Housing Recovery after Disasters: Primary versus Seasonal/Vacation Housing Markets in Coastal Communities

Sara Hamideh
Iowa State University, shamideh@iastate.edu

Walter G. Peacock
Texas A&M University

Shannon Van Zandt
Texas A&M University

Follow this and additional works at: https://lib.dr.iastate.edu/communityplanning_pubs
Part of the _Emergency and Disaster Management Commons_, and the _Infrastructure Commons_

The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/communityplanning_pubs/33. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
Housing Recovery after Disasters: Primary versus Seasonal/Vacation Housing Markets in Coastal Communities

Abstract
Recovery of seasonal housing after disasters is driven by different types of decisions and resource streams than those of year-round homes. Given the importance of seasonal rentals in the economy of coastal and particularly island communities, understanding the levels and recovery trajectories of seasonal housing may inform overall recovery expectations. The authors report findings from an empirical study of impact and recovery trajectories for owner-occupied and rental single-family housing in housing sub-market areas in Galveston, Texas following Hurricane Ike using random effects panel models to predict the parcel-level values over an eight-year period. Divergent impact and recovery trajectories and processes were found when comparing housing in residential markets with those in dynamic versus more languid vacation housing markets. Damage, tenure, minority population, and income all had significant effects on trajectories with varying direction and magnitudes across submarkets. These differences in the mechanisms of submarkets and vulnerability in recovery trajectories of coastal communities highlight the importance of mapping the influential factors in each area to target mitigation and recovery assistance effectively.

Disciplines
Emergency and Disaster Management | Infrastructure

Comments
This manuscript is published as Hamideh, S., Peacock, W.G. and Van Zandt, S. 2018. Housing Recovery after Disasters: Primary versus Seasonal/Vacation Housing Markets in Coastal Communities. Natural Hazards Review. Posted with permission.
Recovery of seasonal housing after disasters is driven by different types of decisions and resource streams than those of year-round homes. Given the importance of seasonal rentals in the economy of coastal and particularly island communities, understanding the levels and recovery trajectories of seasonal housing may inform overall recovery expectations. The authors report findings from an empirical study of impact and recovery trajectories for owner-occupied and rental single-family housing in housing sub-market areas in Galveston, Texas following Hurricane Ike using random effects panel models to predict the parcel-level values over an eight-year period. Divergent impact and recovery trajectories and processes were found when comparing housing in residential markets with those in dynamic versus more languid vacation housing markets. Damage, tenure, minority population, and income all had significant effects on trajectories with varying direction and magnitudes across submarkets. These differences in the mechanisms of submarkets and vulnerability in recovery trajectories of coastal communities highlight the importance of mapping the influential factors in each area to target mitigation and recovery assistance effectively.
ASCE does not review manuscripts that are being considered elsewhere to include other ASCE Journals and all conference proceedings. Is the article or parts of it being considered for any other publication? If your answer is yes, please explain in the comments box below.

No

Is this article or parts of it already published in print or online in any language? ASCE does not review content already published (see next questions for conference papers and posted theses/dissertations). If your answer is yes, please explain in the comments box below.

No

Has this paper or parts of it been published as a conference proceeding? A conference proceeding may be reviewed for publication only if it has been significantly revised and contains 50% new content. Any content overlap should be reworded and/or properly referenced. If your answer is yes, please explain in the comments box below and be prepared to provide the conference paper.

No

ASCE allows submissions of papers that are based on theses and dissertations so long as the paper has been modified to fit the journal page limits, format, and tailored for the audience. ASCE will consider such papers even if the thesis or dissertation has been posted online provided that the degree-granting institution requires that the thesis or dissertation be posted.

No

Is this paper a derivative of a thesis or dissertation posted or about to be posted on the Internet? If yes, please provide the URL or DOI permalink in the comment box below.

No

Each submission to ASCE must stand on its own and represent significant new information, which may include disproving the work of others. While it is acceptable to build upon one’s own work or replicate other’s work, it is not appropriate to fragment the research to maximize the number of manuscripts or to submit papers that represent very small incremental changes. ASCE may use tools such as CrossCheck, Duplicate Submission Checks, and Google Scholar to verify that submissions are novel. Does the manuscript constitute incremental

No
work (i.e. restating raw data, models, or conclusions from a previously published study)?

Authors are expected to present their papers within the page limitations described in <u><i>Publishing in ASCE Journals: A Guide for Authors</i></u>. Technical papers and Case Studies must not exceed 30 double-spaced manuscript pages, including all figures and tables. Technical notes must not exceed 7 double-spaced manuscript pages. Papers that exceed the limits must be justified. Grossly over-length papers may be returned without review. Does this paper exceed the ASCE length limitations? If yes, please provide justification in the comments box below.

If yes, please provide justification in the comments box below.

All authors listed on the manuscript must have contributed to the study and must approve the current version of the manuscript. Are there any authors on the paper that do not meet these criteria? If the answer is yes, please explain in the comments.

Was this paper previously declined or withdrawn from this or another ASCE journal? If so, please provide the previous manuscript number and explain what you have changed in this current version in the comments box below. You may upload a separate response to reviewers if your comments are extensive.

Companion manuscripts are discouraged as all papers published must be able to...
stand on their own. Justification must be provided to the editor if an author feels as though the work must be presented in two parts and published simultaneously. There is no guarantee that companions will be reviewed by the same reviewers, which complicates the review process, increases the risk for rejection and potentially lengthens the review time. If this is a companion paper, please indicate the part number and provide the title, authors and manuscript number (if available) for the companion papers along with your detailed justification for the editor in the comments box below. If there is no justification provided, or if there is insufficient justification, the papers will be returned without review.

If this manuscript is intended as part of a Special Issue or Collection, please provide the Special Collection title and name of the guest editor in the comments box below.

Recognizing that science and engineering are best served when data are made available during the review and discussion of manuscripts and journal articles, and to allow others to replicate and build on work published in ASCE journals, all reasonable requests by reviewers for materials, data, and associated protocols must be fulfilled. If you are restricted from sharing your data and materials, please explain below.

Papers published in ASCE Journals must make a contribution to the core body of knowledge and to the advancement of the field. Authors must consider how their new knowledge and/or innovations add value to the state of the art and/or state of the practice. Please outline the specific contributions of this research in the comments box.

The picture that emerges with respect to damage and recovery trends in this study are far from simple, but rather present a mosaic, a mosaic that perhaps better captures the complexities of housing recovery facing coastal communities, as well as other vacation communities throughout the United States. While making up a significant tax base for coastal communities, limited resources and the uncertainty around return of investments can potentially delay recovery decisions and outcomes for vacation submarkets. Separating the recovery models based on submarkets enables us to confirm recovery disparities for minority residents and differentiate those disparities from delays in recovery decisions of second-home-owners.

The flat fee for including color figures in print is $800, regardless of the number of color figures. There is no fee for online only color figures. If you decide to not print figures in color, please ensure that the color figures will also make sense when printed in black-and-white, and remove any reference to color in the text. Only one file is accepted for each figure. Do you intend to pay to include color figures in print? If yes, please indicate which figures in the comments box.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

If there is anything else you wish to...
| communicate to the editor of the journal, please do so in this box. | |
Title

HOUSING RECOVERY AFTER DISASTERS: PRIMARY VERSUS SEASONAL/VACATION HOUSING MARKETS IN COASTAL COMMUNITIES

Sara Hamideh, PhD, Iowa State University*
Walter Gillis Peacock, PhD, Texas A&M University
Shannon Van Zandt, PhD, Texas A&M University

Abstract

Recovery of seasonal housing after disasters is driven by different types of decisions and resource streams than those of year-round homes. Given the importance of seasonal rentals in the economy of coastal and particularly island communities, understanding the levels and recovery trajectories of seasonal housing may inform overall recovery expectations. The authors report findings from an empirical study of impact and recovery trajectories for owner-occupied and rental single-family housing in housing sub-market areas in Galveston, Texas following Hurricane Ike using random effects panel models to predict the parcel-level values over an eight-year period. Divergent impact and recovery trajectories and processes were found when comparing housing in residential markets with those in dynamic versus more languid vacation housing markets. Damage, tenure, minority population, and income all had significant effects on trajectories with varying direction and magnitudes across submarkets. These differences in the mechanisms of submarkets and vulnerability in recovery trajectories of coastal communities highlight the importance of mapping the influential factors in each area to target mitigation and recovery assistance effectively.

Keywords: disaster, housing recovery, coastal, vacation submarket

* Corresponding Author. Email: shamideh@iastate.edu
Introduction

Through a comparative analysis of housing recovery across a variety of disasters in the United States (U.S.), Mary Comerio (1998) was one of the first researchers to explicitly examine the uneven rate of recovery among different forms of housing, noting that housing recovery policy in the United States, due to its focus on single-family owner-occupied housing, plays an important role in shaping these inequalities. Comerio drew the research community’s attention to different forms of housing as relevant factors when modeling housing recovery and informing or modifying policy alternatives to address uneven recovery rates. Since then, researchers have explored and documented many factors including damage, tenure, and social vulnerability elements such as race/ethnicity and income. Importantly, while post disaster planning for housing recovery has sometimes been discouraged (Peacock & Girard 1997), there is also a growing literature on the importance of planning for successful and equitable community recovery in general and for housing in particular (Van Zandt and Sloan, 2016; Olshansky, Hopkins, & Johnson, 2012; Federal Emergency Management Agency (FEMA), 2011; Olshansky & Johnson, 2014; Smith, 2011). However, there is clear recognition that planning is falling short in addressing housing recovery beyond owner-occupied single-family (FEMA, 2009; Cantrell, Nahmens, Peavey, Bryant, & Stair, 2012) and better understanding of differential patterns in housing recovery is needed (Zhang & Peacock, 2010; Peacock, Van Zandt, Zhang, & Highfield, 2014; Olshansky & Johnson, 2014).

This work expands recent housing recovery research (e.g. Elliott & Pais, 2006; Elliott, Hite, & Devine, 2009; Zhang & Peacock, 2010; Stevenson, Emrich, Mitchell, & Cutter, 2010; Cutter, Schumann, & Emrich, 2014; Peacock et al., 2014) by examining damage and recovery trajectories for owner-occupied, rental, and vacation housing in a coastal community for an 8-year period through a longitudinal impact-recovery model. Like many coastal communities, Galveston has a
core area consisting of traditional residential housing, including owner-occupied and rental housing, as well as areas with high concentrations of vacation rentals and second homes. The following section reviews the housing recovery literature and introduces the potential significance of housing submarkets within coastal communities to better understand and capture inequalities in housing recovery trajectories. A discussion of Galveston and Hurricane Ike is then provided and the analysis strategy for modeling impact and recovery is introduced. Following the analysis and findings, the implications for recovery planning practice and research are discussed.

