Grain Cart Pathways and Compaction

Cody Gradert
Iowa State University, cgradert@iastate.edu

Garett Hagenow
Iowa State University, ghagenow@iastate.edu

Jacob Steinbeck
Iowa State University, jstein@iastate.edu

Kyle Kent
Iowa State University, kmkent@iastate.edu

Joseph R. Vanstrom
Iowa State University, vanstrom@iastate.edu

See next page for additional authors

Follow this and additional works at: https://lib.dr.iastate.edu/tsm416

Part of the Bioresource and Agricultural Engineering Commons, and the Industrial Technology Commons

Recommended Citation
Gradert, Cody; Hagenow, Garett; Steinbeck, Jacob; Kent, Kyle; Vanstrom, Joseph R.; and Koziel, Jacek A., "Grain Cart Pathways and Compaction" (2018). TSM 416 Technology Capstone Projects. 32.
https://lib.dr.iastate.edu/tsm416/32

This Article is brought to you for free and open access by the Undergraduate Theses and Capstone Projects at Iowa State University Digital Repository. It has been accepted for inclusion in TSM 416 Technology Capstone Projects by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Grain Cart Pathways and Compaction

Problem Statement
A typical field is compacted by wheel tracks on 80-90% of its area (NRCS National Soil Survey Center, 2011). This results in reduced yields, reduced soil health, and reduced water infiltration. Creating a plan to limit compaction could provide numerous benefits to farmers everywhere. John Deere Intelligent Solutions Group (ISG) is located in Urbandale and is responsible for developing precision agriculture hardware and software for John Deere (Ciha et al., 2017). Farmers all over the world use these products. ISG would like to know more about the effect on yield and profit that compaction from grain carts is responsible for. There are some statistics pertaining to yield loss from previous compaction studies that will be used to make an inference based on the amount of compaction that is found through collecting in the field samples. ISG wants some insight into this problem because of the potential for completely changing the way grain carts are operated in fields. Minimizing compaction is important because of the harm that it can cause to yield. Compaction affects farmers across the globe because there is a need to drive equipment through fields in order to complete necessary work. The potential to educate farmers with a new philosophy that could arise from this project could help to increase overall production of grain. It is unknown if other companies are looking into this problem. However, there are many scientists in the academic world that have spent their entire careers trying to solve the problem of compaction. A solution to directing grain cart traffic could also have an effect on how other field operations are performed as well.

Disciplines
Bioresource and Agricultural Engineering | Industrial Technology

Authors
Cody Gradert, Garett Hagenow, Jacob Steinbeck, Kyle Kent, Joseph R. Vanstrom, and Jacek A. Koziel

This article is available at Iowa State University Digital Repository: https://lib.dr.iastate.edu/tsm416/32
Grain Cart Pathways and Compaction
Cody Graderta, Garett Hagenowb, Jacob Steinbeckc, Kyle Kentd, Joseph R. Vanstrom e* and Jacek A. Koziel f*

a Agricultural Systems Technology, ABE, ISU, cgradert@iastate.edu
b Agricultural Systems Technology, ABE, ISU, ghagenow@iastate.edu
c Agricultural Systems Technology, ABE, ISU, jstein@iastate.edu
d Agricultural Systems Technology, ABE, ISU, kmkent@iastate.edu
e Dept. of Agricultural and Biosystems Engineering, ISU, 2321 Elings Hall, Ames, IA 50011, vanstrom@iastate.edu,
 515-294-9955
f Dept. of Agricultural and Biosystems Engineering, ISU, 4350 Elings Hall, Ames, IA 50011, koziel@iastate.edu

*Course instructors and corresponding authors.

 ● Contact(s): Justin Upmeyer, Product Manager, UpmetersJustin@JohnDeere.com

1 PROBLEM STATEMENT

Problem Statement

A typical field is compacted by wheel tracks on 80-90% of its area (NRCS National Soil Survey Center, 2011). This results in reduced yields, reduced soil health, and reduced water infiltration. Creating a plan to limit compaction could provide numerous benefits to farmers everywhere. John Deere Intelligent Solutions Group (ISG) is located in Urbandale and is responsible for developing precision agriculture hardware and software for John Deere (Ciha et al., 2017). Farmers all over the world use these products. ISG would like to know more about the effect on yield and profit that compaction from grain carts is responsible for. There are some statistics pertaining to yield loss from previous compaction studies that will be used to make an inference based on the amount of compaction that is found through collecting in the field samples. ISG wants some insight into this problem because of the potential for completely changing the way grain carts are operated in fields. Minimizing compaction is important because of the harm that it can cause to yield. Compaction affects farmers across the globe because there is a need to drive equipment through the field in order to complete necessary work. The potential to educate farmers with a new philosophy that could arise from this project could help to increase overall production of grain. It is unknown if other companies are looking into this problem. However, there are many scientists in the academic world that have spent their entire careers trying to solve the problem of compaction. A solution to directing grain cart traffic could also have an effect on how other field operations are performed as well.

Business Case Statement

A. What: The soil is compacted when large farming equipment travels over it, which leads to reduced yield and profits for the grower. This also leads to a decrease in the yield potential for farm acres.
B. How: Compaction is present in nearly every farming operation because equipment has to travel through the field in order for work to get done.
C. When and Where: Compaction occurs wherever heavy equipment passes over the soil. The weight of this machinery causes soil particles to be squeezed together and reduces the size of pores in the soil. Healthy soil is comprised of approximately 30% air and compaction decreases this number (De-Jong-Hughes et al., 2001). Wet soils and silty loam soils are more prone to this problem.
D. Why: Addressing and finding a solution to this problem presents an opportunity for farmers to increase their yields and in turn their profits and productivity per acre.
2 GOAL STATEMENT

A. The goal is to find the impact of compaction, and along with that, the piece of equipment that causes the greatest amount of compaction in farm fields.

