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willing to trade off comfort against cost. The higher the value
of αh, the greater the weight that h places on energy cost
savings relative to thermal comfort.10

V. ANALYSIS OF BRAIDED COBWEB DYNAMICS FOR THE
IRW TEST CASE UNDER DYNAMIC PRICING

A. Overview
Suppose retail contracts for the IRW Test Case take a

dynamic-price form. In this case the LSE uses two simple
adaptive methods, one to determine its wholesale demand bids
on behalf of its household customers, and one to set retail
prices for these household customers.

First, during the afternoon of each day D-1, after the
closing of the day-(D-1) DAM, the LSE engages in adaptive
advance retail pricing. Specifically, as depicted in (4), the
LSE announces to its household customers a retail price
πRET (H,D) for power usage during hour H of day D that is
an m-percent mark-up of the price πDA(H,D-1) determined in
the day D-1 DAM for hour H of day D. Note that πDA(H,D-1)
is the price the LSE itself must pay for each MW of power
it purchases in the day-(D-1) DAM for its retail customers
during hour H of day D.

Second, during the morning of each day D the LSE engages
in adaptive load forecasting. Specifically, the LSE participates
in the day-D DAM by submitting a demand bid pDA(H,D)
consisting of a forecast for retail load during hour H of day
D+1. The day-D DAM takes place before the realization of
retail loads for day D. Consequently, the LSE sets pDA(H,D)
equal to the retail load realized during hour H of day D-1.

These two adaptive LSE methods, together with other
features of the IRW Test Case, give rise to dynamic market
cycling behavior known in the economics literature as cob-
web dynamics [8]. However, a unique aspect of this cobweb
dynamics for the IRW Test Case is that the cycling is braided.

More precisely, as depicted in Fig. 5, this braided cobweb
dynamics consists of two intertwined cycles determining retail
and wholesale outcomes on alternative days. For example,
starting on any day D-1, one cycle determines retail outcomes
for days D-1, D+1, D+3,. . . and the other cycle determines
retail outcomes for days D, D+2, D+4,. . . .

This section provides a comprehensive analysis of the
braided cobweb dynamics arising for the IRW Test Case
when retail contracts take a dynamic-price form. Section V-B
presents a summary explanation of these findings through a
series of graphical depictions. Section V-C provides a detailed
analytical derivation of these findings.

Seven key assumptions characterizing the IRW Test Case
with dynamic-price retail contracts, explained with care in

10More precisely, αh measures the benefit to h of an additional dollar
of income. It permits costs measured in dollars to be expressed in benefit
units (Utils), so that comfort/cost trade-offs can be calculated. The precise
sense in which αh quantifies the trade-off between comfort satisfaction and
energy cost for h is explained in some detail in [44, Appendix]. Roughly, it is
shown that αh can be derived as the shadow price for h’s budget constraint
in a more fully articulated constrained benefit maximization problem: namely,
the maximization of h’s benefit from consumption of multiple goods/services
(including thermal comfort) subject to a budget constraint. Thus, αh measures
h’s marginal benefit of income at the optimization point, i.e., the drop in the
maximized value of h’s benefit that would result if h had one less dollar of
income to spend (e.g., due to a higher energy price).

Fig. 5. Braided cobweb dynamics resulting for the Integrated Retail and
Wholesale (IRW) Test Case under dynamic-price retail contracts.

Section IV, are listed below in summary form for easy later
reference. These assumptions reflect the basic simplifying IRW
Test Case assumption that no grid congestion arises, hence
power and price outcomes do not have to be differentiated by
location.

Summary of Key IRW Test Case Assumptions:
(A1) RTM load pRT (H,D) is equal to retail load

pRET (H,D) for each hour H of each day D.
(A2) The GenCo’s RTM supply offer for each hour H of

each day D takes form (1).
(A3) The ISO ensures RTM market clearing for each hour

H of each day D.
(A4) The LSE’s DAM demand bids take the fixed-demand

form (3). Specifically, on each day D the LSE sets
its day-D DAM demand bid pDA(H,D) for each hour
H of day D+1 equal to the retail load pRET (H,D-1)
previously realized during hour H of day D-1.

(A5) The GenCo’s DAM supply offer for each hour H of
each day D takes form (1).

(A6) The ISO ensures DAM market clearing for each hour
H of each day D.

(A7) The LSE makes use of a dynamic-price retail con-
tract with mark-up m ≥ 0. That is, on each day D-1
the LSE sets the retail price πRET (H,D) for hour H
of day D equal to [1 + m]πDA(H,D-1), the DAM
price determined on day D-1 for hour H of day D
with an m-percent mark-up.

In addition, for the purposes of this analytical section, the
following auxiliary assumption is imposed:

(A8) The retail aggregate demand function determined by
household price-responsive A/C controllers for any
hour H of any day D can be approximated by a linear
function taking form

πRET = c− 2dpRET , (6)

where c > a.11

Support for the linear approximation assumption (6) is pro-
vided in an appendix.

11The restrictions a, b, c, d > 0 and c > a ensure that the plots of the
supply and demand functions (1) and (6) in the power-price plane intersect
each other at a positive power-price point (p∗, π∗).
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Given (A7) and (A8), the actual retail power usage
pRET (H,D) of households during any hour H of any day
D is determined from

[1 +m]πDA(H,D-1) = c− 2dpRET (H,D) (7)

where πDA(H,D-1) denotes the price of power previously
determined in the day-(D-1) DAM for hour H of day D. For
later purposes, note that the determination of pRET (H,D) via
(7) is equivalent to determining pRET (H,D) by means of the
modified demand relationship

πDA(H,D-1) = c(m)− 2d(m)pRET (H,D) (8)

where c(m) = c/[1 +m] and d(m) = d/[1 +m].

B. Graphical Preview of Analytical Findings

Figure 6 depicts supply and demand relationships for the
IRW Test Case, assuming retail contracts take a dynamic-price
form with a positive mark-up (m > 0). The supply curve,
a plot of (1), represents the GenCo’s marginal production
costs in the wholesale power market. The demand curve is
an approximate representation for the power demand arising in
the retail sector from household price-responsive A/C systems,
expressed in two forms: (i) with original coefficients c and
d, using the retail price, as in (6); and (ii) with m-modified
coefficients c(m) and d(m), using the DAM price, as in (8).

The LSE is the connecting link between the wholesale
and retail power sectors. The LSE purchases bulk power at
wholesale prices in the DAM and the RTM and then resells
this power to households at retail prices.

Fig. 6. A market equilibrium configuration for the IRW Test Case for any
fixed hour over successive days, given dynamic-price retail contracts with a
positive mark-up (m > 0). The system endlessly cycles between Ew∗(m)
and Er∗(m).

More precisely, Fig. 6 depicts a market equilibrium config-
uration for any fixed hour H over successive days. To see this,
suppose the LSE’s fixed demand bid submitted into the day-
(D-1) DAM for hour H of day D induces a vertical demand
curve at the power level p∗(m). To balance this fixed demand,
the GenCo must be scheduled to produce p∗(m) during hour
H of day D. Consequently, the day-(D-1) DAM price for hour
H of day D must be set at π∗(m), as determined from the

GenCo’s supply curve. The resulting DAM market clearing
point Ew∗(m), depicted in Fig. 6, takes the following specific
numerical form:

Ew∗(m) =

[
p∗(m)

π∗(m)

]
=

[ [c(m)−a]
2[b+d(m)]

[ad(m)+bc(m)]
[b+d(m)]

]
(9)

The LSE then sets the retail price for hour H of day D
equal to [1+m]π∗(m). This retail price induces a retail power
usage (load), determined from the retail demand function. As
depicted in Fig. 6, it follows by straightforward calculation
that this retail power usage is equal to p∗(m) in (9). Let

Er∗(m) =

[
p∗(m)

[1 +m]π∗(m)

]
(10)

denote these retail power and price outcomes. The LSE then
submits p∗(m) as its fixed-demand bid for the day-D DAM
for hour H of day D+1, and the entire process repeats.