Housing Recovery in Coastal Communities

Each year hurricanes pose a significant threat to communities along the U.S. Gulf and Atlantic Coasts. The coastal environments of these communities can shape their economies, especially in terms of tourist activities, introducing unique features to their housing markets. While a conventional housing market consisting of typical owner-occupied and rental housing serves local residents, there is also the potential for a relatively large seasonal housing market. Among the approximately 5,000 communities located in National Oceanic and Atmospheric Administration (NOAA) defined coastal counties in Gulf and Atlantic coast states, the 2015 5-year American Community Survey (ACS) data indicates that a quarter have vacancy rates of 25% or more, with 40% or more of this housing devoted to seasonal-vacation housing. Seasonal housing is a mix of second/vacation homes, which can double as vacation rentals when not in use by owners, and full-time vacation rentals and timeshares. Vacation housing is often concentrated in areas with unique types of amenities and businesses, with little need for schools and with alternative factors shaping sales relative to traditional neighborhoods. Importantly, decisions to repair or rebuild after a disaster may differ for the owners or managers of second and seasonal housing.
vacation homes compared to the owners of conventional housing, influenced in part by the differences in recovery resources available to finance rebuilding and repairs.

Owner-occupants have a range of potential resources for repairs and rebuilding, comprising of personal or household savings, insurance, and loans, including low-interest Small Business Administration (SBA) loans, as well as safety-net programs such as minimum home repair under FEMA’s Individual and Household Program (IHP). Insurance can include private, specific hazard related insurance such as earthquake insurance, or special hazards related insurance such as semi-public/private state managed wind pools and the national flood insurance program. In recent years the Department of Housing and Urban Development (HUD) has also developed a Community Development Block Grant (CDBG) Disaster Recovery Program which, if there is supplemental Congressional funding, can make available flexible grants to help fund private home repair and reconstruction (HUD, 2017; Gotham, 2014; Olshansky & Johnson, 2014).

For the owners of vacation or second homes, the range of recovery sources is more limited. FEMA’s IHP is not available to address even their minimal repairs (FEMA, 2017; SBA, 2017b). These owners will depend on savings, insurance, and other loans including SBA (SBA 2017c). If a business receives an SBA loan, the loan is to replace the property, not for upgrading, with the exception of bringing the property up to existing building codes and mitigation to prevent future damage of up to 20% of the property’s value. In some cases, CDBG recovery funds may be available to address year-around rental housing (HUD, 2017c). The owners of rental properties, along with loan officers or financial backers, are making business decisions regarding anticipated future earnings versus the costs of repair or reconstruction. The nature of these decisions may differ based on target markets – seasonal tourists versus year-round residents – and the uncertainty of whether or not both will return. Within each of these target populations there are
various strata from low- to higher-income households that may modify the decision of
owners/managers to repair/rebuild. For example, the literature suggests a tendency for the
owners of year-round rentals, once repaired, to increase rents, targeting higher-income renters,
perhaps in the hopes of recouping reinvestments more quickly (Quarantelli, 1982; Drabek &
Key, 1984; Morrow & Peacock, 1997; Morrow & Enarson, 1997; Bolin & Stanford, 1998). Such
decisions may reduce the availability of post-disaster rental housing for lower-income
households (Peacock et al., 2014).

The notion of submarkets, their importance for shaping and understanding a housing market, and
their consequences for policy are not new. Megbolugbe et al. (1996:1780), in their discussion of
Grigsby’s (1963) pioneering work, *Housing Markets and Public Policy*, noted that one of the
primary reasons for publishing that research “was to alert planners and public officials that
understanding the operation of housing markets must precede policy prescriptions for housing
ote that housing submarkets arise due to demand-side heterogeneity in preferences and supply-
side differences in housing stock. Furthermore, they and others have noted that understanding
submarkets can improve the effectiveness of public policy and public sector expenditures, tax
incentives, and private sector investments (Bates, 2006; Berry, McGreal, Stevenson, Young, &
Webb, 2003; Goodman & Thibodeau, 2007; Rothenberg, Galster, Butler, & Pitkin, 1991;
Schnare & Struyk, 1976).

Given the importance of understanding housing submarkets for housing issues and policy in
general, it is reasonable to suggest that submarkets may influence variations in housing recovery.
Decisions to rebuild are shaped by homeowner preferences for staying in their homes and the
availability of resource streams for repair and rebuilding. This heterogeneous mix of preferences, rebuilding decisions, varying recovery resources, and uncertain demand suggest mixed recovery trajectories for owner and rental housing stocks between conventional versus seasonal housing submarkets. While not addressing submarkets explicitly, Cutter et al. (2014) used the percent of seasonal rentals at tract level, as an indicator of tenure when modeling individual house recovery following Hurricane Sandy. They concluded that housing in tracts with high percentages of seasonal/second homes recover more slowly during the first 6 months, but showed no consequence by a year after the storm. This paper directly assesses variations in impact and recovery between seasonal and more traditional housing markets.

Models of housing recovery have found that other factors such as race/ethnicity and income have important implications for access to resources and can be related to another critical factor shaping recovery—levels of damage. Unsurprisingly, the level of damage sustained by homes has significant debilitating effects on both short and long-term recovery (Zhang & Peacock, 2010; Peacock et al., 2014). However, damage levels are a function of the hazard agent itself and are related to housing conditions associated with housing type and tenure (Maly & Shiozaki, 2012) neighborhood characteristics such as income and race/ethnicity (Bolin, 1982 & 1985; Bolin & Bolton, 1983 and 1986; Peacock & Girard, 1997; Van Zandt, Peacock, Henry, Grover, Highfield, & Brody, 2012; Gotham, 2014; Highfield, Peacock, & Van Zandt, 2014; Peacock et al., 2014). This relationship between high levels of damage and social vulnerability factors results from filtering (Grigsby, 1963; Myers, 1975) whereby older, lower valued, and poorer quality homes often house low-income and minority populations (Van Zandt et al., 2012; Peacock et al., 2014). Consequently, the physical and social concentration of damage sets the stage for very different recovery trajectories for housing in lower-income and minority
neighborhoods (Chang, 2010; Comerio, 1997; Green, Bates, & Smyth, 2007; Green & Olshansky, 2012; Zhang, 2012).

The few systematic empirical studies on long-term housing recovery have found that rental housing, housing with higher levels of damage, and housing in low-income and minority neighborhoods have significantly slower recovery trajectories (Lu, Peacock, Zhang, & Dash 2007a & 2007b; Zhang & Peacock, 2010; Peacock et al., 2014). One reason for such disparity is that the current disaster assistance programs in the U.S. continue to favor single-family homeowners (Bolin 1993; Comerio 1997 & 1998; Bolin and Stanford 1998). More recently, rental housing recovery was found to be slower after Katrina where assistance programs for landlords and renters appeared to be less aggressive (Vigdor, 2008). Since SBA loans are not grants, lower income areas are likely to be underserved by them (Kamel & Loukaitou-Sideris 2004). Insurance generally favors higher income households, and insurance redlining can often leave minority households without sufficient insurance due to under-compensation or bankruptcy by marginal companies (Peacock & Girard, 1997; Scales, 2006; Bates & Green 2009). When analyzing recovery trajectories, these factors will be considered in the assessment of submarket consequences.

Hurricane Ike and Galveston

Hurricane Ike crossed between Galveston Island and Bolivar Peninsula (see Figure 1) on the morning of September 13, 2008 as a Category 2 storm, causing $29.5 billion in damage to the Houston-Galveston area, making it one of the costliest storms in U.S. history (Berg, 2009). Galveston’s core was protected by the seawall, erected after the deadly 1900 storm but it was nevertheless inundated from the bay side with 3 to 4.5 meter (10 to 15 feet) destructive waves. Damage to residential structures on Bolivar was three times higher than levels recorded on the
island. Residential damage was more variable on the island, with higher levels occurring outside
the seawall and among homes closer to the bay side (Highfield et al., 2014).

The 16-kilometer (10-mile) long, 5-meter (17 feet) high seawall has not only protected
residential structures on Galveston during many storms, it has also shaped development and
ultimately residential versus seasonal housing markets. The vast majority of Galveston’s
residential housing has historically been and remains behind the seawall in its urban core. Yet
increasing development pressures, particularly for vacation housing, has expanded development
outside the seawall toward what is termed the East and particularly the West ends of the island.
Tourism related to its beaches and Galveston’s historic homes, seawall, and business district (the
Strand) is its fastest growing industry (Angelou Economics, 2008; Gulf & South Atlantic
Fisheries Foundation, 2010). Despite the higher risks of storm damage and constant erosion on
the West End beyond the seawall, the city has subsidized development through tax-increment
reinvestment zones and creating a favorable environment for builders/developers (Beeton, 2008).
Development on Bolivar Peninsula has been much more limited historically due to its relative
isolation and dependence on ferry service from Galveston Island.

The housing market literature has for long debated how best to measure housing markets and
submarkets (Bates, 2006; Bourassa, Hamelink, Hoesli, & MacGregor, 1999) ranging from
segmentation assessments based on housing attributes such as price or size (Goodman &
Thibodeau, 2007; Adair, Berry, & McGreal, 1996; Plam, 1978), population or demand attributes
such as race or income (Schnare & Struyk, 1976; Adair et al., 1996; Palm, 1978; Watkins, 2001),
to spatial assessments based on census units, zip codes, or physical boundaries (Bourassa,
Hoesli, & Peng, 2003; Goodman & Thibodeau, 2003, 2007), or combinations of these (Tu, 1997;
Watkins, 2001). For this research the issue is to identify areas where traditional residential versus seasonal housing are dominant enough to assert their salience in shaping rebuilding decisions and recovery resources. To identify these submarkets in Galveston, ACS tract data for 2005-2009 were employed. These ACS period data are less than optimal because 15 of the 60 months fall after Hurricane Ike. Unfortunately, three-year estimates for 2005-07 are not available at the tract or smaller census unit level. Hence, the 2005-09 data are the only available data near the period of interest, 75% of the data for this period were collected prior to Ike and they provide the finest resolution data for capturing housing market variations of interest. There are 23 tracts on Galveston Island and Bolivar Peninsula and four had high concentrations of 50% or more of vacant housing devoted to seasonal, recreational, or occasional use. These tracts are consistent with locally-identified vacation areas on Galveston Island, the West End (two tracts) and the East End (one tract), and the Bolivar peninsula (one tract). As shown in Figure 1, all vacation areas are outside the urban core and its seawall.

