ Of the subgrapi’, for a nodev with d;, (v) = dowt(v) = 3.
structured — which is now clear to be w.l.o.g. Note that for any two linkgz;, v) and (v, y;) there is a path
In the second step of our proof, we give edges and vertid8sl'» that connects;; andy;.
in the graphG certain labels depending on the combinatorial
structure ofGG. This step can be viewed as a decomposition of
the graphG (both the vertex set and the edge set) into certain
classsets which may be of interest beyond the context of this
work. These classes will later play a major role in our arialys
The decomposition of7 is given in detail in Section I1V-B. v
Finally, in the third and final step of our proof, using the
labeling above we evoke on a rather lengthy case analysis for
the proof of Theorem 1. Namely, based on the terminology
set in Section IV-B, we identify several scenarios, and prov Y Y2 Y3
Theorem 1 assuming they hold. As the different scenarios we Fig. 2. A nodev € G.
consider will cover all possible ones, we will conclude our .
proof. Our detailed case analysis is given in Section IV-@ an \We proceed to analyze the properties:bfnamely we show
Section V. that G is structured. The proof of properties (a), (b) and (c)
Allin all, as will be evident from the sections yet to comefollow directly by our construction. For property (d) coder a
our proof is constructive, and each of its steps can be doi§@sible network code for the netwock A feasible network
efficiently. This will result in the efficient constructiorf the code for G is constructed as follows. Let = (u,v) be an

desired network code fa. We now proceed to formalize the€dge inG. Let ¢’ be the corresponding edge betwdgnand
steps of our proof. I', in G. Here we assume both and v were replaced by

) corresponding gadgets. Other cases can be proven analpgous
A. The reduction The encoding functiorf, for e = (u,v) is determined by the
Let G = (V, E) be our input network, and let; and¢;, be encoding functiong; of links ¢ that belong td",,. Specifically,
the given sources and terminals. We now efficiently constret X = {(z1,21),..., (Z4,,(u)> Td,,(x))} D€ the incoming
a structuredgraph G = (V, E') in which each internal node links of I',, where d;,,(u) is the in-degree ofu in G. The

X1 i) T3

3
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We now prove some structural properties of the edge sets
we have defined. First of all, there exists an ordering of sdge
in E in which anyr-edge comes before any terminal edge,
and in addition there is no path from a terminal edge to an
r-edge. This is obtained by an appropriate topological order
in G. Moreover, for any terminal;, the set oft;-edges form a
connected subgraph 6f rooted att;. To see this note that by
definition eacht;-edgee is connected td; and all the edges
on a path betweem andt; aret;-edges. Finally, the head
of an r-edge is either of typé:,2) or (,3) (as otherwise it
would be a terminal edge).

For each terminal; we now define a set of vertices referred
to as the leaf setL; of ¢;. This definition shall play an
important role in our discussions.

Definition 1: Leaf set of a terminalLet P = (s; =
vi,v2,...,u = t;) be a path froms; to ;. Consider the
intersection of P with the set oft;-edges, This intersection
consists of a subpat®’, (vp,...,v; = t;) of P for which
the label ofvp is either(-,2) or (-,3), and the label of any
other vertex inP’ is (-,1). We refer tovp as the leaf oft;

construction ofG’ implies that the information transmitted onCorresponding to pati, and the set of all leaves ¢f as the
the link ¢’ is a functionf. of the packets transmitted on links'@af setl;. Recall that we assume for each source terminal pair

X. We use this exact function as the desired encoding functitfi- £;) the existence of two (vertex) disjoint paths connecting

f.. The fact that the incoming links of in G correspond to i @ndi;.

the links in X implies the feasibility of the resulting code for We remark that (a) the leaf set of is the set of nodes
G. of in-degree O in the subgraph consisting fedges and

(b) a source node can be a leaf node for a given terminal.
Furthermore, we have the following claim about leaf nodes.
Claim 1: A leaf node which is not a source node has in-
In this section we present our structural decomposition gégree = 1 and out-degree = 2.
G = (V,E). We assume throughout thét is directed and Proof: Assume otherwise, i.e. that the leafhas out-
acyclic, that it has three sources, so, s3, three terminals degree = 1 and suppose that the outgoing edge is denoted
t1,t2, t3 and that any internal vertex i (namely, any vertex (¢ v). Note that this implies that,(v) = ¢,(¢) > 2, since/
with is neither a source or a sink) has total degree at Bosthas only one outgoing edge. This is a contradiction sifice
Moreover, we assum@ satisfies the connectivity requirementss g leaf node and has to be connected to at least one node
specified in Theorem 1. of type (-, 1). Therefore out-degre€(= 2 and since it is an
We start by labeling the vertices @f. A vertexv € V' internal node, it has in-degree = 1. ]
is labeled by a paincs,c;) specifying how many sources )
(terminals) it isconnectedto. Specifically,c,(v) equals the C. Case analysis
number of sources; for which there exists a path connecting We now present a classification of networks based on the
s; andv in G. Similarly, ¢;(v) equals the number of terminalsnode labeling procedure presented above. For each class of
t; for which there exists a path connectimgand¢; in G. networks we shall argue that each terminal can compute the
For example, any source is labeled by the gai3), and any sum of the source$X; + X + X3). Our proof shall be
terminal by the pait(3,1). An internal vertexv labeled(-,1) constructive, i.e. they can be interpreted as an algoritbm f
is connected to a single terminal only. This implies that arfinding the network code that allows each terminal to recover
information leavingv will reach at most a single terminal. (X; + X5 + X3).
Such verticesy play an important role in the definitions to 1) Case 0: There exists a node of typé3,3) in G.

Fig. 3. The gadget', for v in Figure 2.

