Zoonotic Chlamydiae from Mammals

Iowa State University Center for Food Security and Public Health

Follow this and additional works at: http://lib.dr.iastate.edu/cfsph_factsheets

Part of the Animal Diseases Commons, and the Veterinary Infectious Diseases Commons

Recommended Citation
http://lib.dr.iastate.edu/cfsph_factsheets/35

This Report is brought to you for free and open access by the Center for Food Security and Public Health at Iowa State University Digital Repository. It has been accepted for inclusion in Center for Food Security and Public Health Technical Factsheets by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Etiology

The zoonotic chlamydiae with reservoirs in mammals are *Chlamydia abortus*, *Chlamydia felis*, and possibly *Chlamydia pneumoniae*. These organisms are members of the family Chlamydiaceae, an unusual group of obligate intracellular bacteria. The members of this family are considered to be Gram negative, due to their relationships with other Gram negative bacteria, but are difficult to stain with the Gram stain. They have metabolic and structural differences from most bacteria, including a dependence on adenosine triphosphate (ATP) and guanosine triphosphate (GTP) from the host. They cycle through two forms: a metabolically inert, infective elementary body and a metabolically active reticulate body found only inside cells.

Until recently, the Chlamydiaceae contained only a few species: *Chlamydia psittaci*, *Chlamydia trachomatis*, *Chlamydia pneumoniae* and *Chlamydia pecorum*. However, this family has been reorganized, based on analyses of ribosomal RNA. A new genus, *Chlamydophila*, was established, some species were renamed, and some strains of *C. psittaci* and *C. trachomatis* were assigned to new species. Both *Chlamydia* spp. and *Chlamydophila* spp. cause the disease chlamydiosis.

Some of the organisms that cause chlamydiosis are zoonotic:

Chlamydia psittaci (formerly *Chlamydia psittaci*, avian strains) is found in birds and causes psittacosis (avian chlamydiosis). It is responsible for most cases of zoonotic chlamydiosis in humans. This organism is described in a separate outline.

The zoonotic mammalian species, described in this outline, are:

- *Chlamydia abortus* (formerly *Chlamydia psittaci*, mammalian abortion strains or serotype 1),
- *Chlamydia felis* (formerly *Chlamydia psittaci*, feline strains),
- *Chlamydia pneumoniae* (formerly *Chlamydia pneumoniae*). This organism was, until recently, thought to affect only humans. In the last few years, it has been isolated from koalas, horses, amphibians and reptiles. The animal isolates are considered to be potentially zoonotic but this has not yet been demonstrated.

Some of the organisms that cause chlamydiosis are not zoonotic. Briefly, they are:

- *Chlamydia trachomatis* is a human pathogen that causes genitourinary tract infections, trachoma, neonatal conjunctivitis and pneumonia, and some forms of arthritis. It does not affect animals.
- *Chlamydia caviae* (formerly *Chlamydia psittaci*, guinea pig strains) mainly causes conjunctivitis in guinea pigs. *C. caviae* is very host specific; with the exception of a single infection in a gerbil, experimental infections of mice, hamsters, rabbits and gerbils have failed.
- *Chlamydia pecorum* (formerly *Chlamydia pecorum*) causes encephalitis, pneumonia, enteritis, polyarthritis, conjunctivitis and abortions in sheep, goats, cattle and pigs. It can cause genitourinary disease in koalas. Asymptomatic infections are also seen.
- *Chlamydia suis* (formerly porcine *Chlamydia trachomatis*) is found in the intestinal tract of many pigs. It has been associated with conjunctivitis, enteritis and pneumonia in this species.
- *Chlamydia muridarum* (formerly *Chlamydia trachomatis* of mice) is found in mice and guinea pigs.

Geographic Distribution

C. felis and *C. pneumoniae* occur worldwide. *C. abortus* has been reported from most sheep-raising countries but is not found in Australia or New Zealand.