Table 1 displays housing unit characteristics for these areas. The urban core includes a majority, 73.0%, of Galveston’s housing units with 33.3% single-family owner-occupied and a mixture of single-family, duplexes, and multifamily devoted to rental housing at 41.9%. The remaining, 24.9%, is vacant, with the majority for rent or sale or transitioning between renters or owners, and only 16.8% for seasonal vacation use. The only similarity between the urban core and the island’s vacation area is that 30.0% of housing is owner-occupied. However, only 15.4% is rental in the island’s seasonal vacation area with the majority, 55%, of housing vacant and over 72.1% of this vacant housing is for seasonal vacation use. The average median value of owner-occupied housing in the urban core is $122000 ($122K), while in the island vacation area it is higher at $178K. There are important variations in house age, reflecting differences in building codes,
standards, and location that correspond to hazard vulnerability between these markets as well (for a detailed explanation, see Highfield et al., 2014).

We identified two distinct seasonal vacation markets in the study area. The seasonal vacation housing submarket on Galveston Island is more dynamic, upscale, and has experienced more recent growth, while Bolivar’s is more isolated, has experienced limited growth and is less affluent. Both of these areas contrast to the more historical and yet conventional residential housing market in the urban core.

Research question and hypotheses

The primary question motivating this research is whether the specification of residential versus vacation housing submarkets improves the performance of impact-recovery models for Galveston following Hurricane Ike. Based on the literature, there are clear expectations with respect to housing impact and recovery:

Hypothesis 1 (H_1): Higher degrees of damage will slow recovery;

H_2: Owner-occupied housing will suffer less damage;

H_3: Owner-occupied housing will recover more quickly;

H_4: Housing in higher income neighborhoods will suffer less damage;

H_5: Housing in higher income neighborhoods will recover more quickly;

H_6: Housing in neighborhoods with higher minority (Hispanic and non-Hispanic Black) concentrations will suffer more damage.
Hypothesis 7: Housing in neighborhoods with higher minority (Hispanic and non-Hispanic Black) concentrations will recover more slowly.

Data and Analytical Approach

Annual tax assessments for single-family residential structures in Galveston Island and Bolivar Peninsula provide the data for this research. An established literature justifies the use of property assessments to track damage and recovery (Bin & Kruse, 2006; De Silva, Kruse, & Wang 2006; Fujita, 1989; Knaap, 1998; Peacock et al., 2014; Zhang & Peacock, 2010), but this is the first time that an 8-year panel from pre-impact, 2008, through impact, 2009, and recovery years, 2010-2015, has been used to assess long-term recovery. Previous long-term recovery models have only provided 3 years of post-impact data, which was insufficient for many structures to reach restoration levels (Peacock et al., 2014; Zhang & Peacock, 2010). It may appear confusing that 2008 data is the year prior to Hurricane Ike, which hit in mid-September of 2008. Tax appraisals are generally undertaken during the first two quarters of the year and then made official at the end of the year. Hence the 2008 assessment reflects the value of structures generally during the first half to three quarters of 2008, prior to any damage caused by Ike. The 2009 assessment captures the deflated value of homes impacted by Ike. Given that owners were paying property taxes on undamaged structures in 2008, the Galveston appraisal office took steps to inspect structures so that assessments would capture damage, as well as potential repairs, rebuilding, and improvements. Nevertheless, given the timing of appraisals, the assessments are only an approximate assessment of damage and recovery measures. Only single-family structures are employed in this analysis because the data on multifamily structures was incomplete in terms of the number of units in the structure, which therefore precludes an accurate analysis of recovery for different forms of multi-family structures.
Parcel data provide information on house characteristics such as year built, size, and occupancy. Owner-occupancy is based on the homestead exemption, which can only be taken on the primary residence. Structures without a homestead exemption include rentals and second homes. Since parcel data does not provide data on household characteristics, each house is linked to its block group location and assigned 2005-2009 five-year ACS data capturing neighborhood socio-demographic attributes – median household income, percent Hispanic, and non-Hispanic Black. The final dataset includes 186,280 observations comprising 23,285 single-family houses (12,236 (52.5%) urban core, 6,033 (25.9%) Galveston vacation area, and 5,016 (21.5%) Bolivar vacation market) with eight points in time for each structure.

The analysis strategy employed in this research develops statistical models predicting the changing assessed values of single-family homes from a baseline (2008) year, just prior to the hurricane’s potential impact, through impact (2009), and into post-impact or what is generally referred to as the recovery period (2010-15). Hence, we refer to our models as impact-recovery models because they model housing from an initial pre-impact state, through impact, and into a “recovery” period. Specifically, we employ random effects panel models predicting the natural log of assessed values for each structure over an eight-year period. The theoretical literature posits and the empirical literature has found that a number of time-invariant factors (i.e., social vulnerability and socioeconomic factors) across residential parcels have influence on disaster impact and recovery. Random effects models allow for the inclusion and assessment of both time invariant and variant factors and hence are employed for this analysis. The basic impact-recovery model is specified as follows:

\[\ln HV_{it} = \beta_0 + \sum_{T=1}^{7} \delta_T Y_{rt} + \sum_{k=1}^{2} \beta_k C_{it} + \beta_3 D_{mt} + \sum_{j=1}^{4} \beta_j X_{jt} + \gamma_{it} \]
Where \(\ln HV_{it}\) is the natural log of assessed value for each single-family house \(i\) for each year \(t\).

The intercept, \(\beta_0\) is the estimated average logged structure value in the base year, 2008, when other variables, are at zero and \(Yr_{it}\) is a series of seven dummy variables for each year following the base year. Hence, \(\delta_T\) represents the difference in the average structure value from the base year, controlling for other factors, through the impact and recovery period. \(C_{it}\) represents two control variables (house age and size) and \(\beta_k\) captures their effects, net of other factors, where age is anticipated to have a negative effect and size a positive effect. \(Dm_{it}\) is relative damage, the percent assessed value loss due to Ike’s impact, and its coefficient, \(\beta_3\), captures the effect of damage. \(X_{it}\) represents four key independent variables (owner-occupied dummy, median income, percent Hispanic, and percent non-Hispanic Black) and the \(\beta_j\)'s represent their individual effects, while \(\gamma_{it}\) is a composite error term. In addition to the base model, a more elaborate random effects model is employed that allows the effects of the key independent variables to vary through time as follows:

\[
\ln HV_{it} = \beta_0 + \sum_{T=2}^{7} \delta_T Yr_{it} + \sum_{k=1}^{2} \beta_k C_{it} + \beta_3 Dm_{it} + \sum_{j=1}^{4} \beta_j X_{it} + \sum_{T=3}^{7} \delta_T(Dm_{it} \times Yr_{it}) + \sum_{T=2}^{7} \delta_T(X_{it} \times Yr_{it}) + \gamma_{it}
\]
This equation has two sets of interaction terms, in which the damage measure, $D_{m_{it}}$, and the four additional key independent variables, X_{it}’s, are multiplied by year dummy variables. Since damage is not registered until 2009, there are interaction terms for six years, but for the other key independent variables interactions change for seven years. Hence the δ_T coefficients capture the net difference in the effects of damage through the recovery period and of other independent variables through the impact and recovery period over their base effects.

Analysis and Findings

The first phase in the analysis determined if individual submarket models (i.e., separate panel models for housing in each submarket) perform better than a pooled model (i.e., a single model with housing from all submarkets combined). A two-step process was employed. Because of space limitations, the models estimated for each step is not presented in the paper, rather their results are discussed. First, two indicator (dummy) variables one for urban core (1 if urban core, 0 otherwise) and the other for Bolivar (1 if Bolivar, 0 otherwise) houses, with island vacation areas as the reference category, were added to the models. Tests for improvement in model performance were significant in both cases (For Model 1 the test for adding the two indicator submarket variables was Wald = 1587.30, $p \leq .0001$ and for Model 2 the test was Wald =1905.13, $p \leq .0001$). Having confirmed initial submarket differences, the second step added interaction terms between submarket indicators and key independent variables in both models. The test results were again significant (Model 1: Wald = 37838.68, $p \leq .0001$; Model 2: Wald = 250000, $p \leq .0001$), indicating that the effects of the independent variables and hence, the processes, varied significantly among submarkets, justifying employing separate submarket impact-recovery models.

[Table 2 here]
Table 2 presents the descriptive statistics for each submarket area. As expected, housing in the island’s vacation area is much younger, 17.7 years compared to the older housing in the urban core averaging 32 years, with Bolivar falling in-between at 21.3 years. Average housing sizes are largest in the island vacation areas, followed by the urban core, and relatively small on Bolivar. Notably, owner-occupancy of single-family houses is only 22.6% on Bolivar, 29.4% in the island vacation area, but over 58% in the urban core. The variations in damage are dramatic. Housing in the island vacation area lost on average 22% of its pre-Ike assessment and 33% in the urban core, but a devastating 72.8% on Bolivar. Not surprisingly, given the aforementioned, median income for the island vacation area was $56.7K, followed by the urban core at $38.7K and Bolivar at $33.3K. The urban core’s neighborhoods are much more diverse with an average of 31.4% Hispanic and 18.4% non-Hispanic Black, while vacation areas are overwhelmingly Anglo, particularly on Bolivar.

[Table 3 here]

Table 3 presents Models 1 and 2 results for each submarket. These random effects panel models are estimated using generalized least squares (GLS) with robust standard errors to address issues of heteroskedasticity and serial auto-correlation. Both models in each set are statistically significant, and tests comparing base and interactive models were significant across all sets, indicating that, as a whole, the effects of key variables change significantly through the damage and recovery periods. The year interaction coefficients capture net changes over baseline effects, but must be combined with base coefficient to capture the overall effects for specific years. While significance test for interaction coefficients assess its significance from zero, the combined effects (baseline + net) were tested for significance employing a Wald test. In light of
these test results, the discussion focuses on similarities and differences revealed by the interactive models across submarkets and the base models are provided for reference.

