11-30-2018

Grain Drying

Brett Olson
Iowa State University, olsonbj@iastate.edu

Michael Shippy
Iowa State University, mjshippy@iastate.edu

Jacob Titmus
Iowa State University, jetitmus@iastate.edu

Todd Van Dyke
Iowa State University, vandyket@iastate.edu

Follow this and additional works at: https://lib.dr.iastate.edu/tsm415
🔗 Part of the [Bioresource and Agricultural Engineering Commons](https://lib.dr.iastate.edu/biores) and the [Industrial Technology Commons](https://lib.dr.iastate.edu/indtech)

Recommended Citation

Olson, Brett; Shippy, Michael; Titmus, Jacob; and Van Dyke, Todd, "Grain Drying" (2018). *TSM 415 Technology Capstone Posters*. 34.
https://lib.dr.iastate.edu/tsm415/34
Grain Drying
Client: Dr. Bern, Iowa State University

Problem Statement
• Mold toxins (Aflatoxin) consumed by children can stunt growth, cause mental impairment and acute poisoning
• Corn left in field is susceptible to loss from insects, rats, birds, and theft

Objective(s)
• Reduce corn moisture from 22% to 14%
• Use Resources available in third world countries
• Main fuel source is wood

Constraints
• Low cost
• Low tech
• Materials
• Ability to be made by rural African villages
• Made with materials available to rural African villages
• Criteria to be met: dry the corn from 22% moisture to 14%

Proposed Solutions
• Use of steel barrels
• Bricks or rocks
• Metal plates
• Wood

Concept #1 made from steel plates
Concept #2 made from steel barrel

Methods
• Dry grain over stable heat source to establish controlled testing

Scope
• Drying Maize quickly and cheaper
• Nothing to do with storage and transportation of maize

Benefit to Client
• Will give the Farmer a quick and easy way to dry maize
• Will increase long term storage
• Will benefit amount to use in markets in Africa