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Multi-Agent Distributed Optimization via
Inexact Consensus ADMM

Tsung-Hui Chanty Mingyi Hong' and Xiangfeng Warig

Abstract

Multi-agent distributed consensus optimization problems arise in many signal processing applications.
Recently, the alternating direction method of multipliers (ADMM) has been used for solving this family
of problems. ADMM based distributed optimization method is shown to have faster convergence rate
compared with classic methods based on consensus subgradient, but can be computationally expensive,
especially for problems with complicated structures or large dimensions. In this paper, we propose low-
complexity algorithms that can reduce the overall computational cost of consensus ADMM by an order of
magnitude for certain large-scale problems. Central to the proposed algorithms is the use of an inexact step
for each ADMM update, which enables the agents to perform cheap computation at each iteration. Our
convergence analyses show that the proposed methods convergmdelsome convexity assumptions.
Numerical results show that the proposed algorithms offer considerably lower computational complexity
than the standard ADMM based distributed optimization methods.
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. INTRODUCTION

We consider a network with multiple agents, for example a sensor network, a data cloud network
or a communication network. The agents seek to collaborate to accomplish certain task. For example,
distributed database servers may cooperate for data mining or for parameter learning in order to fully
exploit the data collected from individual servers [1]. Another example arises from large-scale machine
learning applications [2], where a computation task may be executed by collaborative microprocessors
with individual memories and storage spaces [2]-[4]. Distributed optimization becomes favorable as it
is not always efficient to pool all the local information for centralized computation, due to large size
of problem dimension, a large amount of local data, energy constraints and/or privacy issues [5]-[8].
Many of the distributed optimization tasks, such as those described above, can be cast as an optimization
problem of the following form

N
(P1) min > ¢(y) 1)
=1

yERK

wherey € RX is the decision variable ang; : R — R U {oo} is the cost function associated with
agenti. Here the functionp; is composed of a smooth compongfit RM — R U {oo} (possibly with

extended valuesind a non-smooth componept: RX — R U {o0}, i.e.,

oi(y) = fi(Aiy) + 9:(y), 2)

where A; € RM*K is some data matrix not necessarily of full rank. Such model is common in practice:
the smooth component usually represents the cost function to be minimized, while the non-smooth
component is ofterused as a regularization functigfl] or an indicator function representing that
is subject to a constraint det

In the setting of distributed optimization, it is commonly assumed that each agaelythas knowledge
about the local informatioryf;, g; and A;. The challenge is to obtain, for each agent in the system, the

optimal  of (P1) using only local information and messages exchanged with neighbors [5]-[8].

'For example, ify € X C R¥ for some sett, then this can be implicitly included in the nonsmooth componetty letting
[10, Section 5]

if X
gi(y)={ 0 e 3)

oo otherwise
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In addition to(P1), another common problem formulation has the following form

N N
(P2) min Z ¢i(x;) s.t. Z E;x;, = q, 4)
i=1 i=1

x1,..., Ny ERK

where E; € RM*K 4 ¢ RM and ¢; is given as in (2). UnlikgP1), in (P2), each ageni owns a
local control variablé ; € R, and these variables are coupled together through the lowestraint.
Examples of(P2) include the basis pursuit (BP) problem [11], [12], the network flow control problem
[13] and interference management problem in communication networks [14]. To (BRtevith (P1),
let v € RM be the Lagrange dual variable associated with the linear cons@%; E;,x; = q. The

Lagrange dual problem dP2) can be equivalently written as

N )
: _ T
ng]IlQII%’I = ((pZ(V) + NV q> (5)
where
vi(v) :max{—qﬁi(a:i)—VTEia:i}, i=1,...,N. (6)

Problem (5) thus has the same form(B4). Given the optimals of (5) and assuming thgP2) has a
zero duality gap [15], each ageintan obtain the associated optimal variableby solving (6). Therefore,
a distributed optimization method that can so(f3l) may also be used faiP2) through solving (5).

There is an extensive literature on distributed consensus optimization methods, such as the consensus
subgradient methods; see [5], [6] and the recent developments in [7], [8], [16], [17]. The consensus
subgradient methods are appealing owing to their simplicity and the ability to handle a wide range of
problems. However, the convergence of the consensus subgradient methods are usually slow.