The Impact of Damage Is Significant and Long Lasting

The effects of damage are profoundly significant across all areas, but particularly hard hitting for housing on Bolivar, given the nature of the storm. The base damage coefficients indicate that every percentage point in damage resulted in appraised values falling -3.2% among houses in the urban core, -5.6% in the island’s vacation area, and -11.6% on Bolivar. (Note, rather than using rule-of-thumb conversions for semi-elasticities \((100*\beta)\), mathematically correct conversions, \((100*(e^{\beta x} - 1))\), are employed throughout our discussions.) The negative consequences continued throughout the recovery years in all areas, but patterns were different. In both the urban core and Bolivar, the year-damage interaction coefficients are positive and growing larger, which, when combined with base effect, indicates the consequences of damage are lessening as recovery proceeds. For example, by the seventh year after the storm on Bolivar, the combined effect of damage was -7.9% (or \(100*(e^{(-.1232 + .0414) - 1})\)) for every percentage point of damage and for housing in the urban core the combined effect was -1.76% (or \(100*(e^{(-.0324 + .0147) - 1})\)). For housing in Galveston island’s vacation areas however, most of the damage-year interaction coefficients are negative, but non-significant, indicating that the negative effects of damage remain more or less constant, ranging between -5.63% to -6.13% and ending, by the seventh year, at -5.83% for every percentage point of damage suffered by the house. Thus, while the patterns are different, the effects of damage were profound for housing across all areas, particularly on the Bolivar peninsula, and the consequences continue to be felt seven years after Ike with more severely damaged homes experiencing greater difficulty reaching restoration levels. These findings are consistent with hypothesis 1.
Owner-occupied Housing Suffered Less Damage and Recovered More Quickly

An interesting, but not surprising pattern is evidenced by the baseline owner-occupied coefficient; owner-occupied housing was appraised significantly higher in the urban core (14.6% higher) and on Bolivar (8.1%), but significantly lower (-6.7%) in island vacation areas than non-owner-occupied housing. This probably reflects the relatively rapid, more recent growth of costlier vacation-seasonal housing in island vacation areas. Hypothesis 2 indicates that owner-occupied housing should have retained larger portions of pre-Ike value, indicating less damage; the results for the urban core and island vacation areas are consistent with this expectation. Specifically, the first owner-occupied-year interaction term is positive and significant in the urban core model indicating a net increase (retention given this was the damage impact year) of just over 7%, yielding a combined positive differential for owner-occupied housing of 22.7%. Among island vacation owner-occupied housing the negative baseline value is reversed by the significant, positive first interaction coefficient, indicating that owner-occupied housing in this area was valued at 4.5% higher after impact. Perhaps because of the catastrophic damage registered among all housing in Bolivar, the first interaction term for owner-occupied housing was not significant, indicating that while owner-occupied housing is still valued higher than other housing, it did not disproportionately retain value above other housing.

In light of recovery policy favoring owner-occupied housing, hypothesis 3 suggests that owner-occupied housing should move more rapidly toward recovery, a pattern consistent in the urban core and Bolivar, and while not as pronounced among homes in island vacation areas, also held there at least initially in the recovery process. In the urban core, the owner-time interaction terms are consistently significant, positive, and generally increasing indicating an increasing gap as owner-occupied housing substantially recovered faster relative to other forms of housing. Indeed,
in the impact year owner-occupied housing in the core is 22.7% higher than other housing, grows to 27.8% two years after, 33.3% four years after, and is 38.4% higher by the sixth year and maintain that differential in the last year. There is a delay among Bolivar’s owner-occupied houses, in that it is not until the fourth year after Ike that differentials are registered. However, by the fourth year, the combined effect has owner-occupied housing valued at 42.2% higher than other housing, growing to 56.4% by year-6 and ending at 54% by year-7. In island vacation areas owner occupied housing makes a significant positive jump of 4.5% (or 100*($e^{(-0.0691733 + 0.1136285)}-1)$) above other housing in the first recovery year, particularly given the negative baseline value, but this gain appears to dissipate the next year. In the third year after Ike owner-occupied homes were again valued 7.5% higher than other housing, but this differential too dissipates in the remaining years. Nevertheless, owner-occupied housing does make gains relative to other housing in the recovery period in Island vacation areas and never again goes below valuations of other types of housing during the recovery period following Ike. On the whole, these results are consistent with hypothesis 3.

The Impacts of Neighborhood Income Are Consistent with Expectations in Traditional Residential Areas, but Divergent in Vacation Home Areas

In the urban core, in the base year assessed values of houses in higher income neighborhoods were higher. The significant positive base year coefficient indicates that assessments were .25% higher per $1,000 in median household income. The significant positive income-year 1 interaction indicates that, consistent with hypothesis 4, housing in higher income neighborhoods retained an additional .34% of their value per thousand dollars, meaning they experienced significantly less damage than homes in lower income areas. Consistent with hypothesis 5, the significant and positive income-year coefficients throughout the recovery period indicate higher
recovery rates for housing in higher income neighborhoods. These gains are particularly strong through the third year after Ike, where the combined effect is .84% per thousand dollars; they remain relatively stable the 4th-6th years and by the seventh year assessed values were .71% higher per thousand dollars in median household income.

The income effects are completely different in the island and Bolivar vacation areas. While the baseline coefficient is non-significant, indicating that housing values are not dependent on neighborhood income prior to Ike in island vacation areas, the significant negative income-year interaction indicates that housing in higher income neighborhoods suffered greater relative damage. Furthermore, all subsequent interaction terms are significant and negative, indicating that housing in richer neighborhoods was slower in the recovery process. The negative combined effect of income increased steadily peaking in the fifth year after Ike, at -1.2% per thousand and remained essentially stable afterward. A similar, but stronger pattern is evident on Bolivar. The baseline coefficient indicates that assessments were lower, at -4.8% per $1,000 in median income and the gap widened considerably in the impact year, with the combined effect rising to -25.9% (or 100*(e^(-0.0493 -0.250)) -1)) per $1,000. In the subsequent years this differential grew rapidly reaching -54.0% per $1,000, by the seventh year. These findings suggest that housing in wealthier neighborhoods of predominantly vacation areas suffered more damage and their recovery progressed more slowly. Clearly, the results for the urban core are consistent with the expectations of hypotheses 4 and 5, however the results for the island vacation area and particularly for Bolivar are not.
The findings for Neighborhood Minority Composition Are Mixed with Respect to Expectations across Submarket Areas

As would be expected given the housing literature, single-family housing in traditional residential urban core neighborhoods with higher percentages of minority populations had lower assessed values. Baseline coefficients indicate that assessments were -0.44% and -0.60% lower for every percentage point increase in neighborhood Hispanic and non-Hispanic Black population respectively. However, unexpectedly subsequent Black and Hispanic year interaction terms are all significant and positive indicating that minority areas did not suffer disproportionate losses nor did they experience relatively slower recovery trajectories. The net effects however result in somewhat divergent patterns. With respect to non-Hispanic Black composition, the positive Black-year interaction terms consistently cancel-out the negative baseline effect, indicating no differentials in damage or recovery associated with non-Hispanic Black neighborhood composition. In other words, housing located in neighborhoods with higher concentrations of non-Hispanic Blacks, did not suffer higher levels of damage nor experienced slower recovery rates in Galveston’s urban core. Indeed, initial differences in housing assessments due to non-Hispanic Black composition are not evident throughout the recovery period, although a marginally significant negative combined effect (-.18%) in 2015 suggest that racial differences might be reemerging. Houses in neighborhoods with higher proportions of Hispanics suffered less relative damage as well. The significant Hispanic-year1 coefficient suggests a reduction of the initial baseline differential in assessments associated with neighborhood Hispanic composition; hence, less relative losses for housing in these areas. Indeed, the combined significant effect of the Hispanic baseline and Hispanic-year1 interaction suggests a -14% (or 100*(e (0.044 + 0.030) - 1)) drop in assessed values for every percentage point
increase in Hispanic population in the impact year. This is significantly less than the initial baseline differential of -.44% per percentage point. Additionally, the positive Hispanic-year interaction terms for year-2 through year-7 indicate that housing in neighborhoods with higher concentrations of Hispanics made net gains, indicating relatively higher recovery rates. However, the positive Hispanic-year interaction coefficients do not cancel out the initial negative baseline effect in post-Ike years two, four, six, and seven, yielding significant negative combined effects ranging from -0.08% to -0.13% per percentage Hispanic. While relatively small, given high concentrations of Hispanics in some neighborhoods, these differentials could represent as much as a 10% lower assessment value. Thus, despite the continued lower assessments in neighborhoods with higher concentrations of Hispanics, on the whole, we did not see higher relative losses or slower recovery rates for areas with higher concentrations of minorities in Galveston’s traditional housing market, the urban core. In the urban core, the findings are not supportive of Hypotheses 6 or 7.

The effects of minority populations are mixed in vacation home areas of Galveston Island and Bolivar. In the island’s vacation area, the baseline coefficient for Hispanic is not significant, indicating no initial differences in the assessments of housing associated with higher concentration of Hispanics. Additionally, the significant, positive Hispanic-year interaction coefficients through the impact and recovery period again indicates that single-family houses in Hispanic neighborhoods experienced smaller relative losses and fared better during recovery. Indeed, by the seventh year the significant combined effect indicates that housing is assessed at 4.5% \(100^*\left(e^{0.006 + 0.0437} - 1\right)\) higher per percentage point of Hispanic population in Galveston island’s vacation neighborhoods. A very different picture emerges for non-Hispanic Black composition. The significant baseline Black coefficient is negative, indicating that housing
assessments were -1.1% lower with every percentage point of non-Hispanic Black in the island vacation neighborhoods. These houses also lost disproportionally due to Ike’s impact, falling an additional -2.2% per percentage point Black population, yielding a combined effect of -3.3% in the impact year. Furthermore housing recovery was slower consistently falling behind. For the first three recovery years the combined deficient was significant at -5.3% per percentage point ending at -4.8% per non-Hispanic Black percentage in 2015. Clearly, the results for Galveston island’s vacation neighborhoods with higher concentrations of non-Hispanic Black populations is consistent with hypotheses 6 and 7, while those for Hispanic neighborhoods are not.

Bolivar has no Black population, nonetheless the finding for neighborhoods with higher concentrations of Hispanics are inconsistent with hypothesis 6, but consistent with 7. On Bolivar, houses in neighborhoods with higher Hispanic percentages had slightly lower values before Ike with assessments a -.81% per percentage point of Hispanics. However, the significant Hispanic-year1 interaction coefficient indicates that houses in these neighborhoods suffered significantly lower relative damage generating a surprisingly positive combined effect of 3.4% (100*(e (-.0081+.0411)-1)) for every percentage point Hispanic. However, with the exception of the second year after Ike, all subsequent Hispanic-time interaction terms are negative and significant, indicating slower recovery. Indeed, by year 3 (2010), the combined negative effects were -2.4% (100*(e (-.0081-.0159)-1)) and became significantly more negative reaching a maximum of -7.5% (100*(e (-0.0081-.0701)-1)) by 2015. On Bolivar the findings are therefore inconsistent with respect to Hypothesis 6, but supportive of Hypothesis 7.

Discussion

The picture that emerges from the single-family housing impact-recovery analyses for Galveston’s residential and vacation areas is far from simple. There clearly are quite divergent impacts and
recovery trajectories when comparing housing in Galveston’s traditional residential market with those of the more dynamic vacation area on Galveston Island and Bolivar’s more staid (slower growing and older housing) vacation area. To facilitate discussion, the findings with respect to the hypotheses are summarized in Table 4 and a series of figures are offered to facilitate a visual interpretation of some results. The figures present predicted results derived from the full models computed by employing mean values for housing in each sub-market area (see Table 2) and a set of relevant values for variables under consideration. To further ease interpretation and comparison across areas and through time, predicted values were exponentiated and indexed relative to predicted baseline values (2008). Hence, trajectory plots begin at 1; values below 1 indicate assessments below 2008 values reflecting loss or failure to recover, values at 1 reflect restoration to baseline assessments, and values above 1 reflect recovery or gains above restoration levels.