B. The decomposition

come. This concludes the labeling Bt Suppose node is of type (3,3). This implies that there
An edgee = (u,v) for which v is labeled(-,1) will exist path(s; — v), for i« = 1,...,3 and path(v — t;), for
be referred to as &erminal edge. Namely, any informationj = 1,...,3. Consider the subgraph induced by these paths

flowing one is bounded to reach at most a single terminal. Hnd color each edge an}_; path(s; — v) red and each edge
this terminal ist; then we will say that is at;-edge. Clearly, on U?leath(v —t;) blue. We claim that a&/ is acyclic, at

the set oft;-edges is disjoint from the set @§-edges (and the end of this procedure each edge gets only one color. To see
similarly for any pair of terminals). An edge which is not ahis suppose that a red edge is also colored blue. This implie
terminal edge will be referred to asramainingedge or an that it lies on a path from a source toand a path fromv
r-edge for short. to a terminal, i.e. its existence implies a directed cycl¢hia



graph. Now, we can find an inverted tree that is a subset of tlveo sources and to all three terminals and therefore is a node
red edges directed into and similarly a tree rooted atwith  of type (2, 3), which is a contradiction. [ |
t1,to andts as leaves using the blue edges. Finally, we canIn an analogous manner we can see thaip(@(se — t3)
compute(X; + X3 + X3) atv over the red tree and multicastcannot have an intersection with eithguth(s; — v) or
it to ¢1,t2 andts over the blue subgraph. More specificallypath(ss —v), and (b)path(s;—ts) cannot have an intersection
one may use an encoding scheme in which internal nodeswith either path(s; — v) or path(sz — v).
the red tree receiving; andY, send on their outgoing edge Claim 3: The paths, path(s; — t3), path(ss — t3) and
the sumY; + Y5. path(ss—t3) cannot have an intersection with eithett /(v —
2) Case 1:There exists a node of typ@,3) in G. Note t1) or path(v — t2).
that it is sufficient to consider the case when there does not Proof: To see this we note that if such an intersection
exist a node of typé3,3) in G. We shall show that this casehappened, then would also be connected tg which would
is equivalent to a two sources, three terminals problem. imply thatv is a(3,3) node. This is a contradiction. ®
Without loss of generality we suppose that there exists alLetv; be the node closest tothat belongs to bothath(s;—
(2,3) nodewv that is connected ta, and s;. We color the v) andpath(s; —t3) (notice thaty; may equal; but it cannot
edges orpath(sy —v) andpath(ss —v) blue. Next, consider equalv). Consider the following coding solution of@’. On
the set of pathss?_, path(s; —t;). We claim that these pathsthe pathspath(s; — v;) sendX;. On the pathgath(v; — v)
do not have any intersection with the blue subgraph. This$énd information that will allow to obtain X; + X5 + X.
because the existence of such an intersection would imply tiThis can be easily done, as these (latter) paths form a tree
there exists a path betweepandwv which in turn implies that into v. Namely, one may use an encoding scheme in which
v would be a(3, 3) node. We can now compute(,+ X3) atv  internal nodes receiving; andY> send on their outgoing edge
by finding a tree consisting of blue edges that are directeed irthe sumY; + Y. By the claims above (and the fact that
v. Suppose that the blue edges are removed ffbto obtain is acyclic) it holds that the information flowing on edge#
a graphG’. Since(G is directed acyclic, we have that therghe pathgath(v; —t3) has not been specified by the encoding
still exists a path fromy to each terminal after the removaldefined above. Thus, one may send information on the paths
Now, note that (a)Z” is a graph such that there exists at leagtuth(v; —t3) that will allow ¢3 to obtain X; + X + X3. Here
one path frons; to each terminal and at least one path from we assume the pathsth(v; —t3) form a tree intots, if this
to each terminal, and (k) can be considered as a source thag not the case we may find a subset of edges in these paths
contains(X» + X3). Now, G’ satisfies the condition given in with this property. Once more, by the claims above (and the
[7] (which addresses the two sources version of the probldact thatG” is acyclic) it holds that the information flowing
at hand), therefore we are done. on edges in the pathgpath(v —t1) andpath(v —t2) has not
3) Case 2: There exists a node of typ€,2) in G. As been specified (by the encodings above). On these edges we
before it suffices to consider the case when there do not exXiRY transmit the sunX; + X, + X3 present ab.
any (3,3) or (2,3) nodes in the graph. Suppose that there 4) Case 3:There do not exist3, 3), (2, 3) and(3, 2) nodes
exists a (3,2) node and without loss of generality assumdn G. Note that thus far we have not utilized the fact that

that it is connected to, andt,. We consider the subgragghi there exist two edge-disjoint paths from each source to each
induced by the union of the following sets of paths terminal inG. In previous cases, the problem structure that has

emerged due to the node labeling, allowed us to communicate
2) U2, path(v — t;), and (X_1 + X5 + X3) by using just one path bgt\_/veen eagh-t;
3) US_ path(s: — ts). pair. However, for the case at hand we will indeed need to use
=1 ! . the fact that there exist two paths between egch t; pair.
Note that as argued previously, a subset of edges &f we will see, this significantly complicates the analysis.

Uiy path(s;—v) can be found so that they form a tree directeghis case in the main technical contribution of our work, we
into v. For the purposes of this proof, we will assume that thisresent it in the upcoming section:

has already been done i.e. the gragh, path(s; —v) is a tree
directed intov. V. ANALYSIS OF CASE 3

The basic idea of the proof is to show that the paths from The basic idea of the proof is as follows. We first label
the sources to terminaj i.e. Uj_, path(s; —t3) are such that each edge in the graph as aedge or an-edge. Next, using
their overlap with the other paths is very limited. Thus, thghe topological ordering on the edges, we perfogreedy
entire graph can be decomposed into two parts, one over whigitoding vector assignmeat everyr-edge, i.e. the outgoing
the sum IS transm!tted to, andt, and gnother over which edge contain the largest sum that one can possibly obtaim fro
the sum is transmitted t6;. Towards this end, we have thethe input edges. For example, in our greedy encoding, if the

1) U?zlpath(si — ),

following two claims. input edges contaiX; and X, then the outgoing edge will
Claim 2: The pathpath(s; —t3) cannot have an intersec-carry X; + X, and if they carryX; and X, + X, the outgoing
tion with eitherpath(se — v) or path(ss — v). edge will still carry X; + X5. The greedy encoding will be