Recently, the alternating direction method of multipliers (ADMM) [10], [18] has become popular for
solving problems with forms ofP1) and(P2) in a distributed fashion. In [14], distributed transmission
designs for multi-cellular wireless communications were developed based on ADMM. In [19], several
ADMM based distributed optimization algorithms were developed for solving the sparse LASSO problem
[20]. In [12], using a different consensus formulation from [19] and assuming the availability of a certain
coloring scheme for the graph, ADMM is applied to solving the BP problem [11] for both row partitioned
and column partitioned data models [16]. In [21], the methodologies proposed in [12] are extended to
handling a more general class of problems with formgRi) and (P2). In [22], a distributed ADMM

with a sequential update rule is proposed; while in [23], the method is extended and can be implemented

2Here we let allz;’s have the same dimension without loss of generality.
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asynchronously. The fast practical performance of ADMM is corroborated by its nice theoretical property.
In particular, ADMM was found to converge linearly for a large class of problems [24], [25], meaning

a certain optimality measure can decrease by a constant fraction in each iteration of the algorithm. In
[26], [27], such fast convergence rate has also been built for distributed optimization.

It is important to note that existing ADMM based algorithms can be readily used to solve problems
(P1) and (P2). For example, by applying the consensus formulation proposed in [19] and ADMM to
(P1), a fully parallelized distributed optimization algorithm can be obtained (where the agents update
their variables in a fully parallel manner), which we refer to as the consensus ADMM (C-ADMM). To
solve (P2), the same consensus formulation and ADMM can be used on its Lagrange dual problem in
(5), referred to as the dual consensus ADMM (DC-ADMM). The main drawback of these algorithms lies
in the fact that each agent needs to repeatedly solve certain subproblgiodadboptimality This can
be computationally demanding, especially when the cost functfgashave complicated structures or
when the problem size is large [2]. If a low-accuracy suboptimal solution is used for these subproblems
instead, the convergence is no longer guaranteed.

The main objective of this paper is to study algorithms that can significantly reduce the computational
burden for the agents. In particular, we propose two algorithms, named the inexact consensus ADMM
(IC-ADMM) and the inexact dual consensus ADMM (IDC-ADMM’), both of which allow the agents to
perform a single proximal gradient (PG) step [28] at each iteration. The benefit of the proposed approach
lies in the fact that the PG step is usually simple, especially wisnare structured functions [9],

[28]. Notably, the cheap iterations of the proposed algorithms is made possililekgctly solving

the subproblems arising in C-ADMM and DC-ADMM, in a way that is not known in the ADMM or
consensus literature. For example, the proposed IC-ADMM approximates the smooth furfgéans
C-ADMM, which is very different from the known inexact ADMM methods [29], [30], where only the
guadratic penalty is approximated (thus does not always result in cheap PG steps). We summarize our

main contributions below.

o For (P1), we propose an IC-ADMM method for reducing the computational complexity of C-
ADMM. Conditions for global convergence of IC-ADMM are analyzed. Moreover, we show that
IC-ADMM converges linearly, under similar conditions as in [26].

o For (P2), we first propose a DC-ADMM method which can globally so(®2) for any connected
graph and convey;’s. We further propose an IDC-ADMM method for reducing the computational

burden of DC-ADMM. Conditions for global (linear) convergence are presented.
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Numerical examples for solving distributed sparse logistic regression problems [31] will show that the
proposed IC-ADMM and IDC-ADMM methods converge much faster than the consensus subgradient
method [5]. Further, compared with the original C-ADMM and DC-ADMM, the proposed method can
reduce the overall computational cost by an order of magnitude.

The paper is organized as follows. Section Il presents the applications and assumptions. The C-ADMM
and IC-ADMM are presented in Section IlI; while DC-ADMM and IDC-ADMM are presented in Section
IV. Numerical results are given in Section V and conclusions are drawn in Section VI.