Thus, the market equilibrium configuration in Fig. 6 is a
2-point cycle that alternates between the vector Ew∗(m) of
wholesale power and price outcomes and the vector Er∗(m)
of retail price and power outcomes. Note that RTM operations
are not depicted in Fig. 6. The reason for this is that the RTM
is an imbalance adjustment mechanism designed to handle
discrepancies between DAM scheduled generation and real-
time loads. However, no such discrepancies arise in the market
equilibrium configuration depicted in Fig. 6.

A key issue is whether the market participants in the IRW
Test Case are able to attain the market equilibrium configura-
tion depicted in Fig. 6. Comparing the form of Ew∗(m) in (9)
to the form of Er∗(m) in (10), it is clear that hour-H wholesale
power and price outcomes (pDA(H,D-1),πDA(H,D-1)) con-
verge to Ew∗(m) over successive days D if and only if hour-H
retail power and price outcomes (pRET (H,D-1),πRET (H,D-1))
converge to Er∗(m) over successive days D.

These two intertwined wholesale and retail processes con-
stitute the braided cobweb dynamics for the IRW Test Case.
Given any start-day D-1, the study of the wholesale process
is most naturally undertaken by choosing a wholesale-start
point, i.e., a start-point W0 on the plot of the GenCo’s supply
function (1); and the study of the retail process is most
naturally undertaken by choosing a retail-start point, i.e., a
start-point R0 on the plot of the retail demand function (6).

Figure 7 depicts these two braided cobweb cycles. The
wholesale-start cycle is depicted as W0 → A1 → A2 . . .,
and the retail-start cycle is depicted as R0 → B1 → B2 . . . .

As will be established analytically in Section V-C, below,
the type of cobweb dynamics exhibited by each of these
braided cobweb cycles is entirely determined by the sign of
[b − d(m)], where b is the slope coefficient for the GenCo’s
supply offer (1) and d(m) is the slope coefficient for the m-
modified retail demand function (8). In particular, assuming
the start point W0 (R0) does not coincide with Ew∗(m)
(Er∗(m)), a necessary and sufficient condition for wholesale
(retail) power and price outcomes to converge to Ew∗(m)
(Er∗(m)) is b < d(m).

This analysis is previewed here using graphical depictions
for illustrative simulation runs. For concreteness, attention is
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Fig. 7. Depiction of the two braided cobweb cycles for the IRW Test
Case under dynamic-price retail contracting, differentiated by start point. The
wholesale-start cycle starts at W0 and the retail-start cycle starts at R0.

focused on the cobweb dynamics exhibited by the retail-start
cycle R0→ B1→ B2 . . . for a particular hour H on successive
days D, commencing on day D-1 from a start-point R0 on the
plot of the retail demand function (6). For increased graphical
clarity, the mark-up m for the dynamic-price retail contracts
is set to zero, which implies Ew∗(0) = Er∗(0) ≡ E∗.

Fig. 8. Illustration of convergent cobweb dynamics (b<d(m)) for the IRW
Test Case with dynamic-price retail contracts. Parameter settings: m=0, a=14,
b=0.2, c=55.5, d=0.25, and start point R0=(11,50).

Fig. 9. Illustration of a fixed cobweb cycle (b=d(m)) for the IRW Test Case
with dynamic-price retail contracts. Parameter settings: m=0, a=14, b=0.25,
c=55.5, d=0.25, and start point R0=(11,50).

Figures 8–10 illustrate the three possible types of cobweb
dynamics that can be exhibited by the retail-start cycle, con-

Fig. 10. Illustration of divergent cobweb dynamics (b>d(m)) for the IRW
Test Case with dynamic-price retail contracts. Parameter settings: m=0, a=14,
b=0.3, c=55.5, d=0.25, and start point R0=(11,50).

ditional on the magnitude of [b − d(0)], assuming a retail-
start point R0 that is not coincident with E∗. In each case the
power system repeatedly cycles through four market phases.
The first occurrences of these four market phases correspond
to the movements R0 → B1 → B2 → B3 → B4. The second
occurrence of the first market phase then corresponds to the
movement B4 → B5.

Specifically, at the start point R0, values are determined for
retail power usage (load) and the retail price for day D-1,
which then determines RTM load for day D-1 by assumption
(A1). The RTM load on day D-1 determines the RTM price
for day D-1, by assumptions (A2) and (A3), which moves the
system from R0 to B1. The LSE then uses RTM load on day
D-1 as its day-D DAM demand bid (in fixed demand form)
by assumption (A4), which determines the day-D DAM price
through DAM market clearing by assumptions (A5) and (A6).
The LSE then sets the day D+1 retail price equal to [1 +m]
times the day-D DAM price, by assumption (A7), which
determines retail power usage for day D+1 by assumption
(A8); this moves the system from B1 to B2.

At B2, the retail load for day D+1 determines the RTM
load for day D+1, by (A1), which then determines the RTM
price for day D+1 by assumptions (A2) and (A3); this moves
the system from B2 to B3. The LSE uses the RTM load for
day D+1 to determine its day-(D+2) DAM demand bid, by
assumption (A4), which then determines the day-(D+2) DAM
price by assumptions (A5) and (A6). The LSE then uses this
day-(D+2) DAM price, multiplied by [1+m], to set the retail
price for day-(D+3), by assumption (A7), which determines
retail power usage by assumption (A8). This moves the system
from B3 to B4, and the entire process then repeats.

C. Analytical Derivation of Findings

As discussed in Section V-B, and illustrated in Fig. 7,
assumptions (A1) through (A8) for the IRW Test Case induce
market dynamics having a braided cobweb form. That is, two
cycles are intertwined with each other, a wholesale-start cycle
and a retail-start cycle. In particular, starting on any day D-1,
the wholesale-start cycle determines retail outcomes on days
D, D+2, D+4, . . ., and the retail-start cycle determines retail
outcomes on days D-1, D+1, D+3, . . . .
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For concreteness, this section focuses on the retail-start
cycle. Note that a wholesale-start cycle starting on any arbi-
trarily selected day D-1 can be decomposed into a wholesale
start on day D-1 followed by a retail-start cycle starting
on day D. As will be established below in Proposition 2,
the long-run dynamical behavior of the retail-start cycle is
entirely determined by the relative size of two exogenously
given parameters, regardless of the start day. Consequently,
the wholesale-start cycle always exhibits the same long-run
dynamical behavior as the retail-start cycle.

Consider an IRW Test Case satisfying assumptions (A1)
through (A8). Let H denote any particular hour of a 24-hour
day, hereafter suppressed in all notation for easier readability.
Let D-1 denote any given day, and let

R0 = (pRET (D-1), πRET (D-1))T (11)

denote an arbitrarily selected point on the plot of the retail
demand function (6) for hour H of day D-1. For each t =
0, 1, 2, . . ., define

s(t) = ([D-1] + 4t) ; (12)

r(t) = (pRET (s(t)), πRET (s(t))T . (13)

By construction, the r(t) process represents retail power and
price outcomes for the IRW Test Case during hour H on every
fourth day, starting from R0 on day D-1.

