Journal Bearing Removal Improvement

Ben Gibson
Iowa State University, bgibson1@iastate.edu

Matt Johnson
Iowa State University, mjj26@iastate.edu

Lucas Kramer
Iowa State University, lgkramer@iastate.edu

Chad Martin
Iowa State University, cmmartin@iastate.edu

Follow this and additional works at: https://lib.dr.iastate.edu/tsm415

Part of the Bioresource and Agricultural Engineering Commons, and the Industrial Technology Commons

Recommended Citation
Gibson, Ben; Johnson, Matt; Kramer, Lucas; and Martin, Chad, "Journal Bearing Removal Improvement" (2018). TSM 415 Technology Capstone Posters. 30.
https://lib.dr.iastate.edu/tsm415/30

This Poster is brought to you for free and open access by the Undergraduate Theses and Capstone Projects at Iowa State University Digital Repository. It has been accepted for inclusion in TSM 415 Technology Capstone Posters by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Journal Bearing Removal Improvement
Client: Danfoss Power Solutions, Ames, IA

Problem Statement
• Current method of removing journal bearings from castings is labor intensive, poses safety risks, and creates contamination.
• Develop a new method and, if necessary, tooling, to improve the bearing removal process.

Objectives
• Eliminate safety hazard posed by hammer blows
• Cut bearing removal time by 50%

Constraints
• Simple to use, with minimal training required.
• Easily maintained and/or replaced when worn
• Works for journal bearings ranging from 28-65mm ID, and 17-45 mm deep

Proposed Solutions
• Air hammer with 180 degree attachment ("Texas Twister") to ease impact-based removal
 OR
• Dedicated station with hand-operated hydraulic cylinder to pull bearings from casting

Methods
• Technician interviews and informal time studies for current process
• Technician interviews on preference and feasibility of proposed solutions
• If applicable, CAD model of custom tooling
• If applicable, fabricate custom tooling with both university and company resources
• 3D printing, Waterjet, CNC Mill/Lathe, Welding, Heat Treating
• Technician interviews and time studies for new process.

Major Outcomes
• Tool design/fabrication or off the shelf tool selection
• Training documentation for technicians
• Process implementation
• Quantization of improvement

Benefit to Client
• Increased operator safety
• Reduced cycle time
• Reduced contamination potential
• Reduced part damage

Acknowledgements: Authors are grateful to thank Kevin Anderson and Tristan Jones for the opportunity to work on this project. Project was co-funded by the differential tuition.