As noted above, damage had significant, long-lasting negative consequences and the findings were consistent with H_1 across all areas (see Table 4, first row). However, the magnitudes were quite varied with profound, long-lasting negative consequences in Bolivar, lower but still substantial negative consequences for housing in island vacation areas, and even lower, diminishing, but still significantly negative consequences in the urban core. The consequences and differences are clearly evident in the trajectory lines for three levels of damage (30%, 60%, and 90%) in each area presented in Figure 2. Comparing the drops for respective damage levels across each area, it is clear that there are steeper drops in the vacation areas and these areas don’t see the rapid positive bounces seen in the urban core in 2010. Indeed, housing suffering 30% damage levels in the core reach restoration levels by 2012. These differences may well reflect the very different array and levels of recovery resources open to more traditional residential homes dominating the urban core,
versus seasonal, second, and occasional housing dominating vacation areas. The nature of the
decisions to repair and rebuild for these different forms of housing, particularly with much higher
levels of damage may also be playing a role in the very flat trajectories for severely damaged
structures in vacation areas as well. It should be noted that while these damage levels were present
in all areas, as seen in Table 2, the average damage levels were actually much lower among island
vacation housing (22.6%), hence the typical trajectories are shallower and reach restoration levels
more quickly. On the other hand, the average damage levels on Bolivar (72.8%) fell between the
60% and 90% levels; hence, the dramatic steep falls and flat trajectories were much more
characteristic of a typical residential neighborhood.

Hypotheses with respect to owner-occupied houses (rows 2 and 3, Table 4) suffering less damage
(H2) and recovering more quickly (H3) net of other factors, were supported, with the exception of
damage differentials among Bolivar’s single-family housing. This exception is likely due to the
devastating levels of damage experienced by all housing on the peninsula. The panels in Figure 3,
clearly capture the damage differentials in the urban core and island vacation areas. The differential
recovery trajectories are most easily seen in both the urban core and island vacation areas, where
owner-occupied housing rebounds much more quickly, with the growing gap particularly evident
in the urban core. The significant gap in recovery trajectories are even evident in the Bolivar
vacation area despite the devastation experienced there.

In addition to the different consequences of damage seen between Galveston’s residential housing
in the urban core compared to housing in vacation areas, the findings with respect to neighborhood
income were also different. As seen in Table 4, hypothesized expectations for housing in higher income neighborhoods to suffer less damage (H_4) and recover more quickly (H_5) found strong support in the urban core, but were rejected in both vacation areas. Figure 4 displays the impact-recovery trajectories for housing in neighborhoods varying by median household income for each area. The income ranges were limited for Bolivar; consequently, only two sets of predicted values, at 30K and 35K, are presented, along with the more extend ranges possible in urban core and island vacation areas. The differences are most evident when comparing housing in urban core versus island vacation areas. In the urban core, the upper trend line reflecting lower impact and more rapid and higher levels of recovery is for housing in higher median income (70K) neighborhoods, while the lowest line representing higher impact, and the slowest and lowest levels of recovery is for housing in the lowest median income (30K) neighborhoods. The other lines fall between these extremes in order. However, in island vacation areas, the trend lines appear in opposite order. Housing in the lowest income neighborhoods (30K) are represented by the upper trend line, and remaining trend lines fall in opposite order with housing in highest median income areas (70K) suffering higher impacts and recovering slower and at lower levels. While only two sets of predictions were possible for Bolivar, similar to island vacation areas, the upper trend line is for housing in the lowest median income level (30K). Tests for non-linear income effects that may have accounted for this reversal were not significant.

Two plausible explanations for the opposite findings with respect to income might be related to Galveston’s unique development patterns between its urban core and vacation areas and a specification issue stemming from using census data to capture household characteristics. Galveston, as noted above, has more or less clearly defined residential and vacation areas. The former is located in the historical core of the community, to a large extent behind its historic
seawall, with historic and higher income housing located on land elevated behind and closer to the seawall. Many lower income areas are located closer to the bay side of the island that were not as elevated and were subject to higher levels of flooding as Ike’s surge came around the island from the bay side. Hence, these factors result in higher income areas experiencing less damage, and given normal recovery processes for single-family housing, homes in higher income areas recovered more quickly. In vacation areas, on the other hand, the goal is to have vacation and second homes as close to the coast as possible, which means higher valued properties potentially with a few wealthier year-round residents were more vulnerable to and suffered higher levels of damage. Housing more distant from the water may well be lower valued and more likely occupied by lower income year-around residents. Hence, the negative relationship with respect to damage implies higher recovery levels for lower income areas, assuming that higher owner occupancy rates means greater access to recovery resources and quicker decisions to rebuild/repair. It is possible that the negative findings for Galveston’s vacation areas are partially a function of employing census data to, in part, capture the household characteristics of housing occupants. In the urban core, census data is likely to better capture the characteristics of full time residents (both renters and owners), while in vacation areas, the correlation is more tenuous because the actual owners of vacation and second homes are not full time residents that would be included in census data. For example, the correlation between appraised housing value and median household income was .37 in the urban core but only .09 in island vacation areas, suggesting this more tenuous relationship between census data and actual occupants/owners of housing in these areas. Future research utilizing primary data on household income, structure specific data on vacation or secondary home status, along with detailed data on proximity to coast and actual flood depths can perhaps address this issues. For now, the theoretical expectations of a negative relationship
between income and impact and a positive relationship between income and recovery only found support in traditional residential areas where year around community residents are likely to be the majority. What is equally clear, however, is that widely different impact and recovery patterns are evident with respect to income when comparing housing located in residential versus vacation areas.

[Figure 5 & 6 about here]

The findings with respect to neighborhood minority concentrations among Galveston’s housing submarkets were perhaps the most surprising and unexpected. The expectations were that housing in neighborhoods with higher minority concentrations would suffer higher levels of damage (H_6) and would recover more slowly (H_7). Since we examined minority concentrations for both Hispanic and non-Hispanic Black composition, the findings for each are presented separately as a set of rows. The results are mixed at best, but on the whole the finding for Hispanic concentrations are strongly negative with respect to the hypotheses, and the fact that hypotheses for both Hispanic and non-Hispanic Blacks are rejected for housing in Galveston’s residential urban core is also a strong negative finding. Figure 5 employs a set of Hispanic concentrations common to all three areas. In both the urban core and island vacation areas, housing in neighborhoods with higher Hispanic concentrations suffered less damage and displayed steeper more positive recovery trajectories. The only finding consistent with the hypothesized expectations for Hispanic concentrations is found in the recovery trajectories on Bolivar, where housing in areas with lower Hispanic concentrations performed significantly better, but that is against a context of simply very, very limited recovery for all housing on Bolivar in the first place. Figure 6 also employs a common set of non-Hispanic Black concentrations for the urban core and island vacation areas. The results for housing in the urban
core, again, run completely counter to the hypotheses in that housing in neighborhoods with higher concentrations of non-Hispanic Blacks suffered lower impacts and display stronger and more positive recovery trajectories. These patterns are however, reverse among housing in island vacation areas where neighborhoods with higher non-Hispanic Blacks suffered disproportionately more negative impacts and display very shallow, almost flat “recovery” trajectories until 2013 or 2014.

The rejection of hypotheses for both Hispanic and non-Hispanic Black neighborhood composition factors in Galveston’s more traditional urban core residential area is particularly intriguing because it runs counter to the literature that has generally focused on typical residential housing markets, not the special case of vacation housing markets. It should be noted that interaction effects between income and neighborhood minority composition, attempting to account for the unanticipated findings with respect to income and minority composition were explored, but did not prove fruitful. Another factor is related to the highly significant, negative, and long lasting consequences of damage and the resulting relatively flat recovery trajectories found throughout the examples displayed in Figures 2-6. In other research that quantitatively examines housing recovery, the trajectories are generally steeper, suggesting trends that are more consistent with expectations that housing will recover in 2 to 5 years (Bin & Kruse, 2006; De Silva, Kruse, & Wang 2006; Zhang & Peacock 2010). However in this research, trajectories reflect a much longer recovery period clearly indicating low levels of reinvestment for the rebuilding and repairs necessary for robust housing recovery. This is perhaps due to the fact that Ike struck in 2008, the peak of our nation’s economic meltdown, but we also know that many households reported having difficulties obtaining insurance settlements because of disagreement as to whether damage was wind or flood related (Hamideh, 2015). Survey work also suggests
that 50% of homeowners did not have flood insurance and many houses had to be elevated to meet flood requirements, substantially adding to rebuilding costs (Van Zandt et al, 2012; Peacock et al 2014 and 2017). The city was able to obtain CDBG-Recovery funding, which must partially target low income households and areas, to directly help homeowners and some rental properties rebuild. The literature also suggests that social capital can be important for long-term housing recovery particularly in the context of relatively low economic capital (Aldrich and Meyer 2015; Aldrich 2012). It may well be that these factors have helped shape the unanticipated findings with respect to both the minority composition and income in the post-Ike housing recovery process.

The discussion above clearly points to fruitful areas of future research and a major limitation in this study as well as most recovery research to date. To more fully understand recovery in general and housing recovery in particular we need to move beyond single case study events and develop relatively large longitudinal datasets that include individual/household level data on recovery resources such as inputs from private and public insurance, aid, grants, and loans from federal, state, and local sources, as well as inputs from social networks (Peacock et al., 2008). Unfortunately, without primary data collection and cooperation from state and federal sources, the development of these datasets will be difficult.

Recommendations and Conclusions

Comparing the drops for respective damage levels across each area, it is clear that vacation areas experienced greater damage, and these areas don’t bounce back as quickly as year-round residential areas. Overall, findings of this study suggest that housing recovery policy for places with a tourist-based economy, with large seasonal submarkets, should take into account the differences in the nature of the decisions to repair and rebuild between owners of year-round and
seasonal homes. Recovery assistance programs for such communities would also benefit from allocating a wider range and higher levels of resources and financing options to support repairs and rebuilding for seasonal, second, and occasional housing. Considering disparate decisions and making resources available are particularly important in order to support recovery of seasonal homes with higher levels of damage in vacation areas because they present very slow recovery trajectories which can hold back recovery of the local economy as well.