PROPOSITION 1: Let R0 and r(t) be defined as in (11)
and (13). Then the dynamical behavior of the r(t) process
is determined by the following system of linear difference
equations:

r(t) = q(m) + J(m)r(t− 1) , ∀t = 1, 2, . . . ; (14)
r(0) = R0 , (15)

where:

q(m) = [I+M(m)]v(m) ; (16)

J(m) = [M(m)]2 ; (17)

v(m) =

[
[c(m)−a]
2d(m)

(1+m)[ad(m)+bc(m)]
d(m)

]
; (18)

M(m) = (−b/d(m))

[
1 0
0 1

]
; (19)

[
c(m)

d(m)

]
=

[
c

1+m]

d
[1+m]

]
. (20)

Proof of Proposition 1: By assumption, R0 in (11) satisfies
the retail demand function (6) for hour H of day D-1, implying

pRET (D-1) =
[c− πRET (D-1)]

2d
. (21)

The following additional relationships can be verified for IRW
Test Case outcomes over the next four days by successive

application of assumptions (A1) through (A8).

By (A1): pRT (D-1) = pRET (D-1) (22)

By (A2),(A3): πRT (D-1) = a+ 2bpRT (D-1) (23)

By (A4): pDA(D) = pRT (D-1) (24)

By (A5),(A6): πDA(D) = a+ 2bpDA(D) (25)

By (A7): πRET (D+1) = [1 +m]πDA(D) (26)

By (A8): pRET (D+1) = [c− πRET (D+1)]/2d (27)

For each n = 0, 1, 2, . . ., define

k(n) = [D-1] + 2n (28)

y(n) = (pRET (k(n)), πRET (k(n))T . (29)

Note that relationship (27) for day D+1 has the same form
as relationship (21) for day D-1. By a simple induction
argument, it follows that relationships (22) through (27) can
be recursed forward indefinitely for days k(n−1) to k(n) for
each n = 1, 2, . . .. Consequently, it follows by straightforward
calculation that

y(n) = v(m) +M(m)y(n− 1) , n = 1, 2, . . . . (30)

Finally, for each t = 1, 2, . . ., note that s(t) = k(2t) and
r(t)=y(2t). Thus, for each t = 1, 2, . . ., one has

r(t) = y(2t)

= v(m) +M(m)y(2t− 1)

= v(m) +M(m)[v(m) +M(m)y(2t− 2)]

= [I+M(m)]v(m) + [M(m)]2y(2t− 2)

= [I+M(m)]v(m) + [M(m)]2r(t− 1)

= q(m) + J(m)r(t− 1) . (31)

QED

COROLLARY 1: Let R0, r(t), and J(m) be defined as in
Proposition 1. For each t = 0, 1, 2, . . ., define

z(t) = r(t)− Er∗(m) , (32)

where Er∗(m) is the retail market equilibrium point given by
(10). Then

z(t) = J(m)z(t− 1) ,∀t = 1, 2, . . . ; (33)
z(0) = R0− Er∗(m) . (34)

Proof of Corollary 1: By simple recursion and manipulation
of terms,

z(t) = q(m) + J(m)x(t− 1)− Er∗(m)

= q(m) + J(m)
[
x(t− 1)− Er∗(m)

]
+ J(m)Er∗(m)− Er∗(m)

= q(m) + J(m)z(t− 1) + [J(m)− I]Er∗(m)

= J(m)z(t− 1) +
(
q(m) + [(b/d(m))2 − 1]Er∗(m)

)
= J(m)z(t− 1) + u(m) . (35)

It then follows by straightforward calculation and definition
(10) for Er∗(m) that u(m) = 0. QED
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If the start-point R0 for the r(t) process in Proposition 1
coincides with the retail market equilibrium point Er∗(m), it
follows immediately from Corollary 1 that r(t) = Er∗(m)
for all t = 0, 1, . . . ; hence, no dynamics are generated.
Consequently, the following proposition focuses on cases for
which R0 does not coincide with Er∗(m).

PROPOSITION 2: Let R0 and r(t) be defined as in Proposi-
tion 1. Suppose R0 6= Er∗(m). Then, ignoring non-negativity
restrictions on price and power levels, the long-run dynamical
behavior of the r(t) process is entirely determined by the sign
of [b− d(m)], as follows:
Case 1 (Cobweb Convergence): If b < d(m), r(t) converges
to Er∗(m) as t→∞.
Case 2 (Cobweb Fixed Cycle): If b = d(m), r(t) = R0 for
all t = 0, 1, . . ..
Case 3 (Cobweb Divergence): If b > d(m), the components
of r(t) diverge to plus or minus ∞.

Proof of Proposition 2: From Corollary 1,

z(t) = J(m)z(t− 1)

= [J(m)]2z(t− 2)

= . . . = [J(m)]tz(0) , (36)

where z(t) = [x(t) - Er∗(m)] and [J(m)]t = (b/d(m))2tI. If
b < d(m), it follows from (36) that z(t) → 0 as t → ∞.
Hence, r(t)→ Er∗(m) as t→∞. This establishes Case 1.

Suppose, instead, that b = d(m). It then follows from (36)
that z(t) = z(0) for all t = 0, 1, . . ., which implies r(t) = r(0)
= R0 for all t = 0, 1, . . .. This establishes Case 2.

Finally, suppose b > d(m). Consider, first, what happens if
R0 lies to the left of Er∗(m) along the plot of the retail demand
function (6); see Fig. 6. This implies that the components of
the vector z(0) = (z1(0), z2(0))

T satisfy

z1(0) < 0 ; (37)
z2(0) > 0 . (38)

It then follows from (36), (37), and (38) that z1(t) diverges
to −∞ as t→∞ and z2(t) diverges to +∞ as t→∞. The
reverse divergence directions for z1(t) and z2(t) can easily be
shown to hold if R0 instead lies to the right or Er∗(m) along
the plot of the retail demand function (6). This establishes
Case 3. QED

Consider once again Figs. 8–10. These three figures depict
the three possible types of cobweb dynamics that can be
exhibited by power and price outcomes for the IRW Test
Case, given dynamic-price retail contracts with a zero mark-
up (m = 0) and a start point R0 on the plot of the retail
demand function (6) that is not coincident with the retail
market equilibrium point E∗ ≡ Er∗(0). Note that the long-run
dynamical behavior of power and price outcomes depicted in
these figures can in fact be inferred from the relative positions
of R0, r(1) ≡ B4, and E∗ along the depicted demand function.

The following corollary establishes that this finding holds
more generally for any IRW Test Case with dynamic-price
retail contracts regardless of the magnitude of the mark-up
m ≥ 0; see Fig. 11.

Fig. 11. Illustration of Corollary 2 depicting how the form of cobweb
dynamics for IRW Test Case outcomes under dynamic-price retail contracts
with mark-up m ≥ 0 is determined by the relative positions of R0, r(1), and
Er∗(m) along the retail demand curve.