Proof: Suppose that such an intersection occurred atspecified in detail shortly (in Section V-A). We then examine
nodev’. Then, it is easy to see that is connected to at leastthe state of the leaves of each terminal to see whether each
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terminal can recoveEf:1 X, using the information available holds i.e. there exists #-leaf that has source labeél Note

on its leaves. If this is the case then we are done, otherwibat this can happen in the following ways.

we perform a procedure that consists of a sequence of carefa) There exist three singleton leaves containing each of the
modifications to the current encoding vector assignments on X;’s. In this case, each of the leaves has a path consisting
the edges so that at the end of it, each terminal is satisBed i.  of ¢,-edges tot;. We can find a subset of the edges on
it can recovery_; | X, from its leaves. Towards this end we  these paths that form a tree directed intoover which

first establish some specific properties of the terminaldsav Zf’zl X, can be constructed.

under this case. b) There exist two singleton leaves containing w.l.oXg.
Claim 4: Each leaf is of type eithef2,2), (1,2) or (1, 3). and X, and no singleton leaf foX;. This implies that
Proof: A leaf node is of type(-,2) or (-,3). Since there exists at least one oth@r 2) leaf connected td(.
(3,3),(2,3) and(3,2) nodes are ruled out, the claim follows. Suppose that the leaf contaiig + X3. In this case we
u form the directed tree inte; by considering the paths

Claim 5: There exist at least three leaves for each terminal.  from this leaf and the leaf containing,. The other case
Proof: Recall that there exist two vertex disjoint paths  can be handled in an identical manner.
between each source and each terminal. Each such path hag)aThere exists one singleton leaf containing w.l.&.gand
corresponding leaf. For each terminal, different sourcay m no singleton leaf for the other sources. It is not hard
share leaves but there must be two distinct leaves for each to verify that¢; will have leaves connected t&, and

source (the corresponding paths are vertex disjoint). BanclI X3 as well. This follows directly by our connectivity
4 the source label of each leaf can be at most two. This implies requirements. If there exists a leaf containifg + X
that each terminal must have at least three leaves. B then we are done by the approach suggested above. Al-

ternatively there have to exist leaves containfg+ X

. I . and X; + X3. In this case once again we form a directed
We now specify our initial encoding procedure. We perform tree rooted intd; by finding an appropriate subset of the

our greedy encoding vector assignment onttezlges ordered t,-edges. Over this tree, we can assign encoding vectors
in topological order. More formally, we perform the follavg such thatt, obtains(—X;) + (Xa + X1) + (X + X3) =
steps. 23 X,
. . . . =1t
i) Suppose the tgn of the edge .at_hand is a node Of'”'de_greq_ikewise, if the leaves of, contain X, + Xo, Xy + X3
1. The encoding vector on it is a copy of the encoding,q X, + X3, then we can form a directed tree into so

_ vector of the incoming edge. _ _ that it can recove >°°_, X;. Here we need the field to be
ii) Suppose the tail of the edge at hand is a node of in-degrgecnharacteristic> 2. -

2. Let the encoding vectors (of length-3) on the incoming \ye say that a sourc&,; appears at a node if the node
edges be denoted, and (5, and let supf)3;) denote the ¢ontains a sum of the subset of the sources that inclides
support ofg3;. The support of the encoding vector on the corollary 1: Consider an assignment of coding vectors at
outgoing edge is)7_;supf(3;) and every element in the every edge of G. Suppose that for a given terminal (w.l.0.g.
support takes the value t1), (a) each sourceX;,i = 1,...,3 appears at least once
We remark that there are at most two sources connecifdthe set oft;-leaves, and (b) at least one source appears
by a path to the tail of any-edge. This follows since, as a singleton at one of thig-leaves. Thert; can compute
otherwise by definition, as the head of medge has terminal 2?21 X;.
label 2 (or 3) this would imply the existence of &,2) (or Proof: This follows directly from the proof of Claim 6.
(3,3)) node. We conclude that for anyedgee, the encoding ]
vectors corresponding to its incoming edges span a subspac®@/e are left to consider the case in which the conditions
of dimension at most. This will allow (by simple forwarding of Claim 6 do not hold. Namely, the case in which a given
or addition) to obtain the encoding vector ferspecified in terminal has only leaves of typg,2), and does not have

A. Initial Greedy Encoding

i) above. leaves containing all three combinatioAs + X5, X5 + X3
We now outline the conditions under which a terminal caand X; + X5. This may only hold if a given terminal has four
recoverZ?:1 X; from its leaves. (2,2) leaves such that (w.l.o.g.) two of them contdin + X5

Claim 6: A terminal can recoveEf:1 X; under the fol- and two containX, + X3. In this situation it is clear that
lowing conditions. i) At least one of the leaves of the terahin there is no way thagleXi can be computed using the
is of type(1,2) or (1,3). Henceforth we refer to such leavesnformation available at the leaves (see Section Il1). Wallsh
as singleton leaves. ii) There exist three leaves of §#€) now outline a sequence of modifications that will eventually
such that one is connected 4p ands2, one toss andss and result in the terminal being able to complgéi’:1 X;.
one tos; andss. We say that a terminal is unsatisfied if it does not satisfy the

Proof: W..og. we assume the terminal to be. We conditions of Claim 6. It may be the case that a single termina
shall demonstrate the existence of encoding vector asggtsm two terminals or all three terminal are unsatisfied after the
downstream of the leaves on theg-edges that allows the initial greedy encoding. In what follows we present twod-
recovery onle X, at t;. Suppose that the first conditionification procedures that modify the initial greedy encoding as



to satisfy unsatisfied terminals. “Modification Procedutésl Modification Procedure 1

discussed in detail in Section V-B and “Modification Procedu
2" is discussed in detail in Section V-C. The two modification '
procedures are designed to fit a certain case analysis that wi
be specified shortly. To present our need for both procedures
for the remainder of this section we assume that all three
terminals are unsatisfied after the initial encoding. Wel wil
discuss the (easier) cases in which only two terminals are
unsatisfied or only a single terminal is unsatisfied at the end
of the section. W.l.0.g. we assume that the leaves abntain
only X+ X5 andX,+ X3 (after our greedy encoding process).