Transmission and Life Cycle

Chlamydiaceae have a unique life cycle involving two forms, an elementary body is smaller, metabolically inert and relatively stable in the environment. *C. abortus*
elementary bodies can remain infective in the environment for several days in typical spring weather, and for months if the temperature is freezing or near freezing. Elementary bodies are taken up by host cells via endocytosis, but remain inside a membrane-bound inclusion body in the cytoplasm. After several hours, the elementary body transforms into a reticulate body.

The reticulate body is metabolically active and divides several times within the inclusion body. Its progeny eventually differentiate into elementary bodies, which are released when the cell disintegrates or the inclusion body fuses with the cell membrane. The reticulate bodies are not infectious.

The zoonotic chlamydiae can be transmitted by ingestion, aerosols, direct inoculation into the eye and possibly venereal transmission. Animals can carry these organisms asymptptomatically.

Pregnant ruminants shed large numbers of C. abortus in the placenta and uterine discharges when they abort or give birth. Many infections occur by ingestion, but aerosol transmission is also possible and recent research suggests that venereal transmission may be important. In addition, C. abortus can be found in the feces and urine of some ruminants, as well as in goats’ milk. Both sheep and goats can be chronic carriers.

C. felis is shed in ocular and nasal secretions. It has also been recovered from various internal organs. Persistent infection of the oviduct has been reported, suggesting that venereal transmission may be possible.

The method of transmission for C. pneumoniae in animals is unknown. In koalas, C. pneumoniae has been isolated from the respiratory tract, the eye and the urogenital tract. In horses, this species has been found only in the respiratory tract.

Disinfection

Chlamydia and *Chlamydophila* spp. are susceptible to most disinfectants and detergents, including a 1:1,000 dilution of quaternary ammonium compounds, 1% sodium hypochlorite, 70% ethanol, glutaraldehyde and formaldehyde. They are resistant to acids and alkali.

Chlamydiae can be destroyed by moist heat (121°C for a minimum of 15 minutes) or dry heat (160-170°C for 1 hour or more).

Infections in Humans

Incubation Period

Zoonotic infections with the mammalian chlamydiae are rare and the incubation period does not seem to be published. For reference, the incubation period for avian chlamydiosis (C. psittaci) in humans is usually 5 to 14 days.
Chlamydioidosis

flourescence and microimmunofluorescence may be available; however, antibody production is variable and often delayed, the tests may not be standardized, and chlamydial species can cross-react in these tests. PCR assays are mainly designed to detect C. trachomatis, but “in-house” PCR to detect other species may be available in some laboratories. Most PCR tests for the former Chlamydia psittaci do not distinguish between Chlamydia psittaci, C. abortus, C. felis and C. caviae.

Chlamydiae can also be isolated in embryonated chicken eggs or cell cultures including McCoy, BGM or BHK cells. Culture requires special facilities and is not available at all laboratories. C. pneumoniae is difficult to culture.

Treatment

Chlamydiosis can be treated with tetracycline, erythromycin or other macrolides, and quinolones. In at least one C. abortus infection, the infant survived when the mother was treated early with erythromycin and the fetus was delivered by caesarian section before 34 weeks of gestation.

Prevention

Pregnant women should avoid contact with pregnant or aborting ruminants and, if possible, sheep or goats in general. Women seem to be susceptible to C. abortus infections at any stage of their pregnancy.

Good hygiene such as hand washing can reduce the risk of transmission of C. felis from symptomatic cats; however, human infections seem to be very rare.

Morbidity and Mortality

Zoonotic chlamydiosis caused by C. abortus or C. felis seems to be rare. Approximately 20 confirmed human abortions caused by C. abortus were documented between 1987 and 2000. Most of these cases were severe and, if untreated, progressed to septicemia.

C. pneumoniae from animals may be zoonotic but this has not been established. Zoonotic transmission of this species may be unimportant, as it is a very common pathogen in humans. Non-zoonotic C. pneumoniae is responsible for 10-15% of all cases of community-acquired pneumonia, bronchitis and sinusitis in humans. It can occur more than once in a lifetime. Seroprevalence increases from 22% of children aged 1 to 4, to 63-79% of adults over 20 years old, and 97% of adults over 60 years old.