Notations: A = 0 (> 0) means that matrixA is positive semidefinite (positive definite) is the
K x K identity matrix; 1 is the K-dimensional all-one vectofa||; denotes the Euclidean norm of vector
a, and||z||4 £ 2T Az for someA = 0. Notation® denotes the Kronecker produdiag{as, . ..,ax} is
a diagonal matrix with théth diagonal element being; while blkdiag{ A1, ..., Ay} is a block diagonal
matrix with theith diagonal block matrix beingd;. Anax(A) and A\pin(A) denote the maximum and

minimum eigenvalues of matrix, respectively.

[I. APPLICATIONS AND NETWORK MODEL
A. Application to Data Regression

As discussed in Section (P1) and(P2) arise in many problems in sensor networks, data networks and
machine learning tasks. Here let us focus on the classical regression problems. We consider a general
formulation that incorporates the LASSO [19] and logistic regression (LR) [31] as special instances.
Let A = [AT ... AT)T € RVMXK denote a regression data matrix, whete € RM*X for all
i =1,...,N. For a row partitioned data (RPD) model [12, Fig. 1], [16], the distributed regression

problem is given by
N
min U;(y; Ai, bi), (7)
yerR® o
where ¥, (y; A;,b;) is the cost function defined on the local regression détaand a local response
signalb; € RM. For example, the LASSO problem hés(y; A;, b;) = ||b; — A;y||2 + g:(y). Similarly,

for the LR problem, one has
M

Ui(y; A, by) = Z log (1 + exp(—bimai,y)) + gi(y), (8)
m=1
where A; = [a;1,...,a;y]T containsM training data vectors anfg},,, € {1} are binary labels for the

training data. It is clear that (7) has the same form(R%). Here, the non-smooth functiog can be

September 12, 2014 DRAFT

This is a manuscript of an article from IEEE Transactions on Signal Processing 63 (2015):482,
doi: 10.1109/TSP.2014.2367458. Posted with permission.



1-norm for sparse regression, as well as mixture with an &tdicfunctions specifying thaj is confined
in certain constraint set.

On the other hand, IeE = [Eq,...,Eyx] € RM*NEK denote a regression data matrix, whige c
RM*K for all i = 1,...,N. Then, for the column partitioned data (CPD) model [12, Fig. 1], [16], the
distributed regression problem is formulated as

N
ml,..ﬁij?eRK ;\I’i(mi;Ei,b), 9

where the response signalis known to all agents while each agenhas a local regression variable

x; € RX and local regression data matd; = [e;1, ..., e;n]” € RM*K, For example, the LR problem
has
M N
U, (x;; E;,b) = Z log (1 + exp(—by, Z eiTmmZ-)) + gi(x;). (10)
m=1 1=1
By introducing a slack variable = [z,...,zy]7 2 vazl E,z;, the CPD LR problem can be

reformulated as

M N
min { E log (1 4 exp(—bmzm)) + E gz‘(a:i)}
wl,...7:l!NERK, — N

2CRM m=1 i=1

st YN Ex;—z=0, (11)

which is an instance ofP2). In Section V, we will primarily test our algorithms on the RPD and CPD

regression problems.

B. Network Model and Assumptions

Let an undirectedyraphG denote a multi-agent network, which contains a nodelset {1,..., N}
and an edge sef. An edge(i,j) € £ if and only if agenti and agentj can communicate with each
other (i.e., neighbors). The edge getlefines an adjacency mati¥” € {0, 1}V*N, where[W]; ; = 1 if
(i,4) € € and[W], ; = 0 otherwise. In addition, one can define an index sub§et {j € V | (¢,5) € £}
for the neighbors of each agentand a degree matriD = diag{|V1|,...,|Nxn|} (a diagonal matrix).
With W and D, the Laplacian matrix ofj is given by L = D — W which is a positive semidefinite
matrix (i.e.,L = 0) and satisfied.1 = 0 [32].

We make the following assumptions ghand problemgP1) and (P2).

Assumption 1 The undirected graply is connected.
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Assumption 1 implies that any two agents in the network can always influence each other in the long

run. We also have the following assumptions on probléR1ly and (P2).

Assumption 2 (a) In (P1), the functionsp; : RX — R U {0} are proper closed convex functions; at
everyy for which both f;(A;y) and g;(y) are well defined and;(y) < oo, there exists at least
one bounded subgradied;(y) € R such thate;(x) > ¢;(y) + (0¢:(y)T (x — y) Vx € RE,
Moreover, the minimum dP1) can be attained.