B. Modification Procedure 1

As our graph7 is structured, note that there exist two node-
disjoint paths frons; to t; that we denoté”, and P». Let /1,
and/;, denote the (2,2) typée;-leaves that hav&(; + X5 on
these paths (note that the leaves corresponding to thelse pat
cannot holdX, + X3). Next perform the following steps.

i) Follow P; upwards from/y; (i.e. towardss;) and find

the first in-degree 2, out-degree 1 node such that both
its incoming edges do not have the encoding vector
assignmentl 1 0]. Call this nodev;;. Repeat the process
for P, and call the corresponding node,. We remark
that such av;; has to exist since? starts ats; and
therefore at least one edge on it has a coding vector
[100].

i) If vy; is downstream ofvy, or vice versa, call the
downstream node theinner. More formally, for a fixed
topological order on the nodes df, if the value ofvy; ii)
is greater than that af;, then declare);; as the winner,
otherwisewvio will be declared as the winner. W.l.o.g.
we assume thaty; is the winner for our subsequent
discussion.

Now, /17 is a (2,2) node, which means that it is connected
to another terminal distinct frory. W.l.0.g. suppose that the
other terminal ist,. Our strategy will be to modify coding

) Case 1.The path betweer;; andt, intersectsP. In

this case, notice that there could be multiple intersestion
However, we can always find a new path betwégnand

to that intersects a contiguous set of edgesronafter
which it does not intersed®, again. We shall assume that
thepath(¢11 —t2) is of this type. Let the first intersection
betweerpath(¢1; — t2) and P, occur at node’, and the
last at nodev”. Observe that’ is necessarily strictly
downstream ofv;o, otherwise this would contradict the
fact thatv; was the winner in the procedure specified
previously. In turn this implies that the coding vectors on
the edges betweem, andv’ are[1 1 0]. It also holds
thatv” is equal to or abové;s, otherwisel > wouldn’t

be at;-leaf.

Suppose that, requested anX; singleton leaf (the
analysis is similar in the other case). Note that the coding
vectors at the incoming edges of; are such that the
coding vector on its outgoing edge can be made either
[1 00] or [0 1 0]. We change the coding vector on the
outgoing edge ot;; and on all other edges on the path
Py betweerw;; and/y; to [0 1 0]. In addition, we change
the coding vector opath(¢1; —v’) to [0 1 0]. We know
that atv’ the other incoming edge has a coding vector
of [1 1 0]. Let ¢ be the firstto-leaf on path(v’ — t2).

We change the coding vector gath(v' —¢') to [1 0 0].
Similarly we propagatél 0 0] on P, betweenv’ and /5.
Case 2.The path betweerf;; and t; does not have
an intersection withP,. Suppose that, requested an
X, singleton leaf (the analysis is similar in the other
case). Then simply change the coding vectors on path
betweenv;; and/;; and betweerf;; and thet,-leaf on
path(¢11 — t2) to [1 0 0]. We observe that;» continues

to receive[l 1 0] as coding vectors on it are not changed.

vectors downstream af;; such that/;; becomes a singleton At the end of this_ modification_procedure, it may be the
leaf (containing eithe, or X5), and then modifying coding case that some coding vector assignments downstream of

vectors downstream of;; so that at least one leaf of also become inconsistent. In this case, we re-perform the greedy
becomes a singleton leaf. encoding step on those edges, while retaining whatevengodi

We now turn to better understand the leaveg.ofBy our Vectors we have assigned in the previous step. For example
assumptions, is also unsatisfied and since it is connectegPnsider an internal node that initially had two incoming
to £11, this implies that one of its leaves contaiis + Xo. encoding vectors, one_of valye 1 0] and the other of value
Therefore its leaves contain one of the following combiragi  [1 0 0], and an outgoing encoding vector of valliel 0].
i) At least two leaves containing’; + X» and at least two It might be the case that after our modification procedure it

leaves containings + Xs. In this case we say thas now has incoming e_ncodmg ve_ctors, b.oth of_va[l]leO Q].
requestsa singleton leaf containing;. The outgoing encoding vector is now inconsistent with the

ii) At least two leaves containing; + X» and at least two incoming ones and thus mus_t be modified. Our re-encoding
leaves containingX; + Xs. In this caset, requests a (preformed on--edges only) will follow the greedy procedure
singleton leaf containingts outlined previously while we preserve any modification made

Loosely speaking, turning & leaf containingX; + X5 in “Modification Procedure 1.
into a singleton leaf containing the request:efwill allow to Next, we establish that we are in a position whereand
satisfyt,. Next, once we have identified which type of leaf 2 are satisfied. In what follows we refer to Modification
requests, we perform the following modification to our ggeed®rocedure 1 and the re-encoding as “Modification 1.
encoding, that will satisfy bott; andt,. Our modification Claim 7: Any leaf that containedX, + X3 or X; + X3
proceeds according to the cases presented below. before Modification 1, continues to do so at the end of it.



Proof: Note that all modifications are performed downenly on ther-edges. This is a contradiction since it implies
stream ofv1; which is a(2,2) node since it is connected tothe existence of a (3,2) node. [ |
(11 which is a (2,2) leaf, and since by definition it is connected o
to boths; andss. If any leaf containingX, + X or X; + X, C. Modification Procedure 2
was modified, it must be connectedg, and thus tos; and We now turn to describe our second modification procedure
s2. However, such a leaf is also connectedsto This which that will allow to satisfy terminat; while preserving satisfac-
would make it a (3,2) node, a contradiction to our assumptigion of ¢; and¢,. As the information reachings has not been

that such a node does not existGh B modified its leaves contain one of the following combinasion
Claim 8: At the end of Modification 1, both; and¢, are i) At least two leaves containing; + X5, at least two leaves
satisfied. containingX, + X3 and no other combinations at other leaves.