Indeed, relatively lower levels of damage among single-family houses in the island vacation areas that were built with stronger building codes demonstrates the effectiveness of mitigation for accelerating recovery. Had damage levels been as high in the island vacation areas, Galveston’s tourist based economy would have been truly devastated, and the slow recovery it experienced may not have happened at all. The overall consequences of damage for recovery across all areas, particularly in the vacation markets where recovery resources are more limited, drives home the need for coastal communities to reduce damage and enhance resilience through stronger building codes, ensuring properties are properly elevated, and enhancing free-board requirements.

The recovery differentials observed between owner-occupied and renter-occupied homes in both year-round and vacation areas are clearly consistent with observations first highlighted by Comerio (1997, 1998) and more recently acknowledged by FEMA (2009 and 2011) that our nation’s recovery policies focus on owner-occupied housing and neglect rental housing. We must add to these failures in single-family rental housing, the delays and recovery failures for multi-family rental housing in general (Bolin and Stratford 1998; Peacock Dash and Zhang 2006; Peacock et al., 2017) and in Galveston following Hurricane Ike (White 2010; Hamideh 2015). Clearly, our nation needs to grapple with the problem of rental housing recovery. Recent changes and added flexibility to HUD’s CDBG-Recovery funding (Olshansky and Johnson, 2014) may provide an
opportunity for local communities to work with HUD to put into place funding mechanisms that
might potentially address part of this issue.

The negative relationship between income and impact and the positive relationship between
income and recovery we found in traditional residential areas highlight a need for income-targeted
housing recovery assistance in areas where year-round residents are the majority in order to address
the needs of lower income households anticipated by our results. However, income may not be the
most effective recovery resource allocation standard for supporting recovery in vacation areas
based on their widely different and unexpected impact and recovery patterns observed with respect
to income.

References

University of Chicago Press.

Behavioral Scientist* 59(2):245-269.

Economics*.

neighborhood boundaries with housing submarkets. *Journal of Planning Education and
Research*, 26:5-17.

NSF Grant SES-0831115. Hazard Reduction and Recovery Center, Texas A&M University.

http://hrrc.arch.tamu.edu/media/cms_page_media/558/RAVON.pdf

Small Business Administration [SBA] (2017a) Types of Disaster Loans.

Small Business Administration [SBA] (2017c) Business Physical Disaster Loans.

Zhang, Y. (2012). Will natural disasters accelerate neighborhood decline? A discrete-time hazard analysis of residential property vacancy and abandonment before and after Hurricane Andrew in

Figure Captions

Figure 1. Vacation homes by census tract
Figure 2. Impact-Recovery Trajectories by Damage Levels
Figure 3. Damage-Recovery Trajectories for Owner-Occupied vs. Other Single Family Housing
Figure 4. Impact-Recovery Trajectories by Neighborhood Median Household Income
Figure 5. Impact-Recovery Trajectories by Neighborhood Hispanic Composition
Figure 6. Impact-Recovery Trajectories by Neighborhood non-Hispanic Black Composition

Tables

Table 1. Weighted Housing Unit Characteristics for Galveston: Residential and Seasonal/Vacation Housing Markets

<table>
<thead>
<tr>
<th></th>
<th>Percent Total Housing Units:</th>
<th>Percent Vacant for Seasonal, Recreational, or Occasional Use</th>
<th>Percent of Housing Units built:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential market:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban Core</td>
<td>33.3</td>
<td>41.9</td>
<td>24.9</td>
</tr>
<tr>
<td>Seasonal vacation market:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galveston Island</td>
<td>30.0</td>
<td>15.4</td>
<td>54.6</td>
</tr>
<tr>
<td>Bolivar Peninsula</td>
<td>22.8</td>
<td>7.5</td>
<td>69.8</td>
</tr>
<tr>
<td>Total</td>
<td>31.6</td>
<td>33.8</td>
<td>34.6</td>
</tr>
</tbody>
</table>

*Estimated housing units: Bolivar 4,408 (10.8%), Island Vacation 6,587 (16.2%), Urban Core 29,655 (73.0%); Number of census tracts: Urban Core 19, Bolivar 1, Island 3. Data from 2005-2009 American Community Study.
Table 2. Descriptive statistics for variables in the panel models

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Data source</th>
<th>Urban Core Mean (SD)</th>
<th>Island Vacation Mean (SD)</th>
<th>Bolivar Vacation Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\ln(AV)_{base}$</td>
<td>Natural log of base year assessed value, 2008</td>
<td>Tax appraisal</td>
<td>11.2137 (.7025)</td>
<td>11.8381 (.6831)</td>
<td>10.9802 (.8884)</td>
</tr>
<tr>
<td>$\ln(AV)_{yr1}$</td>
<td>Natural log, assessed value yr. 1 after Ike 2009</td>
<td></td>
<td>10.6366 (1.3996)</td>
<td>11.3690 (1.7031)</td>
<td>3.9812 (5.1174)</td>
</tr>
<tr>
<td>$\ln(BV)_{yr2}$</td>
<td>Natural log, assessed value yr. 2 after Ike, 2010</td>
<td></td>
<td>10.9662 (1.5793)</td>
<td>11.5296 (1.9169)</td>
<td>4.2758 (5.3371)</td>
</tr>
<tr>
<td>$\ln(BV)_{yr3}$</td>
<td>Natural log, assessed value yr. 3 after Ike, 2011</td>
<td></td>
<td>10.9730 (1.6396)</td>
<td>11.4871 (2.1443)</td>
<td>5.0478 (5.5561)</td>
</tr>
<tr>
<td>$\ln(BV)_{yr4}$</td>
<td>Natural log, assessed value yr. 4 after Ike, 2012</td>
<td></td>
<td>10.9715 (1.6734)</td>
<td>11.5239 (2.1799)</td>
<td>5.5763 (5.6970)</td>
</tr>
<tr>
<td>$\ln(BV)_{yr5}$</td>
<td>Natural log, assessed value yr. 5 after Ike, 2013</td>
<td></td>
<td>10.9849 (1.7068)</td>
<td>11.5742 (2.1931)</td>
<td>5.9686 (5.7221)</td>
</tr>
<tr>
<td>$\ln(BV)_{yr6}$</td>
<td>Natural log, assessed value yr. 6 after Ike, 2014</td>
<td></td>
<td>11.0114 (1.7532)</td>
<td>11.6209 (2.2051)</td>
<td>6.1917 (5.7299)</td>
</tr>
<tr>
<td>$\ln(BV)_{yr7}$</td>
<td>Natural log, assessed value yr. 7 after Ike, 2015</td>
<td></td>
<td>11.1475 (1.8065)</td>
<td>11.7857 (2.2414)</td>
<td>6.5417 (5.7748)</td>
</tr>
<tr>
<td>Age</td>
<td>Home’s age base year</td>
<td>Tax appraisal</td>
<td>31.9942 (9.8310)</td>
<td>17.6676 (9.6041)</td>
<td>21.3004 (11.4060)</td>
</tr>
<tr>
<td>SqM</td>
<td>Square meter</td>
<td></td>
<td>146.5797 (72.2258)</td>
<td>148.2564 (70.4632)</td>
<td>107.2301 (51.3671)</td>
</tr>
<tr>
<td>Own</td>
<td>Owner: 1 = owner-occupied, 0 = otherwise.</td>
<td>Tax appraisal</td>
<td>.5827 (.4931)</td>
<td>.2943 (.4558)</td>
<td>.2266 (.4186)</td>
</tr>
<tr>
<td>Dmg</td>
<td>Percentage appraised value lost</td>
<td>Tax appraisal</td>
<td>33.4007 (24.2568)</td>
<td>22.5529 (20.3498)</td>
<td>72.8360 (43.6046)</td>
</tr>
<tr>
<td>Inc</td>
<td>Median household income (in thousands)</td>
<td>American Community Survey block group</td>
<td>38.6572 (17.9067)</td>
<td>56.7119 (12.0134)</td>
<td>33.2716 (1.3517)</td>
</tr>
<tr>
<td>Hisp</td>
<td>Percent Hispanic</td>
<td></td>
<td>31.4043 (18.3886)</td>
<td>7.2020 (4.6217)</td>
<td>5.3638 (7.0922)</td>
</tr>
<tr>
<td>Blk</td>
<td>Percentage non-Hispanic Black</td>
<td></td>
<td>18.4410 (18.6648)</td>
<td>1.9997 (7.1034)</td>
<td>0</td>
</tr>
</tbody>
</table>

