11-30-2018

Improvement of Moulder Uptime

Kritika Chopra
Iowa State University, kchopra@iastate.edu

Layne McMahon
Iowa State University, lmcmahon@iastate.edu

Payton Stadtlander
Iowa State University, pjs@iastate.edu

Trevor Sorensen
Iowa State University, trevsore@iastate.edu

Follow this and additional works at: https://lib.dr.iastate.edu/tsm415

Part of the Bioresource and Agricultural Engineering Commons, and the Industrial Technology Commons

Recommended Citation
Chopra, Kritika; McMahon, Layne; Stadtlander, Payton; and Sorensen, Trevor, "Improvement of Moulder Uptime" (2018). TSM 415 Technology Capstone Posters. 32.
https://lib.dr.iastate.edu/tsm415/32

This Poster is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in TSM 415 Technology Capstone Posters by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Improvement of Moulder Uptime

Client: Pella Corporation, Pella, Iowa

Problem Statement
• A cell that consists of 2 moulders, an electronic press, and a robot is not meeting the efficiency and uptime goals that Pella would desire.

Objectives
• Increase the efficiency of the process by 30%
• More consistent production output
• Identify Value Add vs. Non-Value of time

Constraints
• No added operators
• Maintain standards of glue weight and cook time
• Budget: < $1,000
• Cannot change conveyor or robot speed

Scope
• Identify the problem
• Calculate data
• Research potential solutions
• Propose ideas
• Implement solutions

Methods
• Root Cause Analysis
• Fishbone diagram
• Pareto Chart
• Process Map
• Survey Operators
• Time Studies

Proposed Solutions
• Implement a lighting system for operators
• Improve or lengthen loading tables
• Change process of steps or order of tasks

Major Outcomes
• Reduction in overtime hours
• Increase output of product
• Simplify work for operators

Benefit to Client
• Prevent unwanted downtime
• Adaptability to train new operators

Acknowledgements: Authors are grateful to Jason Vander Werff & Matt Miller for the opportunity to work on this project. Project was co-funded by the differential tuition.