Proof: Before the procedure was performég, and/,, ii) At least two leaves containing’; + X», at least two leaves
were (2,2) nodes containing; + X,. At the end of the containingX;+ X3 and no other combinations at other leaves.
procedure/;; becomes a singleton leaf containing eitbér iii) At least two leaves containing’; + X, at least two leaves
or X,. The leaf¢,5 either containsX; + X, or becomes a containingX,+ X5 and no other combinations at other leaves.
singleton leaf depending upon whether Case 1 or Case 2 i$\Ve start by considering Case i) above (the remaining cases
performed in Modification Procedure 1. If Case 1 occurrewlill be discussed at the end of the section). As before we
then ¢;; and /> obtain distinct sources because of tiip define the verticess,, vs2, £31 and s, as follows. Consider
that occurs at node’. In Case 2,/;» continues to obtain the two node disjoint paths connecting to ¢3, we denote
X1 + Xs. Moreover by Claim 7 above, the other leavethese paths by’ and P». Let /3, and /3, denote the (2,2)
of ¢; containing X3 are undisturbed. Therefore, we havéype ¢3-leaves on these paths. It is not hard to verify that
successfully introduced a singletoptleaf, which implies that they must contain informatiotks + X3. Next, perform the

it is satisfied (Corollary 1). following steps.
The argument fot; is a little more subtle. Recall, that in i) Follow P, upwards from/s; (i.e. towardsss) and find
Modification Procedure 1, we considered the “requestt,of the first in-degree 2, out-degree 1 node such that both

Thus if it requestedX;, this was because it already had a its incoming edges do not have the encoding vector
Xo + X3 leaf. Now, at the end of the procedure, we have assignmenf0 1 1]. Call this nodevs;. Repeat the process
successfully introduced a singleton leaftatcontaining X for P, and call the corresponding nodg,.

(the “request”). Again, by Claim 7 above, its other leavesj)) If w4, is downstream ofvs, or vice versa, call the
containing X3 are undisturbed. Therefore it can compute  downstream node thwinner. W.l.o.g. we assume that
>? . X; by usingXs + X3 from the other leaf. u vs1 is the winner for our subsequent discussion.

Having ensured that andt, are satisfied, we now propose We now show how to modify the encoding vectors of the
further modifications to ensure thatis satisfied. We start by network such thatall terminals will be satisfied. Assume
proving some properties of Modification 1. w.l.0.g. thatt, is the additional terminal connecteddg,. We

Claim 9: Modification 1 does not affect any-leaf. emphgsi;e tha_t this is W.I.Q.g since we assume very little on

Proof: Our proof follows the line of proof given in Modification 1 in the analysis to come. Specifically, our groo

Claim 7. First notice that there cannot be a path between €S Without change if; is the additional terminal connected

nodew;; and anyts-leaf. This follows from the fact that;; to vs1. ) o ) o
is connected td; and, and tos; ands,. The existence of ~ We begin by outlining the basic procedure and providing

a path between;; andt; would imply thatv; is a (2,3) intuition about it. The purpose of Modification 1 was to emsur
node (connected tt also) in contradiction to our assumptiortnat both terminals, andi, are satisfied. However, the aim

that such nodes are not presentinAs all modifications are ©f the current procedure is only to satisfy while ensuring
performed downstream af;;, and ¢; nodes do not appearthatt? continues to remain satisfied. Towards this end we first

downstream ofy;; we conclude our assertion. m ©xamine the structure of the leaves on the two-edge disjoint

In a similar manner we also claim that any coding vecté)r""ﬂ_‘S betweers; and t,. Depe_ndmg on the comblnatlons_
that originally had al in the third component (correspondingf]‘va"able on the leaves we decide thg source symbol that will
to X3) remains unchanged after Modification 1. e propagated opath(vs, — £51) and finally argue that both

Claim 10: If a coding vector on an edge had a 1 in théz andts remain satisfied.
third component (corresponding t83) originally, it remains Modification Procedure 2
unchanged after Modification 1. First consider the two edge-disjoint paths betwagrand ¢,

Proof: Our proof follows that of Claim 7. All modifica- denotedP; and P;. Identify thet,-leaves/s; andls; on these
tions are performed downstream of; which is connected paths and the information contained in them. Note that both
to X; and X,. Therefore if there is an edge that originalljjeaves necessarily need to contain a componetXpfeither
contained a 1 in the third component, it implies that thiseeidg by itself or as a sum with another source). This is true in the
connected to all the three sources. Next, this edge has ® haxiginal “greedy” encoding (before Modification 1) and also
a terminal label of2 since we have performed the encodingrue after Modification 1 by Claim 7.




i) Atleast one leaf contain’; +X3. We propagate the cod- 2b) Otherwise, perform dlip operation. If the

ing vector[0 1 0] on path(vs; — £31). Next, we perform parent ofe on path(vs; — ¢31) had a cod-
the greedy re-encoding step downstreamuvgf while ing vector [0 0 1], then e is assigned
retaining the coding vectors assignedeith(vs; — f31). [0 1 0] and vice versa. Alsdlip the value of
i) At least one leaf contains jusXs. In this case again, we curr-intersection-coloi.e. if it was blue, make
propagate the coding vecter1 0] onpath(vs; —£31) and it red and vice versa.
perform the greedy re-encoding step downstreann;of 2c) Perform greedy re-encoding downstream of all
while retaining the coding vectors assignedpanh(vs, — edges that have been modified thus far, without
l31). changing the new coding vector assignments
iii) Both leaves containX, + X3. In this case we need to on path(vsy — £31).
be careful about how we modify the encoding vectors as  b) Otherwise, propagate the coding veciorl 0] on
there is a possibility that we cause terminalto stop path(vsy — ¢31) and perform the greedy re-encoding
receiving a particular source. In order to handle this we step downstream ofs;; while retaining the coding
examine the possible intersections betwd®n P, (the vectors assigned oputh(vs; — £31).
edge-disjoint paths betweep andt) and thepath(vsi—  We now prove that at the end of Modification Procedure 2,
l31). all terminals are satisfied. Namels; becomes satisfied and
a) If both P and P} intersectpath(vs; — f31), then t; andt, remain satisfied.
perform the following steps. Fort;, we follow the line of proof given in Claim 9. Namely,
In general pathP] (and P) can intersecpath(vs; — it is not hard to verify that any change in the encoding vector