(b) In (P2), the functionsg; : RX — R U {oc} are proper closed convex functiong; has at least
one bounded subgradient at every for which both f;(A;x;) and g;(x;) are well defined and
oi(x;) < oo; the minimum ofP2) is attained and so is its optimal dual value; moreover, strong

duality holds for(P2).

Assumption 3 For all i € V, the smooth functiorf; in (2) is strongly convex, i.e., there exists some

o7, > 0 such that
(VSily) = V(@) (y — ) 207y — |3 ¥y, 2 € R™.
Moreover, f; has Lipschitz continuous gradients, i.e., there exists sbme> 0 such that
IVfily) = VSi(@)ll2 < Lyilly — ]2 Vy,x € RY. (12)
Note that, even under Assumption @,(x) = f;(A;x) + g;(x) is not necessarily strongly convex in
x since the matrix4; can be fat and rank deficient. Both the LASSO problem [19] and the LR function
in (8) satisfy Assumption 3.
[1l. DISTRIBUTED CONSENSUSADMM

In Section IlI-A, we briefly review the original C-ADMM [19] for solvingP1). In Section I1I-B, we

propose a computationally efficient inexact C-ADMM method.

A. Review of C-ADMM

Under Assumption 1(P1) can be equivalently written as

N
pmin o 0i(y:) (132)
{t} =1
Sty = tij Ve ./\[Z‘, 1€V, (13b)
yi =ty VjeN;, ieV, (13c)

3The logistic regression functiolog(1 + exp(—zx) is strongly convex given that lies in a compact set.
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where{t;;} are slack variables. According to (13), each agesan optimize its local functiorf;(A;y;)+

g:(y;) with respect to a local copy af, i.e, y;, under the consensus constraints in (13b) and (13c). In
[19], ADMM is employed to solve (13) in a distributed manner. £af;} and{v;;} denote the Lagrange

dual variables associated with constraints (13b) and (13c), respectively. According to [19], ADMM leads

to the following iterative updates at each iteration

) =ulf V4 Sty ) vie i eV, (142)
v =vi ") + §<y§’“‘” v vieNieV, (14b)

k .
yl( ):argn;}n {¢Z(yz)+ZJ€N( ()—i-v( ))Ty
(k=1) ,  (k—1)
FeXon [y — B }WGV, (140)

wherec > 0 is a penalty parameter am:g.)) + ’UZ( )= o0Vi ,7. Note that vanableétt } are not shown
in (14) as they can be expressed by variat{lglgC }; see [19] for the details.
The updates in (14) are useful for convergence analysis. For practical implementation, we define

PV 25wl + o), i € V. Then, (14) boils down to Algorithm 1.

Algorithm 1 C-ADMM for solving (P1)

1: Given initial variabIeSyi(O) € RK andpgo) = 0 for each agent, i € V. Setk = 1.
2: repeat
3. Foralli eV (in parallel), (k) = pfk Y4 ¢ ien. (i (k=1) _ yj(.k_l)),

(k) y’gk—1)+y;k—1) 9
Yy, =arg mln fi(A zyz)+gz(yz)+yz pz +CZ;€/\/’ Hyz f“z : (15)

4: Setk=k+1.

a

until a predefined stopping criterion (e.g., a maximum iteration number) is satisfied.

It is important to note from Step 4 and Step 5 of Algorithm 1 thetcept for the parameterwhich
has to be universally known, each agénipdates the variable(a;;z(k),pgk)) in a fully parallel manner,
by only using the local functior; and messagealj(.k_l)}je/\@, which come from its direct neighbors.

