11-30-2018

Improve Agricultural Practices through Waterflow Modeling & Visualization

Warren Jennings
Iowa State University, wjennin@iastate.edu

Riley Nylin
Iowa State University, rnylin@iastate.edu

Josh Pederson
Iowa State University, joshp@iastate.edu

James Pollock
Iowa State University, jpollock@iastate.edu

Follow this and additional works at: https://lib.dr.iastate.edu/tsm415

Part of the Bioresource and Agricultural Engineering Commons, and the Industrial Technology Commons

Recommended Citation
Jennings, Warren; Nylin, Riley; Pederson, Josh; and Pollock, James, "Improve Agricultural Practices through Waterflow Modeling & Visualization" (2018). TSM 415 Technology Capstone Posters. 33.
https://lib.dr.iastate.edu/tsm415/33

This Poster is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in TSM 415 Technology Capstone Posters by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Improve Agricultural Practices through Waterflow Modeling & Visualization

Client: Cedar Valley Innovations (CVI), Waterloo, IA

Problem Statement
• Current farming tools do not provide an easy solution for waterflow modeling; therefore, farmers are not aware of what happens in their fields after rainfall events.

Benefit to Client
• Used to improve the effectiveness of water management practices and decrease soil erosion through an accurate waterflow modeling software.

Criteria
• Support Farmer’s Triple Bottom Line:
 • Sustainable Income
 • Leave the soil in better condition for the future
 • Feed the World
 • Visually demonstrate the impact of agronomic practices
 • Personalize to a Grower’s Field

Constraints
• Google Earth as well as other publicly available information must be used to build the models so that no private data is needed to run the program.

Objectives
• Create a list of parameters used in landscape waterflow modeling
• Find source of site-specific data for each modeling parameter
• Recommend a software for model visualization
• Demonstrate model function on specific real world landscapes

Scope
• The main area of our scope is to find public domains that provide us with the information necessary to the equations used for waterflow modeling.
• We do not need a fully functioning software by the end of the project. This task can be handed off to a following capstone project to finish.

Proposed Solutions
• Gather and utilize data from public domains to create a software on SimTable that models waterflow (and the erosion created by the waterflow) through a farmer’s fields.

Acknowledgements: Authors are grateful to Bob Recker for the opportunity to work on this project. Project was co-funded by the differential tuition.