¢31) at multiple locations. We say that there isPa  Of v31 cannot effect the encoding vectors of the leaveg;of
type intersection (likewisé, type intersection) on a (otherwise there will be #2, 3) node inG). This implies that
set of edges if these edges are connected and beléngemains satisfied after Modification 2. Fgr we now show
to both P| andpath(vs; — £31). that (after Modification 2Ys; receives a singleton (eithe¥,
We claim that there is no loss of generality in assun® X3) and /3, continues to receivel, + X3, this will imply
ing that the intersections alternate between the tvibatis is satisfied.

types when we examine the edgespani(vs; —£3;). Claim 11: At the end of Modification Procedure 23 is
To see this, note that if this is not the case, we hawatisfied.

a situation where two consecutive intersections are Proof: Recall that we assumg has leaves with infor-
of type P/ (w.l.o.g.). However in this case we canmationX; + X, and X, + X3. As in the proof of Claim 7 it
simply modify the pathP] so these two intersections€an be shown that all the leaves tloaiginally (in the initial

can be collapsed into one intersection. Thus, we wifincoding) containX; in any form, will not be modified by
assume that the intersections alternate. Modification 2. This implies that, after Modification 2, will

Next, color the pathP; red and the pathP; blue still receive X; + X». In addition, after Modification 2 leaf

(by convention all other edges are called uncoloredj:1 Will receive either the singletoi, or X;. Finally, by our
W..o.g. we assume that the first intersection (i.&€hoice ofvs; there does not exist a path fromy to vsz. This

closest and downstream t@;) is of type P|. Then implies that the outgoing edge of» on P, continues to carry
perform the following steps X5+ X3 after the procedure. This outgoing edge is connected
to /30. Therefore, the greedy re-encoding process ensures that
[432 receivesXs + X3. We conclude (using Corollary 1) that
and Py first meet. Assign coding vectdo 0 1] i \I/\S/esﬁgSﬁng?g(sa; Itv'ecr)gm(gt%n rzénal sis follows the ca.ses
o the outgoing edge. Assign a variable curr(—) tl'ned\'l:]the descri t'(;n o'f Mléd'f'cai(oln Procvt\eld re 2 give
intersection-color = blue Perform greedy utll ' bt meat rocedd av
. above. In each case, we assume thatas satisfied before the
re-encoding downstream of all edges that have > " ; . .
s . . . modification procedure, and prove that it remains satisfitsdt a
been modified thus far while retaining the codlngi; ) . .
vectors assigned thivst — ls1) he procedure. We first present a general Claim which anslyze
! ’ the changes in the leaf information of after Modification
. . . Procedure 2.
2) Repeat the following steps (|tera_t|vely down- Claim 12: to-leaves receivingXs + X3 before Modifica-
stream on the patbuth(vs; —¢31)) until all edges .. . .
. -~ tion Procedure 2 may receive eithéfs or X3 after the
on path(vs; — ¢31) are assigned a new coding e 7 .
modification. All remainingt.-leaves receive the exact same
vector. For edge € path(vs; — ¢31) that has not . . o
: . . information before and after Modification Procedure 2.
been assigned a coding vector do the following. i S S .
. _ Proof: We start by considering theriginal information
2a) If e is either uncolored orcolor(e) = present at leaves @f, namely the information present before
curr-intersection-color then propagate the modification Procedure 1. This information satisfies theege
coding vector of the parent of that lies on encoding specified in the beginning of the sectibnleaves
path(vsy — £31). which before Modification 1 received information including

1) Propagate coding vectof0 1 0] from ws;
downwards till the node where the blue pat



X, in their support, cannot be effected by Modification 2. Thia leaf with informationX,+ X. In this case, by our encoding
follows by arguments similar to those of Claim 7. We are lekcheme in Case i) this leaf may either remain unchanged or
to consider leaves that originally received the single’oyy have informationX, after Modification Procedure 2 — in both
the singletonX; or X, + X3. Leaves receiving a singletoncasesX, appears in the support. [ |

X, or X3 cannot be downstream af;; (and thus effected Claim 15: Assuming Case ii) of Modification Procedure 2:
by Modification 2) as in such a case (due to greedy encodiref)the end of the modification proceduteis satisfied.

they would have receiveli, + X 3. Leaves receiving{s + X, Proof: The proofis very similar to Claim 14. By Claim 13
may indeed be effected by Modification 2. As Modificatiorit suffices to show thak, and X3 appear in the support of the
Procedure 2, starts by either forwarding the encoding veciaformation appearing in any of the-leaves. By Claim 12,
[010] or[00 1] onpath(vsy — £31) instead of the original the leaf carryingX; is not changed during Modification
encoding vectof0 1 1], it is not hard to show by induction Procedure 2, and thus haks in its support. If prior to
that any edge downstream of; is effected by (at most) the modification,t> had a leaf carryingX, or X; + Xo,
zeroing outhe entry corresponding to eithé&r, or X3 in their then by Claim 12, the leafs would remain unchanged during
encoding vectors. We conclude that the only leaves, dhat Modification Procedure 2, and thus ha& in its support.
can be modifies are those that originally receivégd+ X3 in  Finally, ast, was satisfied it must have has somewhere in
our greedy encoding. By Claim 7 these leaves rec&iye- X3 the support of (the information of) its leaves, and thus wee ar
after Modification 1 also. B leftto consider the case in whi¢h had a leaf with information

Claim 13: If ¢5 is unsatisfied after Modification ProcedureXs + X3. In this case, by our encoding scheme in Case ii)
2, then after the modification eithéf, or X3 do not appear this leaf may either remain unchanged or have informalign
in the support of the information appearing in any of the after Modification Procedure 2 — in both cas&s appears
leaves. in the support. |