COROLLARY 2: Let R0 and r(t) be defined as in Proposi-
tion 1. Then the form of cobweb dynamics exhibited by IRW
Test Case outcomes under dynamic-price retail contracts with
mark-up m ≥ 0 can be determined from the positions of R0,
r(1), and Er∗(m) along the plot of the retail demand function
(6), as follows:

(i) Stationary Equilibrium: R0 coincides with Er∗(m),
implying r(t) = Er∗(m) for all t ≥ 0;
(ii) Cobweb Convergence: R0 6= Er∗(m) and r(1) lies
strictly between R0 and Er∗(m) along the plot of (6).
(iii) Cobweb Fixed Cycle: R0 6= Er∗(m) and r(1) is
coincident with R0;
(iv) Cobweb Divergence: R0 6= Er∗(m) and the distance
between r(1) and Er∗(m) is greater than the distance
between R0 and Er∗(m) along the plot of (6).

Proof of Corollary 2: As established by Corollary 1 and
Proposition 2, the long-run dynamical behavior of the z(t)
process (33), hence the r(t) process (14), is determined by
the properties of the matrix J(m) = (b/d(m))2I, in particular
by whether (b/d(m))2 is greater than, equal to, or less than 1.
If z(0) 6= 0, the magnitude of (b/d(m))2 can be determined
by comparing z(1) = (b/d(m))2z(0) to z(0).

Thus, there are only four possible long-run dynamical
behaviors that can be exhibited by the r(t) process, each
identifiable as a particular relationship among R0, r(1), and
Er∗(m) as follows:

(a) Stationary Equilibrium: R0 coincides with Er∗(m),
implying r(t) = Er∗(m) for all times t ≥ 0;
(b) Cobweb Convergence: R0 6= Er∗(m), and r(1) lies
strictly between R0 and Er∗(m) along the plot of (6).
This implies the magnitude of z(1) is strictly less than
the magnitude of z(0), hence b < d(m);
(c) Cobweb Fixed Cycle: R0 6= Er∗(m), and r(1) is
coincident with R0; this implies z(1) = z(0), hence
b = d(m);
(d) Cobweb Divergence: R0 6= Er∗(m), and the distance
between r(1) and Er∗(m) is greater than the distance
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between R0 and Er∗(m) along the plot of (6). This
implies that the magnitude of z(1) exceeds the magnitude
of z(0), hence b > d(m).

QED

VI. WELFARE AND MARKET EFFICIENCY ANALYSIS FOR
THE IRW TEST CASE

A. Overview

This section uses standard applied economic analysis [39]
to derive short-run (hourly) welfare and market efficiency
outcomes for the IRW Test Case under both dynamic-price
and flat-rate retail contracting. To facilitate the analysis, the
auxiliary assumption (A8) in Section V is imposed. This as-
sumption postulates that the hourly aggregate demand function
arising from household price-responsive A/C controllers can
be approximated by a linear function taking form (6).12

For increased clarity, a short-run welfare analysis is first
undertaken in Section VI-B for a simple market example with
a single Seller and a single Buyer. A detailed short-run welfare
analysis for the IRW Test Case under dynamic-price and flat-
rate retail contracts is then given in Sections VI-C and VI-D,
respectively.

B. Welfare and Efficiency Analysis for a Simple Market

Consider a market for power for some hour H. The only
participants in this market are a Seller that submits a price-
responsive supply offer (1) and a Buyer that submits a price-
responsive demand bid (2). There is no grid congestion, and
the Seller’s capacity is sufficient to meet the Buyer’s power
demands.

Assume the Seller’s supply offer (1) represents the opera-
tional (production) cost for each increment of power that the
Seller produces during hour H; that is, assume (1) represents
the marginal cost function of the Seller. Assume, also, that the
Buyer’s demand bid (2) represents the maximum willingness
of the Buyer to pay for each increment of power during hour
H; that is, assume (2) represents the marginal benefit function
of the Buyer.

Suppose the plots of this supply offer and demand bid are
as depicted in Fig. 12. Then the unique market equibrium
for this market is the point E∗ = (p∗, π∗) in the non-negative
orthant of the p-π plane where (1) and (2) intersect. Suppose
all settlements for hour H are based on E∗.

At E∗ the Seller is paid the same price π∗ for every MW of
power it supplies from p = 0 to p = p∗. Hence, the Seller’s
benefit at E∗, measured in terms of its revenues, is given by
π∗p∗. On the other hand, the Seller’s total operating cost at
E∗ is measured by the area underneath the plot of its marginal
cost function (1) in Fig. 12 from p = 0 to p = p∗; that is, it is
given by the integration of the Seller’s marginal cost function
from p = 0 to p = p∗. Let this area be denoted by SCost∗.
It follows that Seller welfare at E∗, measured in term of the
Seller’s net benefit (i.e., benefit minus cost), is given by

SWelfare(E∗) = π∗p∗ − SCost∗ . (39)

12As detailed in the Appendix, simulation testing conducted with the IRW
Test Case provides support for (A8).

Fig. 12. Market clearing and welfare outcomes for a seller and buyer with
price-responsive supply and demand curves.

The Seller’s welfare (39) appears in Fig. 12 as the lighter
(green) shaded area.

The Buyer’s benefit at E∗, measured in terms of its will-
ingness to pay, is measured by the area underneath the plot
of its marginal benefit function (2) in Fig. 12 from p = 0 to
p = p∗; that is, it is given by the integration of the Buyer’s
marginal benefit function from p = 0 to p = p∗. Let this
area be denoted by BBenefit∗. On the other hand, the Buyer
pays the same price π∗ for every MW of power it purchases
from p = 0 to p = p∗. Hence, the Buyer’s total purchase cost
at E∗ is given by π∗p∗. It follows that Buyer Welfare at E∗,
measured in terms of the Buyer’s net benefit, is given by

BWelfare(E∗) = BBenefit∗ − π∗p∗ . (40)

The Buyer’s welfare (40) appears in Fig. 12 as the darker
(blue) shaded area.

Finally, total net benefit for a market is defined to be the
summation of all net benefit extracted from the market by
market participants. Thus, for the market example at hand,
total net benefit is given by the sum of (39) and (40), which
results in

TotalNetBenefit∗ = BBenefit∗ − SCost∗ . (41)

The total net benefit (41) is represented in Fig. 12 by the
sum of the two shaded areas. It is easily shown that the total
net benefit (41) is the maximum possible net benefit that can be
extracted from this market. Any further sale of power beyond
p∗ would have the property that the Seller’s cost for producing
this power exceeds the willingness of the Buyer to pay for this
power, implying a decrement to total net benefit.

C. Welfare and Market Efficiency Analysis for the IRW Test
Case with Dynamic-Price Retail Contracts

Consider an IRW Test Case with dynamic-price retail
contracting that satisfies the auxiliary assumption (A8) in
Section V-A. The market participants consist of a GenCo
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that produces bulk (wholesale) power, a collection of retail
households that consume power, and an LSE that operates
as an intermediary between the wholesale and retail sectors.
Specifically, the LSE purchases bulk power in wholesale
markets on behalf of the retail households and then sells this
power to the households in accordance with a dynamic-price
retail contract with a mark-up m ≥ 0.

Let H refer to a particular operating hour during a 24-
hour day. Suppose the current day is D-1 and the IRW Test
Case is at a point R0 on the retail demand curve. How can
welfare outcomes be measured and compared for the GenCo,
the households, and the LSE for hour H of day D+1?

Three complicating factors must be kept in mind in the
calculation of these welfare outcomes. First, the LSE does
not know next-day retail loads. Rather, on any given day D
the LSE’s forecast for hour-H retail load on day D+1 is given
by the retail load realized for hour H on day D-1; the LSE
uses this forecast as its day-D DAM demand bid for hour H
of day D+1. Second, the LSE uses current-day DAM prices
to set next-day retail prices. Third, the DAM is a forward
financial market used each day by the ISO to determine a
planned next-day GenCo dispatch schedule. The GenCo does
not incur any operational costs until it engages in actual real-
time production.