Infections in Animals

Species Affected

Chlamydophila abortus often affects sheep and goats, and occasionally deer, cattle or llamas. This species has also been reported from a rabbit, a horse, guinea pigs, mice, green sea turtles and snakes. Chlamydophila felis is normally found in cats. It has also been reported from iguanas. Chlamydophila pneumoniae was, until recently, thought to affect only humans. Since the 1990s, this species has been found in a horse, dogs, koalas, rats, iguanas and frogs.

Incubation Period

In cats, conjunctivitis due to C. felis appears in approximately 3 to 10 days. The incubation period for C. abortus is highly variable. Sheep and goats infected early in gestation abort late in the same gestation, but animals infected late in gestation usually abort late in the following pregnancy. Congenitally infected lambs and kids may abort their first pregnancy.

Clinical Signs

Chlamydophila abortus

C. abortus causes outbreaks of abortions (enzootic abortion) in sheep and goats. An epizootic was also reported in llamas, but only sporadic abortions occur in cattle.

Enzootic abortion is characterized by late term abortions, stillbirths and the birth of weak, low birth weight or premature offspring. A reddish-brown vaginal discharge may be seen for several days after the abortion or parturition but the dam usually remains otherwise healthy. In most ewes, there are no symptoms before the abortion, and post-abortive sickness, retained placentas and metritis are unusual.

Metritis and retained placentas are also uncommon in goats, although they may be more common than in sheep. Occasionally, some affected goats develop a persistent cough, polyarthritis or keratomalacia. In experimentally infected males, C. abortus can cause orchitis, epididymitis and seminal vesiculitis, with decreased fertility or infertility in the flock.

Ruminants can also carry C. abortus asymptomatically. C. abortus has also been isolated from abortions in a horse, a rabbit, guinea pigs and mice.

Chlamydophila felis

C. felis usually causes conjunctivitis in cats. The symptoms often begin in one eye but eventually become bilateral. They typically include blepharospasm, chemosis, congestion and an ocular discharge that may become purulent. Fever usually begins several days after the onset of the ocular signs. The symptoms are generally most severe during the second week of disease and subside over the next 2 to 3 weeks; however, they can persist for longer in some cats. Complications may include vascular keratitis, corneal ulcers, pannus and corneal scarring.

Some cats also develop mild to moderate rhinitis, with serous nasal discharge and sneezing. Pneumonitis is occasionally seen and, in a single case, a Chlamydia spp. was recovered from a cat with peritonitis. Chronic salpingitis and persistent infection of the oviduct have been reported, suggesting that infertility could be a sequela.
Chlamydia pneumoniae

C. pneumoniae has been isolated from asymptomatic koalas as well as from koalas with respiratory disease. The only known equine strain, found in the respiratory tract of a horse, caused no symptoms in experimentally infected horses.

C. abortus, C. felis and C. pneumoniae in reptiles and amphibians

Lethargy, anorexia, suppurative pneumonia, chronic nephritis, hepatitis and increased mortality rates have been reported in amphibians and reptiles affected by _C. abortus, C. pneumoniae_ or _C. felis_. The full spectrum of clinical disease in amphibians and reptiles is unknown.

In a colony of African clawed frogs (_Xenopus tropicalis_), an epizootic of chlamydiosis was characterized by lethargy, sloughing of the skin, edema and a very high mortality rate. On necropsy, there was evidence of hepatitis. It is possible that co-infecting pathogens, including a chytrid fungus, may have played a role in this disease.

