Effects of Age, Power Output, and Cadence on Energy Cost and Lower Limb Antagonist Muscle Co-Activation during Cycling

Thumbnail Image
Date
2018-01-01
Authors
Buddhadev, Harsh
Martin, Philip
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Martin, Philip
Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Kinesiology
The Department of Kinesiology seeks to provide an ample knowledge of physical activity and active living to students both within and outside of the program; by providing knowledge of the role of movement and physical activity throughout the lifespan, it seeks to improve the lives of all members of the community. Its options for students enrolled in the department include: Athletic Training; Community and Public Health; Exercise Sciences; Pre-Health Professions; and Physical Education Teacher Licensure. The Department of Physical Education was founded in 1974 from the merger of the Department of Physical Education for Men and the Department of Physical Education for Women. In 1981 its name changed to the Department of Physical Education and Leisure Studies. In 1993 its name changed to the Department of Health and Human Performance. In 2007 its name changed to the Department of Kinesiology. Dates of Existence: 1974-present. Historical Names: Department of Physical Education (1974-1981), Department of Physical Education and Leisure Studies (1981-1993), Department of Health and Human Performance (1993-2007). Related Units: College of Human Sciences (parent college), College of Education (parent college, 1974 - 2005), Department of Physical Education for Women (predecessor) Department of Physical Education for Men
Journal Issue
Is Version Of
Versions
Series
Department
Kinesiology
Abstract

It is unknown if higher antagonist muscle co-activation is a factor contributing to higher energy cost of cycling in older adults. We determined how age, power output, and cadence affect metabolic cost and lower extremity antagonist muscle co-activation during submaximal cycling. Thirteen young and 12 older male cyclists completed 6-minute trials at four power output-cadence conditions (75W-60rpm, 75W-90rpm, 125W-60rpm, and 125W-90rpm) while electromyography (EMG) and oxygen consumption were measured. Knee and ankle co-activation indices were calculated using vastus lateralis, biceps femoris, gastrocnemius, and tibialis anterior EMG data. Net rate of energy cost of cycling was higher in older compared to young cyclists at 125W (p=0.002) and at 90rpm (p=0.026). No age-related differences were observed in the magnitude or duration of co-activation about the knee or ankle (p>0.05). Our results indicated knee and ankle co-activation is not a substantive factor contributing to higher energy cost of cycling in older adults.

Comments

This article is published as Buddhadev,H.H., Martin, P.E. Effects of Age, Power Output, and Cadence on Energy Cost and Lower Limb Antagonist Muscle Co-Activation during Cycling. Journal of Aging and Physical Activity; 2018; pg.1-31. DOI: 10.1123/japa.2017-0400. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Mon Jan 01 00:00:00 UTC 2018
Collections