Fig. 13. Illustrative depiction of power, price, and welfare outcomes for the
IRW Test Case with dynamic-price retail contracts for a particular hour H on
day D+1, assuming a positive retail-price mark-up (m > 0).

Figure 13 illustrates possible power, price, and welfare
outcomes for the IRW Test Case for a particular hour H
on a particular day D+1, assuming that the dynamic-price
retail contract has a positive mark-up m > 0. For clarity
of exposition, dependence on H has been suppressed in the
notation.

The start point depicted in Fig. 13 is an arbitrary point
R0 = (pRET (D-1),πRET (D-1)) on the retail demand curve for
hour H of day D-1. The LSE’s day-D DAM demand bid for
hour H of day D+1 is then given by pRET (D-1), implying a
vertical day-D DAM demand curve at this power level. Thus,
the market clearing point for the day-D DAM is given by B1

= (pRET (D-1), πDA(D)).
Given the assumed dynamic-price form of retail contracts,

the LSE then sets the retail price πRET (D+1) for hour H of
day D+1 equal to [1+m] times the day-D DAM price πDA(D),
resulting in a retail power demand pRET (D+1) for hour H of
day D+1 that is strictly less than pRET (D-1). This moves the
system to point B2. At B2, the retail power usage pRET (D+1)
for day D+1 is used by the LSE as its demand bid for the day-
(D+2) DAM. The day-(D+2) DAM is then cleared at a price
πDA(D+2) for hour H of day D+3, which moves the system
to point B3. The LSE then sets the retail price πRET (D+3)
for hour H of day D+3 equal to [1 + m] times πDA(D+2).
This retail price results in a retail power usage in amount
pRET (D+3), which moves the system to B4.

The GenCo receives compensation in amount
πDA(D)pRET (D-1) in the day-D DAM for its scheduled
power dispatch level pRET (D-1) for hour H of day D+1.
However, actual household power usage during hour H of day
D+1 is pRET (D+1), which is strictly less than pRET (D-1). In
the day-(D+1) RTM for hour H the GenCo must now in effect
“buy back” power in amount [pRET (D-1) - pRET (D+1)]
at the RTM price. This RTM price, denoted by πRT (D+1),
is determined by the intersection of the GenCo’s supply
curve with the vertical RTM demand curve at power level
pRT (D+1) = pRET (D+1). For later purposes, note from
Fig. 13 that πRT (D+1) = πDA(D+2).

The GenCo’s total operating cost for the production of
pRET (D+1) during hour H of day D+1 is given by the area
under its supply offer (marginal cost curve) from p = 0 to
p = pRET (D+1). Let GCost(D+1) denote this area. GenCo
welfare for hour H of day D+1, measured in terms of net
benefit (i.e., revenues minus costs), is then given by13

GWelfare(D+1) = πDA(D)pRET (D-1)

− πRT (D+1)[pRET (D-1)− pRET (D+1)]
− GCost(D+1)

= πDA(D)pRET (D-1)

− πDA(D+2)[pRET (D-1)− pRET (D+1)]
− GCost(D+1) (42)

The LSE pays πDA(D)pRET (D-1) in the day-D DAM for
its forecasted fixed demand pRET (D-1) for hour H of day
D+1. However, actual household power usage during hour
H of day D+1 is only pRET (D+1). Consequently, the LSE
receives compensation at rate πRT (D+1) in the RTM for hour
H of day D+1 for this over-payment. On the other hand, the
amount the LSE receives in payment from households for their
actual power usage during hour H of day D+1 is given by
πRET (D+1)pRET (D+1) = [1 +m]πDA(D)pRET (D+1).

Thus, LSE welfare for hour H of day D+1, measured in

13In the opposite case in which the actual retail power demand pRET (D+1)
for hour H of day D+1 is strictly greater than the power level pRET (D-1)
scheduled in the day-D DAM for hour H of day D+1, the ISO must secure
additional power from the GenCo in the RTM for hour H of day D+1. This
additional power is compensated at πRT (D+1). It is easily shown that the
GenCo’s welfare for hour H of day D+1 is once again given by formula (42).
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terms of net benefit (i.e., revenues minus costs), is given by14

LWelfare(D+1) = πRET (D+1)pRET (D+1)

+ πRT (D+1)[pRET (D-1)− pRET (D+1)]

− πDA(D)pRET (D-1)

= [1 +m]πDA(D)pRET (D+1)

+ πRT (D+1)[pRET (D-1)− pRET (D+1)]

− πDA(D)pRET (D-1)

= mπDA(D)pRET (D+1)

+ [πDA(D+2)− πDA(D)][pRET (D-1)− pRET (D+1)] .
(43)

The sign of (43) depends on exact magnitudes. However, since
the product of the bracketed terms is always non-positive, a
necessary condition for (43) to be positive is that the mark-up
m be set sufficiently large.

Suppose household welfare is measured as benefit (will-
ingness to pay) minus cost (actual payment). The willingness
of households to pay for the power usage level pRET (D+1)
during hour H of day D+1 is given by the area under the
retail demand curve from p = 0 to p= pRET (D+1); let this
area be denoted by HBen(D+1). The actual household payment
for this power usage is πRET (D+1)pRET (D+1). Consequently,
household welfare for hour H of day D+1, measured as
household net benefit (i.e., benefits minus costs), is given by

HWelfare(D+1) = HBen(D+1)− πRET (D+1)pRET (D+1) .
(44)

If the three welfare (net benefit) measures (42), (43), and
(44) are added together, one obtains the total net benefit
extracted by market participants for hour H of day D+1:
namely,

TotalNetBenefit(D+1) = HBen(D+1)− GCost(D+1) . (45)

The total net benefit (45) is given by the lighter (gold) shaded
area in Fig. 13.15

The total net benefit (45) is less than the maximum possible
total net benefit that could be extracted for hour H of day
D+1. The “missing” net benefit is the darker (blue) triangular
shaded region in Fig. 13. This missing net benefit, which
economists refer to as deadweight loss, measures the degree to
which market outcomes are inefficient in the following “wasted
resource” sense: some units of good fail to be produced even
though the willingness to pay for these units exceeds their cost
of production. In Fig. 13, these “wasted” units of good are the

14It is straightforward to show that (43) still correctly represents LSE
welfare in the opposite case in which the actual retail power demand
pRET (D+1) for hour H of day D+1 is strictly greater than the power level
pRET (D-1) scheduled in the day-D DAM for hour H of day D+1.

15Recall that a basic simplifying assumption for the IRW Test Case is
that no grid congestion arises. Thus, only a single LMP is determined in the
DAM/RTM for any given hour H of any given day D; i.e., the LMPs do not
separate across the transmission grid buses due to congestion. Consequently,
each MW of power transacted in the DAM/RTM has the property that its
purchase price (collected from the LSE) equals its sale price (paid out to
the GenCo). Hence the ISO, who collects all payments and pays out all
compensation in the DAM/RTM, has no net revenues left over from these
transactions; i.e., the ISO has no “congestion rent” that it extracts from
the market. See [24] for a careful discussion of welfare and congestion-rent
calculations for the case in which transmission grid congestion can arise.

MWs of power from pRET (D+1) to the power level p∗(m) at
the market equilibrium point Er∗(m).

