Magnetomechanical performance and mechanical properties of Ni-Mn-Ga ferromagnetic shape memory alloys

Thumbnail Image
Date
2000-06-14
Authors
Murray, Steven
Allen, Samuel
O'Handley, R.
Lograsso, Thomas
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Lograsso, Thomas
Ames Laboratory Division Director
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Journal Issue
Is Version Of
Versions
Series
Department
Ames National Laboratory
Abstract

A Ni-Mn-Ga ferromagnetic shape memory alloy was tested for strain versus applied field and strain versus stress. Field- induced strains up to 6 percent were measured with a hysteresis of about 160 kA/m. The results are compared with the predictions of modeling with a focus on hysteresis. The model is applied to the case in which the magnetic external field and external load are orthogonal to each other. It predicts the magneto-mechanical hysteresis as a function of the yield stress in a twinned martensite. Magnetization versus applied field was measured on a sample that was mechanically constrained in order to understand the magnetization behavior of the sample in the absence of twin motion. These measurements give the magnetic anisotropy and are used to estimate the demagnetization fields. The measured behavior of strain with stress at constant field is approximated by the model.

Comments

Copyright 2000 Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.

http://dx.doi.org/10.1117/12.388253.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Sat Jan 01 00:00:00 UTC 2000