923
Table 3. Panel Models for Each Submarket

<table>
<thead>
<tr>
<th>Year indicator dummies</th>
<th>Urban core</th>
<th>Island Vacation</th>
<th>Bolivar Vacation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post-1988 y. 1</td>
<td>10.705**</td>
<td>11.1225**</td>
<td>28.6760**</td>
</tr>
<tr>
<td>Post-1988 y. 2</td>
<td>0.5187**</td>
<td>0.8410**</td>
<td>13.2943**</td>
</tr>
<tr>
<td>Post-1988 y. 3</td>
<td>0.5438**</td>
<td>-0.0056**</td>
<td>1.7420**</td>
</tr>
<tr>
<td>Post-1988 y. 4</td>
<td>0.5666**</td>
<td>0.0330**</td>
<td>20.9837**</td>
</tr>
<tr>
<td>Post-1988 y. 5</td>
<td>0.6018**</td>
<td>0.0274**</td>
<td>23.8607**</td>
</tr>
<tr>
<td>Post-1988 y. 6</td>
<td>0.6517**</td>
<td>0.0443**</td>
<td>24.7039**</td>
</tr>
<tr>
<td>Post-1988 y. 7</td>
<td>0.8113**</td>
<td>0.2443**</td>
<td>25.7894**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>House characteristics</th>
<th>Urban core</th>
<th>Island Vacation</th>
<th>Bolivar Vacation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>-0.0203**</td>
<td>-0.0202**</td>
<td>-0.0515**</td>
</tr>
<tr>
<td>Square meter</td>
<td>0.0053**</td>
<td>0.0053**</td>
<td>0.0053**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Damage and damage-year dummy interactions</th>
<th>Urban core</th>
<th>Island Vacation</th>
<th>Bolivar Vacation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Damage</td>
<td>-0.0209**</td>
<td>-0.0324**</td>
<td>-0.1011**</td>
</tr>
<tr>
<td>Damage×yr.1</td>
<td>0.0106**</td>
<td>-0.0066**</td>
<td>0.0192**</td>
</tr>
<tr>
<td>Damage×yr.2</td>
<td>0.0110**</td>
<td>-0.0053**</td>
<td>0.0269**</td>
</tr>
<tr>
<td>Damage×yr.3</td>
<td>0.0127**</td>
<td>-0.0023**</td>
<td>0.0337**</td>
</tr>
<tr>
<td>Damage×yr.4</td>
<td>0.0136**</td>
<td>-0.0030**</td>
<td>0.0375**</td>
</tr>
<tr>
<td>Damage×yr.5</td>
<td>0.0147**</td>
<td>-0.0028**</td>
<td>0.0414**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Owner-occupied and Owner-year dummy interactions</th>
<th>Urban core</th>
<th>Island Vacation</th>
<th>Bolivar Vacation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner oc.</td>
<td>0.2605**</td>
<td>0.1366**</td>
<td>-0.0692**</td>
</tr>
<tr>
<td>Owner×yr.1</td>
<td>0.0678**</td>
<td>0.1136**</td>
<td>0.0698**</td>
</tr>
<tr>
<td>Owner×yr.2</td>
<td>0.1085**</td>
<td>0.0706**</td>
<td>0.0219**</td>
</tr>
<tr>
<td>Owner×yr.3</td>
<td>0.1349**</td>
<td>0.1411**</td>
<td>-0.0304**</td>
</tr>
<tr>
<td>Owner×yr.4</td>
<td>0.1509**</td>
<td>0.0856**</td>
<td>0.2734**</td>
</tr>
<tr>
<td>Owner×yr.5</td>
<td>0.1674**</td>
<td>0.0824**</td>
<td>0.2446**</td>
</tr>
<tr>
<td>Owner×yr.6</td>
<td>0.1886**</td>
<td>0.1015**</td>
<td>0.3691**</td>
</tr>
<tr>
<td>Owner×yr.7</td>
<td>0.1747**</td>
<td>0.1003**</td>
<td>0.3532**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Median Household income and Median Income-year interactions</th>
<th>Urban core</th>
<th>Island Vacation</th>
<th>Bolivar Vacation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Med.H.H.Inc.</td>
<td>0.0067**</td>
<td>-0.0007**</td>
<td>-0.5084**</td>
</tr>
<tr>
<td>Med.Inc.×yr.1</td>
<td>0.0034**</td>
<td>-0.0098**</td>
<td>-0.2505**</td>
</tr>
<tr>
<td>Med.Inc.×yr.2</td>
<td>0.0048**</td>
<td>0.0093**</td>
<td>-0.3538**</td>
</tr>
<tr>
<td>Med.Inc.×yr.3</td>
<td>0.0058**</td>
<td>-0.0009**</td>
<td>-0.4767**</td>
</tr>
<tr>
<td>Med.Inc.×yr.4</td>
<td>0.0051**</td>
<td>-0.0087**</td>
<td>-0.5667**</td>
</tr>
<tr>
<td>Med.Inc.×yr.5</td>
<td>0.0050**</td>
<td>-0.0116**</td>
<td>-0.6519**</td>
</tr>
<tr>
<td>Med.Inc.×yr.6</td>
<td>0.0052**</td>
<td>-0.0112**</td>
<td>-0.6766**</td>
</tr>
<tr>
<td>Med.Inc.×yr.7</td>
<td>0.0046**</td>
<td>-0.0109**</td>
<td>-0.7050**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Percent Hispanic and Hispanic-year interactions</th>
<th>Urban core</th>
<th>Island Vacation</th>
<th>Bolivar Vacation</th>
</tr>
</thead>
<tbody>
<tr>
<td>%Hispanic</td>
<td>-0.0015**</td>
<td>0.0385**</td>
<td>-0.0345**</td>
</tr>
<tr>
<td>%Hisp×yr.1</td>
<td>0.0030**</td>
<td>0.0334**</td>
<td>0.0411**</td>
</tr>
<tr>
<td>%Hisp×yr.2</td>
<td>0.0036**</td>
<td>0.0507**</td>
<td>0.0153**</td>
</tr>
<tr>
<td>%Hisp×yr.3</td>
<td>0.0038**</td>
<td>0.0510**</td>
<td>-0.0159**</td>
</tr>
<tr>
<td>%Hisp×yr.4</td>
<td>0.0031**</td>
<td>0.0508**</td>
<td>-0.0384**</td>
</tr>
<tr>
<td>%Hisp×yr.5</td>
<td>0.0035**</td>
<td>0.0447**</td>
<td>-0.0549**</td>
</tr>
<tr>
<td>%Hisp×yr.6</td>
<td>0.0031**</td>
<td>0.0464**</td>
<td>-0.0655**</td>
</tr>
<tr>
<td>%Hisp×yr.7</td>
<td>0.0031**</td>
<td>0.0437**</td>
<td>-0.0701**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neighborhood % non-Hispanic Black</th>
<th>Urban core</th>
<th>Island Vacation</th>
<th>Bolivar Vacation</th>
</tr>
</thead>
<tbody>
<tr>
<td>%N-Hisp. Blk</td>
<td>-0.0009**</td>
<td>-0.0390**</td>
<td>-0.0375**</td>
</tr>
<tr>
<td>%N.H.B.×yr.1</td>
<td>0.0062**</td>
<td>-0.0221**</td>
<td>-0.0175**</td>
</tr>
<tr>
<td>%N.H.B.×yr.2</td>
<td>0.0078**</td>
<td>-0.0307**</td>
<td></td>
</tr>
<tr>
<td>%N.H.B.×yr.3</td>
<td>0.0076**</td>
<td>-0.0323**</td>
<td></td>
</tr>
<tr>
<td>%N.H.B.×yr.4</td>
<td>0.0057**</td>
<td>-0.0355**</td>
<td></td>
</tr>
<tr>
<td>%N.H.B.×yr.5</td>
<td>0.0052**</td>
<td>-0.0348**</td>
<td></td>
</tr>
<tr>
<td>%N.H.B.×yr.6</td>
<td>0.0045**</td>
<td>-0.0366**</td>
<td></td>
</tr>
<tr>
<td>%N.H.B.×yr.7</td>
<td>0.0042**</td>
<td>-0.0375**</td>
<td></td>
</tr>
</tbody>
</table>

R² within 0.0857 0.1063 0.1809 0.1923 0.4980 0.5295
R² between 0.3137 0.3137 0.4618 0.4619 0.6058 0.6060
R² overall 0.2591 0.2641 0.4014 0.4038 0.5655 0.5774

Note: urban core: n=97,888 in 12,236 groups; Island Vacation: n=48,264 in 6,033 groups; Bolivar Vacation: n=40,128 in 5,016 groups. Test for heterogeneous effects: urban core: 546.09**, Island vacation: 367.74**, and Bolivar vacation: 1548.94**; ns: not statistically significant; two-tailed probabilities: * p ≤ .05, ** p ≤ .01; one-tailed: † p ≤ .05.
<table>
<thead>
<tr>
<th>Hypotheses</th>
<th>Urban Core</th>
<th>Island Vacation</th>
<th>Bolivar Vacation</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₁: Higher degrees of damage will slow recovery</td>
<td>Supported: -3.2% per percentage loss initially and -1.8% by 2015</td>
<td>Supported: -5.7% per percentage loss initially, remains constant</td>
<td>Supported: -12.3% per percentage loss initially and still -7.9% by 2015</td>
</tr>
<tr>
<td>H₂: Owner-occupied housing will suffer less damage.</td>
<td>Supported: owner occupied retained more (+7%) of its pre-Ike value.</td>
<td>Supported: owner occupied retained more (+12%) of its pre-Ike value.</td>
<td>Rejected: owner occupied retains baseline edge, but did not suffer less damage.</td>
</tr>
<tr>
<td>H₃: Owner occupied housing will recover more quickly.</td>
<td>Supported: owner occupied housing consistently recovers more quickly, finishing +36.5% above</td>
<td>Supported, marginally: owner occupied housing recover more quickly a year or two afterward but gains dissolved later in the recovery period</td>
<td>Rejected: owner occupied retains baseline edge, but did not suffer less damage.</td>
</tr>
<tr>
<td>H₄: Housing in higher income neighborhoods will suffer less damage.</td>
<td>Supported: housing in higher income neighborhoods suffered less damage</td>
<td>Rejected: housing in higher income neighborhoods suffered higher damage levels</td>
<td>Rejected: housing in higher income neighborhoods suffered higher damage levels</td>
</tr>
<tr>
<td>H₅: Housing in higher income neighborhoods will recovery more quickly</td>
<td>Supported: housing in higher income areas recovered more quickly</td>
<td>Rejected: housing in higher income neighborhoods recovered more slowly</td>
<td>Rejected: housing in higher income neighborhoods recovered more slowly</td>
</tr>
<tr>
<td>H₆a: Housing in neighborhoods with higher Hispanic concentrations will suffer more damage</td>
<td>Rejected: housing in neighborhoods with higher Hispanic concentrations did not suffer relatively higher losses.</td>
<td>Rejected: housing in neighborhoods with higher Hispanic concentrations did not suffer relatively higher losses.</td>
<td>Rejected: housing in neighborhoods with higher Hispanic concentrations did not suffer relatively higher losses.</td>
</tr>
<tr>
<td>H₆b: Housing in neighborhoods with higher non-Hispanic Black concentrations will suffer more damage</td>
<td>Rejected: housing in neighborhoods with higher non-Hispanic Black concentrations made net gains, but total assessed values were still lower.</td>
<td>Rejected: housing in neighborhoods with higher Hispanic concentrations made relative gains during the recovery period.</td>
<td>Supported: by 2010 housing in neighborhoods with higher Hispanic concentrations were consistently slower to recover and fell further behind</td>
</tr>
<tr>
<td>H₇a: Housing in neighborhoods with higher Hispanic concentrations will recover more slowly.</td>
<td>Rejected: housing in neighborhoods with higher Hispanic concentrations made net gains zeroing out differential assessments.</td>
<td>Supported: by 2010 housing in neighborhoods with higher Hispanic concentrations made relative gains during the recovery period.</td>
<td>Not applicable: There is no non-Hispanic Black population on Bolivar.</td>
</tr>
<tr>
<td>H₇b: Housing in neighborhoods with higher non-Hispanic Black concentrations will recover more slowly.</td>
<td>Supported: housing in neighborhoods with higher non-Hispanic Black concentrations made relative gains during the recovery period.</td>
<td>Supported: by 2010 housing in neighborhoods with higher Hispanic concentrations were consistently slower to recover and fell further behind</td>
<td>Not applicable: There is no non-Hispanic Black population on Bolivar.</td>
</tr>
</tbody>
</table>
The predicted values for each figure were generated employing each sub-market model for owner-occupied housing with specified damage levels and submarket specific mean values for other independent variables. Predicted values have been expotentialized and indexed relative to 2008 predicted values.
The predicted values for each figure were generated employing each sub-market model for owner-occupied and other housing and submarket specific mean values for other independent variables. Predicted values have been exponentiated and indexed relative to 2008 predicted values.
The predicted values for each figure were generated employing each sub-market model for owner-occupied housing with specified income levels and submarket specific mean values for other independent variables. Predicted values have been expotentiated and indexed relative to 2008 predicted values.
The predicted values for each figure were generated employing each sub-market model for owner-occupied housing with specified income levels and submarket specific mean values for other independent variables. Predicted values have been exponentiated and indexed relative to 2008 predicted values.
The predicted values for each figure were generated employing each sub-market model for owner-occupied housing with specified income levels and submarket specific mean values for other independent variables. Predicted values have been expotentialized and indexed relative to 2008 predicted values.
I. Authorship Responsibility

To protect the integrity of authorship, only people who have significantly contributed to the research or project and manuscript preparation shall be listed as coauthors. The corresponding author attests to the fact that anyone named as a coauthor has seen the final version of the manuscript and has agreed to its submission for publication. Deceased persons who meet the criteria for coauthorship shall be included, with a footnote reporting date of death. No fictitious name shall be given as an author or coauthor. An author who submits a manuscript for publication accepts responsibility for having properly included all, and only, qualified coauthors.