This deadweight loss arising for the IRW Test Case under
dynamic-price retail contracts is caused by two factors: (i) the
LSE uses an adaptive forecast for retail demand in the DAM in
place of the true retail demand function (6); and (ii) the LSE is
a private profit-seeking entity that uses adaptive advance retail
pricing with a positive mark-up m in an attempt to ensure for
itself a positive net benefit (revenues minus costs).

Suppose, instead, that the LSE is a fully-informed non-profit
entity with a fiduciary responsibility for household welfare. In
this case the LSE would submit a demand bid into the day-
D DAM that correctly represents the true household demand
function (6) for hour H of day D+1, and it would charge
households a retail price πRET (D+1) for power usage during
hour H of day D+1 that is equal to its true purchase price
πDA(D), without imposing a price mark-up m > 0.

In this idealized case the retail power and price outcomes
for hour H of day D+1 would be at Er∗(m) in Fig. 13,
with a zero deadweight loss, and the net earnings (revenues
minus costs) of the LSE would be zero. In effect, households
would be direct active participants in wholesale power market
operations.

An important caveat regarding the above welfare analysis
is as follows. The metric used for household welfare –
willingness to pay minus actual payment – provides only an
approximate measure of household welfare. As detailed in
Section IV-B, in the IRW Test Case the true welfare attained
by a household in any hour H for any day D is measured by
comfort minus energy cost; see (5).

D. Welfare and Market Efficiency Analysis for the IRW Test
Case with Flat-Rate Retail Contracts

Consider, instead, the IRW Test Case with flat-rate retail
contracting, still augmented with auxiliary assumption (A8)
that directly postulates an hourly linear household aggre-
gate demand function (6). Thus, the retail price charged to
households for their power usage is set at an administratively
determined rate R ($/MWh) that is held constant over an
extended time interval T .

To guarantee the LSE can stay in business over T , the flat
rate R must be at a break-even level, i.e., at a level that ensures
the LSE’s revenues are at least as great as the LSE’s costs over
T . For each hour H of each day D, these revenues and costs
are determined by the following four factors:

• The amount charged to the LSE in the day-(D-1) DAM
for its demand bid (load forecast) for hour H of day D;

• The amount charged to the LSE in the RTM for hour H of
day D if its day-(D-1) DAM demand bid (load forecast)
for hour H of day D is smaller than actual retail power
usage during hour H of day D.

• The payment received by the LSE in the RTM for hour
H of day D to compensate the LSE if its day-(D-1) DAM
demand bid (load forecast) for hour H of day D is larger
than actual retail power usage during hour H of day D;

• The payment received by the LSE from households during
hour H of day D for actual household power usage.
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It is difficult to set R in advance at a level ensuring the
LSE breaks even over time since each of the four factors listed
above is affected by the setting of R. For example, it might
seem reasonable simply to set the flat rate R equal to the
average DAM price over time, arguing that the RTM price will
fluctuate randomly around the DAM price. However, analysis
suggests that this would be a disastrous policy for the LSE,
resulting in strictly negative LSE welfare outcomes.

Fig. 14. Illustration of power, price, and welfare outcomes during an arbitrary
hour H of an arbitrary day D+1 for the IRW Test Case with flat-rate retail
contracts, assuming the flat rate R is at least as large as the DAM price πDA

for hour H of day D+1.

To see the difficulty, consider the IRW Test Case market
processes depicted in Fig. (14) for a particular hour H of a par-
ticular day D+1 under the assumption that retail contracts take
a flat-rate form. As in Section VI-C, the start point depicted in
Fig. 13 is an arbitrary point R0 = (pRET (D-1), πRET (D-1))
on the retail demand curve for hour H of day D-1. The LSE’s
day-D DAM demand bid for hour H of day D+1 is then given
by FD = pRET (D-1), implying a vertical day-D DAM demand
curve at this power level. Thus, the market clearing point for
the day-D DAM is given by EDA = (FD,πDA(D)).

Suppose the flat rate R charged to households for their retail
power usage during hour H of day D+1 is at least as large as
πDAM . The actual power usage of households during hour H
of day D+1, denoted by pRET (R), will then be strictly less
than FD, the LSE’s day-D DAM forecast for household power
usage during hour H of day D+1.

The GenCo receives compensation in amount πDAFD in
the day-D DAM for its scheduled power dispatch level FD
during hour H of day D+1. In the day-(D+1) RTM for hour H
the GenCo must now in effect “buy back” power in amount
[FD - pRET (R)] at the RTM price. This RTM price, denoted
by πRT (R), is determined by the intersection of the GenCo’s
supply curve with the induced vertical RTM demand curve at
power level pRET (R).

The GenCo’s total operating cost for the production of
pRET (R) during hour H of day D+1 is given by the area
under its supply curve (marginal cost function) from p = 0 to

p = pRET (R). Let GCost(R) denote this area. It then follows
that GenCo welfare for hour H of day D+1, measured in terms
of net benefit (i.e., revenues minus costs), is given by16

GWelfare(R) = πDAFD

− πRT (R)[FD− pRET (R)]

− GCost(R) (46)

The LSE pays πDAFD in the day-D DAM for its forecasted
fixed demand FD for hour H of day D+1. However, the
actual household power usage during hour H of day D+1, i.e.,
pRET (R), is strictly less than FD.

Consequently, the LSE receives compensation at rate
πRT (R) in the RTM for hour H of day D+1 for this over-
payment. In addition, the LSE receives payments from house-
holds for their actual power usage during hour H of day D+1,
given by RpRET (R). Thus, LSE welfare for hour H of day
D+1, measured in terms of net benefit (i.e., revenues minus
costs), is given by17

LSEWelfare(R) = RpRET (R)

+ πRT (R)[FD− pRET (R)]

− πDAFD

= [πRT (R)− πDA][FD − pRET (R)]

+ [R− πDA]pRET (R) . (47)

As long as the LSE’s vertical demand curve at FD does not
intersect the GenCo’s supply curve at Er∗, the bracketed terms
in (47) will have opposite signs; see Fig. 14. Consequently, a
necessary condition for LSE welfare to be positive for hour H
of day D+1 is that R be sufficiently greater than πDA.

Finally, suppose household welfare is measured as benefit
(willingness to pay) minus cost (actual payment). The willing-
ness of households to pay for the power usage level pRET (R)
during hour H of day D+1 is given by the area under the retail
demand curve from p = 0 to p = pRET (R); let this area be
denoted by HouseBen(R). The actual household payment for
this power usage during hour H of day D+1 is RpRET (R).
Consequently, household welfare for hour H of day D+1,
measured as household net benefit (i.e., benefits minus costs),
is given by

HWelfare(R) = HouseBen(R)−RpRET (R). (48)

Finally, if one now adds together the three welfare (net
benefit) calculations (46), (47), and (48), one obtains the Total
Net Benefit extracted by market participants for hour H of day
D+1, given by

TotalNetBenefit(R) = HouseBen(R)− GCost(R) (49)

The total net benefit (49) is given by the lighter (gold) shaded
area in Fig. 14.

16It is straightforward to show that (46) still correctly represents the
GenCo’s welfare in the opposite case in which the retail power demand
pRET (R) for hour H of day D+1 is strictly greater than the power level
FD scheduled in the day-D DAM for hour H of day D+1.

