Color Image Segmentation with Genetic Algorithm for In-field Weed Sensing

Thumbnail Image
Date
2000-01-01
Authors
Tian, Lei
Steward, Brian
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Tang, Lie
Professor
Person
Steward, Brian
Professor
Research Projects
Organizational Units
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Agricultural and Biosystems Engineering
Abstract

This study was undertaken to develop machine vision-based weed detection technology for outdoor natural lighting conditions. Supervised color image segmentation using a binary-coded genetic algorithm (GA) identifying a region in Hue-Saturation-Intensity (HSI) color space (GAHSI) for outdoor field weed sensing was successfully implemented. Images from two extreme intensity lighting conditions, those under sunny and cloudy sky conditions, were mosaicked to explore the possibility of using GAHSI to locate a plant region in color space when these two extremes were presented simultaneously. The GAHSI result provided evidence for the existence and separability of such a region. In the experiment, GAHSI performance was measured by comparing the GAHSI-segmented image with a corresponding handsegmented reference image. When compared with cluster analysis-based segmentation results, the GAHSI achieved equivalent performance.

Comments

This article is from Transactions of the ASAE, 43, no. 4 (2000): 1019–1027.

Description
Keywords
Citation
DOI
Source
Copyright
Sat Jan 01 00:00:00 UTC 2000
Collections