Communicability

The zoonotic chlamydiae are readily transmitted between their natural animal hosts. Pregnant ruminants shed large numbers of _C. abortus_ in the placenta and uterine discharges when they abort or give birth, then may excrete decreasing numbers of bacteria for a few weeks. In ewes, shedding occurs from one day before, to 2 to 3 weeks after, an abortion. Goats can begin to shed bacteria more than 2 weeks before an abortion. _C. abortus_ can be found in the reproductive secretions of some ewes for at least 2 to 3 years; in these animals, shedding occurs only for 3 to 4 days around the time of ovulation. _C. abortus_ has also been found in the feces and urine of ruminants, as well as in goats’ milk. _C. felis_ is shed in ocular and nasal secretions, and has been found in the genital tract. In koalas, _C. pneumoniae_ has been isolated from the respiratory tract, the eye and the urogenital tract. In horses, this species has been found only in the respiratory tract.

C. abortus and _C. felis_ may be less readily transmitted to accidental hosts. Although _C. abortus_ and _C. felis_ are widespread in their natural animal hosts, human infections are rare. The mammalian species of chlamydiae do not seem to be readily transmitted to birds under natural conditions.

Diagnostic Tests

Chlamydiosis can be diagnosed by identifying the organisms or their antigens in tissue scrapings/smears, tissue sections and secretions. Chlamydiae can be stained with Machiavello, Giemsa, _Brucella_ differential and modified Ziehl–Neelsen stains. Immunofluorescent or immunoperoxidase staining, and enzyme-linked immunosorbent assays (ELISAs) can detect chlamydial antigens. Most of these tests can identify the organism only as a member of the Chlamydiaceae; they generally cannot identify the species. Human _C. trachomatis_ ELISAs are sometimes used to diagnose _C. abortus_ in ruminants.

In aborting animals, smears can be made from affected chorionic villi or adjacent areas of the placenta. They can also be taken from vaginal swabs of animals that have aborted within the last 24 hours, or the moist fleece of a freshly aborted or stillborn lamb.

C. felis infections in cats can be diagnosed by demonstrating the organism in conjunctival scrapings. The organisms can also be found in lung sections.

Polymerase chain reaction (PCR) assays have been mainly used in research but are beginning to be introduced into diagnostic laboratories. Some PCR tests can identify chlamydial species.

Chlamydiae can also be isolated in embryonated chicken eggs or cell cultures including McCoy, BGM and baby hamster kidney (BHK) cells. Chlamydiae are fragile in the environment; they must be shipped to the laboratory in special transport media and kept cold. _C. abortus_ can be cultured from the placenta, placental membranes, fetal lung or liver, and vaginal swabs. _C. felis_ can be isolated from cases of conjunctivitis, but this is rarely done.

Chlamydiosis can also be diagnosed by serology, preferably using paired sera. Serologic tests include complement fixation, ELISAs and micro-immunofluorescence. In many cases, serologic tests for the chlamydiae are not species-specific. Some Gram-negative bacteria (e.g. _Acinetobacter_) can also cause false-positives. Microimmunofluorescence can be used to distinguish some species, and a competitive ELISA that can distinguish _C. abortus_ and _C. pecorum_ has been published. Serology is rarely used in cats with conjunctivitis.

Complement fixation is used most often in aborting ruminants, particularly as a herd test. Cross-reactivity with _C. pecorum_ can be a problem, as many animals carry the latter organism asymptotically in the intestines. _C. abortus_ and _C. pecorum_ can be distinguished by indirect microimmunofluorescence, but this procedure is time-consuming and is not routinely used.

Treatment

Chlamydiosis is usually treated with tetracyclines. Other antibiotics including erythromycin and other macrolides, tylosin, quinolones and chloramphenicol may also be used.

Prevention

Ruminants can carry _C. abortus_ asymptotically, and enzootic abortion is often introduced into a flock in new animals. Replacement stock should be bought from sources known to be free of this disease.

Sick cats, aborting ruminants and other animals with chlamydiosis should be isolated. Personal hygiene, including hand washing and cleansing/disinfection of
footwear, is important to prevent spreading the infection between animals.