17It is straightforward to show that (47) still correctly represents the LSE’s
welfare in the opposite case in which the retail power demand pRET (R) for
hour H of day D+1 is strictly greater than the power level FD scheduled in
the day-D DAM for hour H of day D+1.
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The total net benefit (49) is less than the maximum possible
total net benefit that could be extracted for hour H of day D.
The “missing” net benefit is the darker (blue) triangular shaded
region in Fig. 14. As before, this missing net benefit (dead-
weight loss) measures the degree to which market outcomes
in the IRW Test Case are inefficient in the sense that some
units of good fail to be produced even though the willingness
to pay for these units exceeds their cost of production. In
Fig. 14, these “wasted” units of good are the MWs of power
from pRET (R) to the power level p∗ at the market equilibrium
point E∗.

As seen in Fig. 14, market efficiency increases (i.e., the
deadweight loss decreases) as the distance between the flat-rate
R and the market equilibrium price π∗ is decreased. Suppose
the administrators of the flat-rate retail contract program are
somehow able to learn the equilibrium point E∗ and they then
set R equal to π∗ for hour H for all days subsequent to D-1.
Starting from an arbitrary point RO on the retail demand curve
during hour H of day D-1, what welfare outcomes result for
the GenCO, LSE, and households during hour H for all days
subsequent to D-1?

First note that the long-run welfare outcomes for the GenCo,
the LSE, and the households at E∗ are as depicted in Fig. 12:
namely, the Seller (GenCo) and the Buyer (the Households)
split the extracted net benefit among themselves, and the LSE’s
net benefit is zero. Call these welfare outcomes the equilibrium
welfare outcomes.

Fig. 15. Illustration of power, price, and welfare outcomes during some hour
H of an arbitrary day D+1 for the IRW Test Case with flat-rate retail contracts,
assuming the flat rate R is set equal to the market equilibrium price π∗.

This optimal-R case is illustrated in Fig. 15 for the specific
case in which the start-point R0 for hour H of day D-1 lies to
the right of E∗ along the retail demand curve. In this case πDA

exceeds π∗, and the following implications are easily seen.
First, GenCo welfare for hour H of day D+1 strictly exceeds

GenCo equilibrium welfare by an amount [πDA − π∗]FD.
Second, LSE welfare for hour H of day D+1 is strictly smaller
than the break-even LSE equilibrium welfare level (0); specif-
ically, LSE welfare is [π∗ − πDA]FD < 0. Third, household

welfare for hour H of day D+1 equals household equilibrium
welfare. Fourth, during hour H on all days subsequent to D+1,
welfare outcomes for all market participants coincide with
equilibrium welfare outcomes.

For the opposite case in which the start-point R0 for hour H
of D-1 lies to the left of E∗ along the retail demand curve, πDA

is strictly smaller than π∗ and the reverse situation holds for
GenCo and LSE welfare. Specifically, GenCo welfare for hour
H of day D+1 is strictly lower than GenCo equilibrium welfare
by an amount [π∗−πDA]FD. On the other hand, LSE welfare
for hour H of day D+1 strictly exceeds the break-even LSE
equilibrium welfare level (zero) by an amount [π∗−πDA]FD.

VII. A DYNAMIC WELFARE SENSITIVITY DESIGN
FOR THE IRW TEST CASE

This section explains the design of a dynamic welfare
sensitivity study undertaken for the IRW Test Case described
in Section IV.18 In contrast to the analytical studies carried out
in Sections V and VI, this sensitivity study does not rely on the
auxiliary assumption (A8) postulating a specific linear form
for the hourly household aggregate demand function. Instead,
the hourly power demands for each of the 500 households in
the IRW Test Case are determined by a price-responsive A/C
controller, as in [44].

The three treatment factors for this study are: (i) the form
of retail contracts, either flat-rate or dynamic-price; (ii) the
mark-up m in (4) that determines the percentage by which
retail prices are marked up over wholesale prices in the case of
dynamic-price retail contracts; and (iii) the household comfort-
cost trade-off parameters αh in (5). Four values are tested for
m: 0.0, 0.2, 0.4, and 0.6. Also, four values are tested for α:
0, 1000 (“Low”), 2000 (“Medium”), and 3000 (“High”). The
four α values were selected by trial and error to correspond
to a price-elasticity of aggregate household demand ranging
from zero to high.

The metrics used to measure welfare (net benefit) for the
GenCo and LSE under dynamic-price and flat-rate retail con-
tracts are as derived in Sections VI-C and VI-D, respectively.
Specifically, given dynamic-price retail contracting, hourly
GenCo welfare is measured as in (42), and hourly LSE welfare
is measured as in (43). Given flat-rate retail contracting, hourly
GenCo welfare is measured as in (46), and hourly LSE welfare
is measured as in (47).

For all treatment configurations, hourly household welfare
(net benefit) is measured as a trade-off between comfort and
energy cost, as in (5). The degree to which a household h is
willing to sacrifice comfort for energy cost savings is measured
by αh in (5).

As noted in Section IV, the thermal dynamics governing
each of the 500 households in the IRW Test Case are repre-
sented by an ETP model. As detailed in [44], the basic ETP
model is a linear differential system with two state variables,
T a and Tm, denoting inside air temperature and inside mass
temperature. To reduce computational time, the current study

18Complete source code and data files for this sensitivity study, including
external forcing terms (e.g., outside air temperature), maintained parameter
values, and functional forms, can be accessed at [42].
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uses the following simplified single-state version of the ETP
model for each household h,

dT a(t)

dt
= zh1 [T

o(t)− T a(t)]− zh2 ph(t) , (50)

where T o(t) denotes outside air temperature at time t, and
ph(t) denotes h’s A/C power level (ON or OFF) at time t.
Positive values were randomly assigned to the coefficients zh1
and zh2 for each household h at the beginning of the sensitivity
study and then maintained throughout all simulation runs.

Additional attributes maintained at fixed settings for all
simulation runs are as follows:

• A/C rating for each household h;
• Initial inside air temperature for each household h;
• Bliss point temperature (70o F) for each household h;
• Daily outside air temperature profile (experienced com-

monly across all households);
• Initial retail prices communicated by the LSE to all

households during the first two simulated days.
For the flat-rate case, the retail price charged to households

in each simulation run was set at a fixed break-even rate R
($/MWh) for the entire simulation, i.e., at a fixed rate R for
which hourly LSE net earnings are at least zero and are as
close to zero as possible. The break-even value for R was
found by trial and error for each flat-rate simulation run.19

Below are the flat rates R determined for different values
of α for the flat-rate retail contracting outcomes reported in
Section VIII.

• R = 27.9 ($/MWh) for α = 0;
• R = 27.7 ($/MWh) for α = 1000 (low);
• R = 27.5 ($/MWh) for α = 2000 (medium);
• R = 27.2 ($/MWh) for α = 3000 (high).

Note these R values are a decreasing function of α.
Finally, each simulation run in the sensitivity study con-

sisted of 20 simulated days. Hourly electricity costs and hourly
GenCo, LSE, and household welfare levels were calculated
during simulated days 11 to 20 and then divided by ten to
obtain average daily values.

VIII. WELFARE SENSITIVITY FINDINGS
FOR THE IRW TEST CASE

Figure 16 reports illustrative welfare outcomes for the
LSE, the GenCo, and the 500 households for the IRW Test
Case under a range of treatments exhibiting point-convergent
cobweb dynamics. Only treatments with α and m values
commonly set across all households are shown.

The following regularities are seen in the welfare sensitivity
effects reported in Fig. 16. All of these regularities are subject
to an “all else equal” qualifier.