B. The improvement will be measured according to compaction levels across various parts of the field, compaction levels in the grain cart path, and on yield impact.
 - Specific parameters that were measured are compaction levels and the grain cart path through the field.
 - Yield impact will be the toughest to measure because there are multiple other variables that play a major part.

- Main Objective(s) and Specific Objectives
 - The main objective is to: Create a plan to help reduce compaction from grain carts.
 - Specific objectives include:
 - (1) Collect data from grain cart monitors in order to create a map of pathways.
 - Determine methods for gathering customer data according to John Deere and Iowa State University policies.
 - Comply with John Deere and Iowa State University privacy policies.
 - (2) Collect compaction data using a penetrometer.
 - Data will be collected within the wheel track.
 - Control data will also be collected in an area outside of the wheel track.
 - Data will also be collected within various soil conditions.
 - Create a correlation between grain cart paths and compaction data.
 - (3) Create pathway recommendations for growers to minimize compaction.

- Rationale
 The client will have a better understanding of how grain cart traffic in fields affects compaction levels as well as how this problem can be managed. This will be measured by determining how much compaction grain carts cause. In addition, economic impacts will be analyzed to determine if it pays to change the way grain carts are operated.

3 PROJECT PLAN/OUTLINE

A. Methods/Approach
 - Collect soil compaction levels with a penetrometer
 - Centralize field traffic data in SMS or MyJohnDeere Operation Center
 - Correlate compaction levels with the amount of traffic and economic loss
 - Reference Materials
 - The client has provided some reference materials as well as some guidance on sources to reach out to for more information.
 - Data collection
 - The data that will be collected are the compaction levels within the grain cart path and outside path. In order to collect this data, we must also have the grain cart path data.
 - Skills
 - The skills that will be used are program skills with SMS Advanced, My John Deere, and various tracking system monitors such as a John Deere GS3.
 - The classes that are the most useful at this point have been TSM 433, TSM 324, TSM 415, TSM 416, TSM 214, Com St 214, and Eng 302.
 - The materials used from these classes are precision agriculture tools, soil properties knowledge, project planning skills, and business communication skills.
 - Solutions
 - The solution for this project will be evaluated on if the client was criteria were met. The main problem for this project left the solution to be very wide open. Therefore, no exact scale can be used to measure the success of the project.
 - The metric to evaluate solutions will be developed using the client’s requested deliverables and considering their possible benefit to farmers.
B. Results/Deliverables
 o Develop an SOP for grain cart drivers. Set a plan to reduce the area in a field that is run over by equipment. i.e. sizing equipment with the same wheelbase and track width.
 o If compaction data cannot be collected by the time that the ground freezes, then the data will be collected in the spring.
 o The next steps in the project will be the implementation of the SOP in an operation to compare the benefits, continuing with data collection, and continuing with data analysis.

C. Timeline
 • Major Deliverable and Milestone Completion Dates
 o Data Collection-week of 1-12-18
 o Data Analysis-week of 3-23-18
 o Modeling Data for Comparison to Other Published Studies-week of 3-23-18
 o Spring Oral Presentation-week of 4-27-18
 o Spring Final Report-week of 5-4-18

4 BROADER OPPORTUNITY STATEMENT

A. Our project is based on prior knowledge of general farm operation procedures. Therefore, some of the general public may not fully comprehend what we are addressing and just how large of an issue this is for farmers. However, through our explanation and graphical abstract anyone should be able to understand the general objective of our project and the steps that take place for this problem to occur.
B. In the long run, this project will play a role in helping farmers feed the world's growing population. Farms are facing an issue of having to grow food for more people on less land due to urbanization. In order for farmers to combat this issue, we must find ways to help farmers reduce yield loss due to factors that can be prevented or reduced like compaction.
C. Another industry that experiences issues with compaction would be the construction industry. The difference is the construction industry is typically looking to increase compaction by preparing the ground for them to build a road or structure on.
D. The main industry that would benefit from our project would be the agriculture industry. However, the construction business may be able to use some of the information and reverse our findings to benefit them.
E. At this point in time, there is no trend in farmers changing the way they operate to manage compaction differently than they have in the last few decades.
F. There have been many studies conducted on soil compaction and its effect on the soil and future yields. However, from our knowledge, nobody has put a large amount of effort into coming up with a solution to the problem. Part of this has been nobody has been officially able to measure just how large of an effect soil compaction.
G. At this current time the industry is still not sure exactly how much this issue is costing farmers and therefore, companies are not sure how much they should invest to solve the issue. Soil compaction is a hard issue to measure just how large of an impact it is having on yields. Many other factors could contribute to limiting yields and reducing the farmer's income. If we are able to figure out on average just how much this issue is costing farmers, then we will be able to address how much we should invest in solving this issue. For now, a farmer will invest as much as he thinks it is worth to him since each case will have different results.

5 PROJECT SCOPE

The scope of the project is to analyze the effect of grain cart traffic on fields with an emphasis on yield and profit losses. The start of the project was collecting grain cart pathways through a field as well as the amount of compaction that was caused. The final deliverables will be recommendations for driving grain carts in fields and an economic analysis for the yield loss caused by grain cart compaction. The scope was
changed throughout the beginning of the project as the end deliverables were narrowed down and were driven by both the client and group members.

6 **GRAPHICAL ABSTRACT**

Limit of 4-page maximum.

Department of Agricultural and Biosystems Engineering (abe@iastate.edu) aims to be a premier team serving society through engineering and technology for agriculture, industry and living systems. ABE welcomes opportunities to discover and improve new technologies for all stakeholders. 4
7 REFERENCES

Appendix