Proof: We assume that, was satisfied before Modifica- Claim 16: Assuming Case iii) (b) of Modification Proce-
tion Procedure 2. By Claim 12 the only leaves that may hadere 2: at the end of the modification procedtyés satisfied.
changed are those that carl§s + X3. If after Modification Proof: In this case at least one @} or P; do not have
Procedure 2, at least one leaf still carri&s + X3 then the an intersection withpath(vs; — ¢31). Suppose w.l.0.g. tha®]
total information present ak has not changed and is still is such a path and,; is the corresponding leaf containing
satisfied. If some leaf that previously receiv&d + X3 now X5+ X3. We will first show that at the end of the procedure,
receives X, and another leaf that was previously receiving,; continues to receiveX, + X3 and then use Claim 13.
X2+ X3 now receivesX s, then again we claim that is still  Suppose that none of the edgesRjfare downstream ofs; .
satisfied. Indeed, consider the flow of information from#he In this case it is clear that the modification procedure does
leaves to terminad; in the satisfying network coding solutionnot affect/s;. In the other case, when there is a path from
(prior to Modification 2), if in this solutiony was satisfied vs; to an edge orP] we argue as follows. By Claim 10, we
by adding information from a leaf containing., + X3, it can know that the coding vectors oR; were not altered at the
now be satisfied by adding the (new) information from thend of Modification 1. Therefore all coding vectors on edges
leaves containing{s and X3. in P/ have al in the third component (corresponding ;).

It is left to consider the case in which all leaves tha¥lext, consider the edge closeststpon P| that is downstream
previously receivedX, + X3 now receive (w.l.o.g)X, (a of vs;. The greedy re-encoding step ensures that the coding
single source). Now using Claim 1 we know that if all sourcegector on this edge i) 1 1] since the coding vectors on edges
continue to appear at the leaves 8, Zle X, can be downstream ofu3; are guaranteed to havelain the second
computed at it. Therefore we can conclude th&f is not component (corresponding t&,). Likewise the greedy re-
available at the leaves @ after modification procedure 28 encoding ensures that this coding vector is propagatégto

Using the Claims above, we now show that during Modi- |
fication Procedure 2, remains satisfied. We start with Case It remains to provide the proof of correctness when Case
i) of Modification Procedure 2: iif)(a) occurs while running Modification Procedure 2. Warst

Claim 14: Assuming Case i) of Modification Procedure 2by showing that all operations outlined in Steps 1 and 2 is thi
at the end of the modification proceduteis satisfied. case are valid.

Proof: By Claim 13 it suffices to show thaX, and X3 Claim 17: The coding vector assignment, in Step 1 of Case
appear in the support of the information appearing in any of)(a) is valid.
the to-leaves. By Claim 12, the leaf carrying; + X3 is not Proof: Denote the edge where the blue path and
changed during Modification Procedure 2, and thusXasn path(vs; — ¢31) first meet asb;. We need to show that
its support. If prior to the modificatiort, had a leaf carrying the vector[0 0 1] is in the vector space spanned by the
X5 or Xy + X», then by Claim 12, the leafs would remaincoding vectors of the edges feeding inip. According to
unchanged during Modification Procedure 2, and thugould the algorithm[0 1 0] is propagated downstream of; on
have X, in its support. Finally, as, was satisfied it must have path(vs; — ¢31). Therefore we need to show that the coding
had X, somewhere in the support of (the information of) itwector on the blue incoming edge feeding iritp is either
leaves, and thus we are left to consider the case inwhibad [0 0 1] or [0 1 1]. This blue edge is downstream &f.
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Therefore before the start of the Modification procedure 24t the end of the procedur®, and X5 continue to appear
by Claim 10, we know that the coding vector on it will haven the support of the information available f@ts leaves. For
a 1 in the third component (corresponding 3). If this this we argue in a manner similar to the proof of Claim 19.
coding vector does not change whih1 0] is propagated Let the last intersectionH] or P; type) with path(vs; — £31)
downstream ofvsq, then it is clear that we have the requirede at edge,,. W.l.0.g. suppose that,, is colored blue. We
property. This coding vector will only change if the edge it ¢ and e/ denote the colored and the uncolored edges
downstream of3;. However, even in this case the greedy rdeeding intoe,. As in the proof of Claim 19, suppose that
encoding property will ensure that the blue edge continaesthe coding vector or“" be [0 1 0]. Then we know that the
have a coding vector that haslan the third component.m closest red edge upstream €f"¢ also has a coding vector
Claim 18: In Case iii)(a) the colored paths are such that b¢d 1 0]. This further implies that the,-leaf over the red path
tween any two contiguous sets of colored edgepanh(vs; — contains eithetX, or X, + X3. Now, after the flip operation,
/31), we have a contiguous set of uncolored edges. e, WIill have the coding vectof0 0 1] which in turn means
Proof: Our graphs are such that they have total degréeat theto-leaf over the blue path will contain eithefs or
at most three. Recall that, this implies that edge-disjpaths X- + X3. Therefore we have shown that in all cases h&ith
are also node-disjoint. Since the blue and the red pathsrunded X3 continue to appear in the support of the information
consideration are edge-disjoint, by this property, theyalso in t¢2’s leaves. By Claim 13 we are done. ]
node-disjoint. Since these paths do not have any node in .
common, orpath(vs; — £31), we cannot have two successive®: Reémaining Cases
edges of different colors. [ ] 1) Information ofts: Throughout Section V-C we consid-
Claim 19: Step 2b) of Case iii)(a) is valid i.e. the codingered the case in which; has at least two leaves containing
vectors on the edges feeding intoare such that the flip X; + Xo, at least two leaves containing. + X3 and no
operation can take place. other combinations at other leaves. The second case in which
Proof: We shall show this by using induction. Our aimat least two leaves contai; + X2 and at least two leaves
is to prove the following statement. Under the modificatiooontain X; + X3, is symmetric. The proof for the third case
procedure, Case iii)(a), in Step 2, for a given edgeif in which at least two leaves contaiy, + X3 and at least two
color(e) # curr-intersection-color, then the space spanned Isaves containX; + X3 slightly differs from that proven in
the coding vectors on the incoming edges iatoontain the Section V-C. Details follow.
vectors[0 1 0] and [0 0 1]. As before we definés; and/s,. If the information present
The base case is true by the result of Claim 17. For tle/3; and/s; equalsX,+ X5 then the proof is identical to that
induction step, suppose that this is true at Afe intersection appearing in Section V-C. The same holds if the information
at an edge denotee},, where the edges feeding intq are present ats; and/s, equalsX; + X3 (as this is a symmetric
denotedef, and e} (the superscripts denote colored andase). If the information present &f; equalsX; + X3 and
uncolored respectively). Note that by Claim 18 we cannothathat at/s;, equalsXs + X3 (or visa versa) we slightly change
both edges feeding inte, to be colored. W.l.0.g. we assumeModification Procedure 2 and exclude Case iii a). It is pdssib
that ¢f = blue. Now consider the closest red edge that i® exclude Case iii a) for the following reasons: (a) Using th
upstream ok} on path(vs; — ¢31). By Step 2(a) and using notation of Section V-C, it is not hard to verify that therdlwi
the fact that the intersection types alternate, we clainmttie not be any path connecting; to ¢35 (or visa versa) as such a
coding vector on this red edge is the same:&%, equal to path would imply &3, 2) node. Thus we may define eithey;
[0 1 0] (the other case can be handled similarly). Denote tloe v, to be the “winner”. (b) It now holds that either at most
head and tail of this red edge by andv), respectively. Note one pathP; intersectpath(vs: — £31) or at most one pati®;
thatv] has to be an in-degree 1 and out-degree 2 node singrsectyath(vsz — 32). Again, otherwise there would be a
the red path branches off froputh(vs; — ¢51) at this point. path connectings; to ¢35 (or visa versa). After the exclusion
Further we note that the outgoing red edge frgnis such that above, we note that in Claim 113 is guaranteed to receive a
its coding vector ig0 1 0]. This implies that the coding vectorsingleton and have the information of all sources at the stipp
on the red edges downstreamubfbefore the next intersection of its leaves (and thus will be satisfied).
with path(vs; —£31) are eithef0 1 0] or [0 1 1], which means ~ 2) Number of unsatisfied terminals after initial greedy
the incoming colored edge at titet 1 intersectionef | has encoding: As mentioned in Section V-A, it may be the case
a coding vector eitheld 1 0] or [0 1 1]. Now, by the induction that a single terminal, two terminals or all three termina a
hypothesis, the coding vector assignmi@ri 1] one, is valid. unsatisfied after the initial greedy encoding. In our préstéon
This further means that/{ = [0 0 1]. Thus we have shown we assumed all terminals were satisfied, and proved using
that the space spanned by the incoming edges.of contain both Modification Procedure 1 and 2 that we may modify
the vectorg0 1 0] and[0 0 1]. Therefore we are done. B the greedy encoding as to satisfy all terminals. The reader
Claim 20: Assuming Case iii) (a) of Modification Proce-may have noticed that Modification 1 can be used when we
dure 2: at the end of the modification procedtyés satisfied. would like to satisfy an unsatisfied terminal, say together
Proof: The previous Claims 17 and 19 show that eackith an additional unsatisfied terminal, say, under the
of the operations are valid. We only need to demonstrate thastriction thatt, is connected to the leaf corresponding to
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the “winner” amongu;; andwvis. In the discussion to follow, Secondly, as our proof involves a tedious case analysistitdvo