• Overall Welfare Findings:
– Suppose households are concerned about energy cost

(α > 0). Then a dynamic-price retail contract with

19As explained in Section VI-D, LSE net earnings are zero for the IRW
Test Case under flat-rate contracts if the IRW Test Case is initialized at the
market equilibrium point (p∗, π∗) and the flat rate R is set equal to π∗; cf.
Fig. 15. However, none of the simulation runs for the welfare sensitivity study
were initialized at this equilibrium point.

Fig. 16. LSE, GenCo, and household welfare outcomes for a range of IRW
Test Case treatments exhibing point-convergent cobweb dynamics.

a positive mark-up m results in a better welfare
outcome for the LSE and worse welfare outcomes
for the GenCo and households than a flat-rate retail
contract.

– Suppose households are not concerned about energy
cost (α = 0). Then GenCo and household welfare
are independent of the retail price of power, hence
independent of the form of the retail contract; but
LSE welfare is higher under a dynamic-price retail
contract than under a flat-rate retail contract for any
m > 0.

• LSE Welfare:

– Given dynamic-price retail contracting, LSE welfare
increases as m increases.

– Given a dynamic-price retail contract with m > 0,
LSE welfare decreases as α increases.

• GenCo and Household Welfare:

– Given α > 0 and dynamic-price retail contracting,
GenCo and household welfare decrease as m in-
creases.

– Given α > 0, GenCo and household welfare are
higher under a dynamic-price retail contract with a
zero mark-up m than under a flat-rate retail contract.

– GenCo and household welfare decrease as α in-
creases.

• Electricity Cost:

– Given dynamic-price retail contracting, average daily
energy cost increases as m increases.

– Average daily energy cost decreases as α increases.
– The same average daily energy cost is realized under

a dynamic-price retail contract with zero mark-up
(m = 0) and a flat-rate retail contract.



17

IX. CONCLUDING DISCUSSION

Economists have known for decades that possibly divergent
cycles can arise for prices and quantities in “cobweb” market
models for which a lag exists between the decision to pro-
duce a nonstorable good and its actual production. Economic
research on this topic remains active; see, e.g., [3], [8], [15].
Power engineers have raised similar concerns for real-time
electric power markets; see, e.g., [6], [26], [35].

For example, [35] analyze the global properties of a system
of nonlinear differential equations derived for an ISO-managed
real-time power market. The authors make various simpli-
fying assumptions (e.g., non-binding capacity constraints for
generation and transmission grid lines) that reduce the ISO’s
optimization problem in each successive period to a straight-
forward economic dispatch problem in which expected load
(power consumption) is balanced by scheduled generation
(planned power supply).

Power supplies and demands are specified as parameterized
functional forms interpreted as the optimal solutions for my-
opic price-taking utility-maximizing producers and consumers.
The discrepancy between scheduled generation and subsequent
actual power consumption (hence actual power supply) then
results in a form of cobweb cycling for market prices. Given a
sufficiently large “Maximal Relative Price Elasticity,” roughly
defined to be demand price elasticity in ratio to supply price
elasticity, the authors prove that prices can become increas-
ingly volatile over time.

All of these previous cobweb studies highlight a common
cautionary concern for demand-response researchers: namely,
initiatives designed to encourage the more active participation
of retail customers in power system operations must be de-
signed with care in order to avoid adverse unintended conse-
quences for power system operations. In what way, then, does
the IRW Test Bed provide additional capabilities for demand-
response researchers in general, and for TES researchers in
particular, to address this concern?

The previous studies of cobweb cycle effects within elec-
tric power systems have largely been conceptual studies. In
contrast, the IRW Test Bed is an agent-based computational
platform. Its modular extensible architecture permits system-
atic studies of alternative demand-response initiatives in a
plug-and-play mode. In scope, it covers the entire range of
wholesale/transmission and retail/distribution operations, and
it permits these operations to play out over time as an open-
ended dynamic process.

Moreover, since analytical tractability is not an issue, the
user’s initial specifications for physical conditions, institutional
arrangements, and the decision-making processes of human
participants (including learning processes) can be as strongly
grounded in empirical reality as warranted by the user’s
purpose. Last but not least, the IRW Test Bed is open source
software, thus permitting later researchers to build directly and
systematically upon previous findings.

By exploiting the capabilities of the IRW Test Bed to
model increasingly larger systems with increasingly greater de-
grees of empirical verisimilitude, these studies could become
the foundation for an increasingly sophisticated sequence of

demand-response studies that bridge the gap from conceptual
studies to real-world implementations.

APPENDIX

APPROXIMATE LINEAR FORM OF SIMULATED AGGREGATE
DEMAND UNDER DYNAMIC PRICING

The analytical findings for braided cobweb dynamics re-
ported in Section V for the IRW Test Case with dynamic-price
retail contracting rely on an auxiliary assumption (A8) directly
postulating that the hourly aggregate demand curves for the
500 households can be approximated by linear downward-
sloping functions taking form (6). Simulation tests provide
strong support for this presumption.

Multiple sets of dynamic-price simulation runs were con-
ducted for the full IRW Test Case with simulated hourly
household demands for A/C power usage. The length of each
run was 20 successive simulated days D1, ..., D20. Each run-
set S corresponded to a distinct experiment in which the only
distinction among the runs in S was the starting point of each
run in the retail power-price plane. Specifically, the initial retail
price was increased in successive steps across the runs in S.
All other exogenous aspects (e.g., the outside air temperature
profile) were specified identically across the runs in S.

For each run-set S, an aggregate household A/C power
demand curve was simulated for each hour H by a scatter-
plot of power-price points, as follows. For each simulated
day Di, and for each run rj in S, the resulting aggregate
household power usage p(H,Di,rj) and retail price π(H,Di,rj)
were calculated and plotted in superimposed fashion in the
(p, π) plane, resulting in a scatter-plot of power-price points
for hour H.

The resulting scatter-plots indicate that the hourly aggregate
demand curves for the full IRW Test Case with household A/C
power demands generated by price-responsive A/C system
controllers are well approximated by linear downward-sloping
functions. For example, Fig. 17 depicts a simulated scatter-plot
for hour 18:00. In this example, the GenCo cost coefficient b is
set at 0.00001, and the form of retail contracting is dynamic-
price contracting with a zero mark-up m. As can be seen more
clearly in Fig. 18, the trend line drawn through this scatter-plot
is linear with a negative slope over a broad power range.
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Fig. 17. Simulation-generated scatter plot for retail prices and correspond-
ing aggregate household A/C power demands for hour 18:00 over twenty
successive simulated days, with corresponding trend line, for a dynamic-price
treatment with b = 0.0001 and m = 0.

Moreover, the estimated slope coefficient d̂ for this simu-
lated aggregate household demand curve over this broad power
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Fig. 18. Trend line drawn for the linear portion of the scatter plot in Fig. 17.

range is approximately 0.0004. Consequently, b < d̂/[1+m] =
d̂, indicating point-convergent cobweb dynamics in this range.
Indeed, for each of the runs used for Figs. 17-18, the resulting
retail prices for any given hour over 20 successive simulated
days were observed to converge to approximately $30/MWh.

As indicated in Fig. 17, a linear approximation is not a
good fit for the hourly aggregate household A/C power demand
curves in the boundary region where power approaches zero.
The simulated hourly demand curves become exponential in
this boundary region. This is not surprising, since household
power demands are for a critical purpose: namely, maintaining
inside air temperature at a comfortable level.
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