I, the corresponding author, confirm that the authors listed on the manuscript are aware of their authorship status and qualify to be authors on the manuscript according to the guidelines above.

Sara Hamideh
Print Name

Sara Hamideh
Signature

8/11/2017

Date

II. Originality of Content

ASCE respects the copyright ownership of other publishers. ASCE requires authors to obtain permission from the copyright holder to reproduce any material that (1) they did not create themselves and/or (2) has been previously published, to include the authors' own work for which copyright was transferred to an entity other than ASCE. Each author has a responsibility to identify materials that require permission by including a citation in the figure or table caption or in extracted text. Materials re-used from an open access repository or in the public domain must still include a citation and URL, if applicable. At the time of submission, authors must provide verification that the copyright owner will permit re-use by a commercial publisher in print and electronic forms with worldwide distribution. For Conference Proceeding manuscripts submitted through the ASCE online submission system, authors are asked to verify that they have permission to re-use content where applicable. Written permissions are not required at submission but must be provided to ASCE if requested. Regardless of acceptance, no manuscript or part of a manuscript will be published by ASCE without proper verification of all necessary permissions to re-use. ASCE accepts no responsibility for verifying permissions provided by the author. Any breach of copyright will result in retraction of the published manuscript.

I, the corresponding author, confirm that all of the content, figures (drawings, charts, photographs, etc.), and tables in the submitted work are either original work created by the authors listed on the manuscript or work for which permission to re-use has been obtained from the creator. For any figures, tables, or text blocks exceeding 100 words from a journal article or 500 words from a book, written permission from the copyright holder has been obtained and supplied with the submission.

Sara Hamideh
Print Name

Sara Hamideh
Signature

8/11/2017

Date

III. Copyright Transfer

ASCE requires that authors or their agents assign copyright to ASCE for all original content published by ASCE. The author(s) warrant(s) that the above-cited manuscript is the original work of the author(s) and has never been published in its present form.
The undersigned, with the consent of all authors, hereby transfers, to the extent that there is copyright to be transferred, the exclusive copyright interest in the above-cited manuscript (subsequently called the "work") in this and all subsequent editions of the work (to include closures and errata), and in derivatives, translations, or ancillaries, in English and in foreign translations, in all formats and media of expression now known or later developed, including electronic, to the American Society of Civil Engineers subject to the following:

- The undersigned author and all coauthors retain the right to revise, adapt, prepare derivative works, present orally, or distribute the work, provided that all such use is for the personal noncommercial benefit of the author(s) and is consistent with any prior contractual agreement between the undersigned and/or coauthors and their employer(s).
- No proprietary right other than copyright is claimed by ASCE.
- If the manuscript is not accepted for publication by ASCE or is withdrawn by the author prior to publication (online or in print), this transfer will be null and void.
- Authors may post a PDF of the ASCE-published version of their work on their employers' Intranet with password protection. The following statement must appear with the work: "This material may be downloaded for personal use only. Any other use requires prior permission of the American Society of Civil Engineers."
- Authors may post the final draft of their work on open, unrestricted Internet sites or deposit it in an institutional repository when the draft contains a link to the published version at www.ascelibrary.org. "Final draft" means the version submitted to ASCE after peer review and prior to copyediting or other ASCE production activities; it does not include the copyedited version, the page proof, a PDF, or full-text HTML of the published version.

Exceptions to the Copyright Transfer policy exist in the following circumstances. Check the appropriate box below to indicate whether you are claiming an exception:

☐ U.S. GOVERNMENT EMPLOYEES: Work prepared by U.S. Government employees in their official capacities is not subject to copyright in the United States. Such authors must place their work in the public domain, meaning that it can be freely copied, republished, or redistributed. In order for the work to be placed in the public domain, ALL AUTHORS must be official U.S. Government employees. If at least one author is not a U.S. Government employee, copyright must be transferred to ASCE by that author.

☐ CROWN GOVERNMENT COPYRIGHT: Whereby a work is prepared by officers of the Crown Government in their official capacities, the Crown Government reserves its own copyright under national law. If ALL AUTHORS on the manuscript are Crown Government employees, copyright cannot be transferred to ASCE; however, ASCE is given the following nonexclusive rights: (1) to use, print, and/or publish in any language and any format, print and electronic, the above-mentioned work or any part thereof, provided that the name of the author and the Crown Government affiliation is clearly indicated; (2) to grant the same rights to others to print or publish the work; and (3) to collect royalty fees. ALL AUTHORS must be official Crown Government employees in order to claim this exemption in its entirety. If at least one author is not a Crown Government employee, copyright must be transferred to ASCE by that author.

☐ WORK-FOR-HIRE: Privately employed authors who have prepared works in their official capacity as employees must also transfer copyright to ASCE; however, their employer retains the rights to revise, adapt, prepare derivative works, publish, reprint, reproduce, and distribute the work provided that such use is for the promotion of its business enterprise and does not imply the endorsement of ASCE. In this instance, an authorized agent from the authors' employer must sign the form below.

☐ U.S. GOVERNMENT CONTRACTORS: Work prepared by authors under a contract for the U.S. Government (e.g., U.S. Government labs) may or may not be subject to copyright transfer. Authors must refer to their contractor agreement. For works that qualify as U.S. Government works by a contractor, ASCE acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce this work for U.S. Government purposes only. This policy DOES NOT apply to work created with U.S. Government grants.

I, the corresponding author, acting with consent of all authors listed on the manuscript, hereby transfer copyright or claim exemption to transfer copyright of the work as indicated above to the American Society of Civil Engineers.

[Signature]

Print Name of Author or Agent

[Signature]

Signature of Author of Agent

Date

More information regarding the policies of ASCE can be found at http://www.asce.org/authorsandeditors
October 9, 2017

Dear Editor:

We appreciate the second round of reviews of our manuscript entitled "HOUSING RECOVERY AFTER DISASTERS: PRIMARY VERSUS SEASONAL/VACATION HOUSING MARKETS IN COASTAL COMMUNITIES" by the chief editors and the anonymous reviewer. We have attempted to address each comment and suggestion below following each editor or reviewer’s comments; our responses are indicated in each case by “>>>>” and (in the word version of this letter) by italic font.

Sincerely,

Sara Hamideh, Walter Gillis Peacock, and Shannon Van Zandt

Editorial Coordinator’s Letter:

Dear Dr. HAMIDEH,

Your Technical Paper, listed above, has completed a review for publication in ASCE's Natural Hazards Review. The editor has requested that minor revisions be made based on the reviewers' evaluations (shown at the end of this email) and submitted for re-review by 10-09-2017. This revision will only be seen again by the editor and will not undergo the entire review process.

You can view any reviewers’ attachments by opening the attachments on this email OR by clicking on this link to see them in the system:

. Please note, this link will only work one time.

When preparing the revised manuscript in accordance with the reviewers' concerns and suggestions, be sure to address the following additional corrections, if not already completed:

Please submit the revised manuscript and a detailed response to the reviewers' criticisms by logging onto the editorial management system at http://jrnnheng.edmgr.com/ and clicking on the "Submissions Needing Revision" link.

For your convenience, there is a calendar entry item attached that works with electronic calendars in the iCalendar format (e.g. Outlook, iCal, Google). To use, click to open the attachment, and then save it to your calendar.

Be advised that the editor may request further revision or decline your revised version if all of the reviewers' comments have not been adequately addressed.

Comments from the Editor and Reviewers can be found below.

We look forward to receiving your revised manuscript.

Sincerely,

Candice Gooch

Editorial Coordinator

Reviewers' Questions & Answers:

Reviewers' Questions & Answers:
Reviewer’s Responses to Questions

This manuscript was submitted as a Technical Paper. Does the reviewer think this is the appropriate article type? To see descriptions of the article types, Click Here.

Reviewer #1:

*Yes. The author is using the correct article type.

Reviewers' comments:

Reviewers' comments:

Summary:

Thank you for addressing the reviewers' comments and feedback. The manuscript is certainly improved with these edits and with the additional figures 2-6 and table 4. Reviewer 1 is correct though about the messaging and concluding statements remaining buried in the final section – “Discussion, Recommendations and Conclusions.” Please create a separate “Conclusions” section for the broader message beyond Galveston.

>>> We now offer a separate conclusions and recommendations section after the discussions that addresses this comment and offer several implications and policy recommendations from this study beyond Galveston Island.

REVIEWER #1:

The revised paper addresses many of the concerns expressed in the review.

The table summarizing the results of the various hypotheses is also a good addition and brings out some of the central findings of the research.

While the authors have responded to most of the suggested changes, the revised manuscript still requires either a sub-section or preferably a separate section as the conclusion in which they can specifically address the practical applications and policy implications of the analysis. Currently the recommendations and the discussion of the findings are still lumped together, which detracts or does not do enough justice to the research presented. The paper is very rich in terms of the analysis and making the linkage of how the statistical results can help guide for instance, local, state, and federal policy or the ramifications for these policies, is needed to bring out the value of the findings.

>>> Thank you for this comment. We agree that broader policy implications of our analysis were hidden in the discussion of our detailed analyses. We now offer a separate conclusions and recommendations section in the paper that offers practical applications and policy implications of the analysis we conducted. This section also provides insight on some of the consequences of local and federal housing policies and practices for long term recovery trajectories. Finally, we provided recommendations in that section for supporting and accelerating recovery of vacation versus year-round housing in communities like Galveston with a strong tourist based economy.
Minor issue- there are still a couple of minor errors- these could be addressed during the proofs stage, but it might be better to catch as many as possible.

For instance: line 203 and 204 - should be "in the urban core" and "in the vacation area"

Line 648: "suggests"

Line 655: "events"

>>>> We appreciate this really important recommendation. The minor errors mentioned have been fixed. We also proofread and edited the entire manuscript again to make sure there are no errors left.