DNA Sequence and Comparative Genomics of pAPEC-O2-R, an Avian Pathogenic Escherichia coli Transmissible R Plasmid

Thumbnail Image
Date
2005-11-01
Authors
Johnson, Timothy
Siek, Kylie
Johnson, Sara
Nolan, Lisa
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Nolan, Lisa
Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Veterinary Microbiology and Preventive Medicine
Our faculty promote the understanding of causes of infectious disease in animals and the mechanisms by which diseases develop at the organismal, cellular and molecular levels. Veterinary microbiology also includes research on the interaction of pathogenic and symbiotic microbes with their hosts and the host response to infection.
Journal Issue
Is Version Of
Versions
Series
Department
Veterinary Microbiology and Preventive Medicine
Abstract

In this study, a 101-kb IncF plasmid from an avian pathogenic Escherichia coli(APEC) strain (APEC O2) was sequenced and analyzed, providing the first completed APEC plasmid sequence. This plasmid, pAPEC-O2-R, has functional transfer and antimicrobial resistance-encoding regions. The resistance-encoding region encodes resistance to eight groups of antimicrobial agents, including silver and other heavy metals, quaternary ammonium compounds, tetracycline, sulfonamides, aminoglycosides, trimethoprim, and beta-lactam antimicrobial agents. This region of the plasmid is unique among previously described IncF plasmids in that it possesses a class 1 integron that harbors three gene cassettes and a heavy metal resistance operon. This region spans 33 kb and is flanked by the RepFII plasmid replicon and an assortment of plasmid maintenance genes. pAPEC-O2-R also contains a 32-kb transfer region that is nearly identical to that found in the E. coli F plasmid, rendering it transferable by conjugation to plasmid-less strains of bacteria, including an APEC strain, a fecal E. coli strain from an apparently healthy bird, a Salmonella enterica serovar Typhimurium strain, and a uropathogenic E. coli strain from humans. Differences in the G+C contents of individual open reading frames suggest that various regions of pAPEC-O2-R had dissimilar origins. The presence of pAPEC-O2-R-like plasmids that encode resistance to multiple antimicrobial agents and that are readily transmissible from APEC to other bacteria suggests the possibility that such plasmids may serve as a reservoir of resistance genes for other bacteria of animal and human health significance.

Comments

This article is from Antimicrobial Agents and Chemotherapy 49, no. 11 (November 2005): 4681–4688, doi:10.1128/AAC.49.11.4681-4688.2005.

Description
Keywords
Citation
DOI
Copyright
Sat Jan 01 00:00:00 UTC 2005
Collections