we refer to such; as the terminatorrespondingo ¢;. Recall

be very interesting to see a simpler more accessible praoof fo

that Modification 1 does not alter the information present #te 2-connectivity case. Finally, the case of more souroés a
the remainingts. In addition, we associate Modification lterminals is completely left open in this work.

with two sources (sayX; and X>) and we do not change
information on edges including the remaining sour&g)(in
their support. (1]

Modification 2 can be used to satisfy a single unsatisfiegz]
terminal, sayts. We use Maodification 2 on an encoding func-
tion that may differ from the original initial greedy encadi
Nevertheless, it is not hard to verify that Modification 2 Iwil 3]
succeed if for; and some source, s&j;, the greedy encoding [4]
is preserved Namely, if any edge that containells in its
support after the greedy encoding will have exactly the sam@
information in the encoding considered prior to Modificatio [6]
2; and if all leaves of3 contain the exact same information
they contained in the initial greedy encoding. We refer td"!
such an encoding as @3, Xs)-preserved encoding. As in [g]
Modification 1, there is a terminal that corresponds to the
terminaltz being considered (in Section V-C this terminal wasy
t2). The information present at the leaves of the third terinina
(that is neitherts or the terminal that corresponds tg) is [10]
not changed during Modification 2. In addition, we associate
Modification 2 with two sources (say), and X3) and we
do not change information on edges including the remaining
source 1) in their support.

Now, if only once terminal, say;, is unsatisfied after
the greedy encoding, then all we need to do is preform
Modification 2. Notice that trivially the initial greedy eoding
is (t;, X;)-preserved for all; and j. If two terminals, say
t; andty are unsatisfied after the initial greedy encoding,
then we consider two cases. tif corresponds t@; then we
may perform Modification 1 and satisfy both of them without
changing the information present @t If ¢t does not corre-
spond totz, then we will preform Modification 2 twice. First
we perform Modification 2 ort;. As ¢, does not correspond
to ¢; (in both Modification 1 and 2 correspondence is defined
in an equivalent manner), it holds that after the modifigatio
process there is a sourege for which the resulting encoding
is (t2, X;)-preserved. Moreover, after the modification process
botht; andts are satisfied. Now applying Modification 2 on
is possible, and after its completion all terminals aresfiati.

VI. CONCLUSION

In this work we have addressed the network arithmetic
problem in the scenario in which the network has three ssurce
and three terminals. We have shown that the charactenizatio
obtained in [7] no longer holds for the case in which there are
more than two sources and two terminals. For 3k¢3t case
we show that the network arithmetic problem is efficiently
solvable if each source terminal pair is connected by at leas
two edge disjoint paths.

Several questions remain open. Primarily, is the 2-
connectivity condition (betwees; /t; pairs) necessary or can
other combinatorial connectivity requirements charaotethe
capacity of the network arithmetic problem for the/3¢ case.
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