Affected ruminants should be kept isolated for approximately three weeks. The premises should be cleaned and disinfected after an abortion, and any aborted fetuses, dead lambs, contaminated bedding or placentas should be removed. The main flock should, if possible, be moved to uncontaminated pens. If possible, a flock of affected ruminants should be maintained separately from the "clean" flock once the outbreak subsides.

Vaccines can reduce the incidence and severity of abortions in ruminants or chlamydial conjunctivitis in cats, but are not completely protective. A live vaccine has been reported to decrease the shedding of C. abortus in sheep and may be useful for eradication programs. It is not available in all countries.

Treatment with tetracyclines can prevent abortions in ruminants, but organisms may still be shed at birth.

Morbidity and Mortality

Chlamydophila abortus

In many countries, C. abortus is an important cause of abortion in sheep and goats. Outbreaks of enzootic abortion are seen regularly in these two species, and an epizootic has been reported in llamas, but only sporadic cases occur in cattle. In naïve flocks, enzootic abortion can affect up to 30% of pregnant sheep and as many as 60-90% of pregnant goats. Most animals abort only once. Immunity persists for several years or longer; it seems to last approximately 3 years in goats. In endemically infected flocks, the overall morbidity rate usually drops to 5-10%. A cyclic pattern may be observed in endemically infected goat herds, with abortion rates of approximately 10% for several years followed by a new outbreak with all yearlings aborting. Death of the dam is rare in all species.

Chlamydophila felis

C. felis infections are common in cats; approximately 2-12% of cats have antibodies to this organism. Conjunctivitis is most often seen in 5 to 12 week old kittens. Immunity is usually transient but reinfections tend to be milder.

Chlamydophila pneumoniae

The morbidity and mortality rates for C. pneumoniae have not been well established in animals. Koalas often seem to carry C. pneumoniae asymptomatically, but respiratory disease has also been reported. Sporadic deaths have been reported in amphibians and reptiles. A mortality rate greater than 90% was seen in one colony of frogs.

Post Mortem Lesions

Chlamydophila abortus

Enzootic abortion is characterized by placentitis with a relatively normal fetus. The cotyledons and surrounding intercotyledonary areas may be necrotic, edematous, thickened, inflamed and covered in exudate. The fetus is usually fresh, may be autolyzed, but is not usually necrotic. It generally has only nonspecific lesions. Often, the fetus is covered in reddish-brown exudate from the placenta. Occasionally, there may be clear or blood-stained edema, blood-stained fluid in the abdominal and pleural cavities, or pinpoint white foci of necrosis in the liver. In goats, petechiae are often found on the tongue, in the buccal cavity and on the hooves. Microscopically, there may be interstitial pneumonia or evidence of necrosis in the spleen and liver.

Chlamydophila felis

The lesions caused by C. felis are usually limited to conjunctivitis and rhinitis. Occasionally, there may be mild, focal interstitial pneumonia or hyperplasia of the lymphoid follicles in the spleen and peribronchial lymph nodes.

Necropsy findings in reptiles and amphibians

In amphibians and reptiles, the full spectrum of necropsy findings is unknown. In one group of frogs, the gross pathology included roughening and sloughing of the posterior skin, as well as edema of the subcutaneous tissues and body cavities. Moderate to severe lymphohistiocytic hepatitis was seen microscopically. Hepatosplenomegaly and histologic evidence of active hepatitis were the major findings in another group of frogs. In a third case, chronic mononuclear pneumonia, nonregenerative anemia and pancytopenia were seen.

Internet Resources

International Veterinary Information Service (IVIS)
http://www.ivis.org

OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animals
http://www.oie.int/eng/normes/mmanual/a_summary.htm

Public Health Agency of Canada Material Safety Data Sheets

Medical Microbiology
http://www.gsbs.utmb.edu/microbook

The Merck Manual
http://www.merck.com/pubs/mmanual/

The Merck Veterinary Manual
http://www.merckvetmanual.com/mvm/index.jsp

World Organization for Animal Health (OIE)
http://www.oie.int/
Chlamydiosis

References