It has been shown in [19] that, under Assumptions 1 and 2, C-ADMM is guaranteed to converge for any
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c> 0%

(k) ()

(k) _ . .
kh—>n;o yz y*a kli)ngo(uzj ’ vij ) (uw ’ Uzj) VJ, 2 (16)
wherey* £ yi = --- =y and {u};, v} denote a pair of optimal primal and dual solutions to problem

(13), andy* is optimal to(P1). It is also shown that C-ADMM can converge linearly wheys are
purely smooth (i.e.g;(y;) = 0 Vi) and strongly convex with respect ig [26].
One key issue about C-ADMM is that the subproblem in (15) is not always easy to solve. For instance,

for the LR function in (8), the associated subproblem (15) is given by

M
’yl(k’) = arg min { Z log (1 + exp(—bimal,yi)) + gi(y;)

Yi 1
CSINNCE)
+ Yy,
rlpl s e S - M) an
JEN;

As seen, due to the complicated LR cost, problem (17) cannot yield simple solutions, and a numerical
solver has to be employed. Clearly, obtaining a high-accuracy solution of (17) can be computationally
expensive, especially when the problem dimension or the number of training data is large. While a
low-accuracy solution to (17) can be adopted for complexity reduction, it may destroy the convergence

behavior of C-ADMM, as will be shown in Section V.

B. Proposed Inexact C-ADMM

To reduce the complexity of C-ADMM, instead of solving subproblem (15) directly, we consider the

following update:

y") = arg min {Vfi( Ay NT Ay — 5 Y

Bi k—1 k (k= 1>+ y Dy
+§Hyi—y§ B+ giw) +uT P + e w2 )2 (18)

In (18) we have replaced the smooth cost functfpi,y;) in (15) with a proximal first-order approxi-

mation arouncyi(k_l):

k:l kl
Vi Ay" T Ay — )+ HZ y Y3,

whereg; > 0 is a penalty parameter of the proximal quadratic term. To obtain a concise representation

of yfk), let us define theroximity operatorfor the non-smooth functiog; at a given points € RX as

“In general, the parameteris chosen empirically. Only for some special instance, optifmaby be analytically found; e.g.,
see [33].
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10
[28]

prox;: [s] £ arg myin {gi(y) + %Hy - sH%}, (19)

where~; = 3; + 2¢|N;|. Clearly, using this definition, (18) can be expressed more compactly as

)

= prox,; [’yi <ﬁiy§k:—1)_ pgk) ATsz( Zylkz 1))

Vi
2

(k)

Yy, = arg H;ln {gi(y) + = (5zy(k K ng)

— ATV (A" 5+czzawwﬁ‘”+y$*b)

+cZﬁN<“’”+¢k”0} (20)

which is a proximal gradient (PG) update.
The PG updates like (20) often admit closed-form expression, especially wleeare functions
including the/; norm, Euclidean norm, infinity norm and matrix nuclear norm [34]. For example, when

gi(y) = |ly||l1, (19) has a closed-form solution known as the soft thresholding operator [28], [34]:

S {s i} = (s— %IK)++ (—s— %1K>+, (21)

>y

where (z)* = max{z,0}. The IC-ADMM is presented in Algorithm 2.

Algorithm 2 Proposed IC-ADMM for solving(P1)

1: Given initial variabIeSyi(O) € RF andpgo) = 0 for each agent, i € V. Setk = 1.
2: repeat
3. Foralli eV (in parallel),
pM =p* D 4 CYien: (y* Y — yﬁ-k*l)),
yl(k) _ pI'OXg: |:’Yi( Ly Z(k 1) Avaz( . k 1))

—ﬁ“+csz(“’”+¢k”ﬁ} (22)

4 Setk=Fk+1.

a

until a predefined stopping criterion (e.g., a maximum iteration number) is satisfied.

Although the idea of “inexact ADMM” is not new, our approach sgynificantly different from
the existing methods [29], [30], where the inexact update is obtained by approximating the quadratic

penalization term only. It can be seen that problem (17) is still difficult to solve even the inexact update
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11

in [29], [30] is applied. Two notable exceptions are the algorithms proposed in [35] and [36] where the
cost function is also linearized. However, an additional back substitution step and two extragradient steps
are required in [35] and [36], respectively, which is not suited for distributed optimization.

The convergence properties of IC-ADMM is characterized by the following theorem.

Theorem 1 Suppose that Assumptions 1, 2(a) and 3 hold. Let

L?
Bi > ;“ Amax(AT A;) = cAmin (D + W) > 0 Vi €V, (23)
f?
and lety* £ yf = --- = y§ and {“w’ U} denote a pair of optimal primal and dual solutions to
problem(13) (i.e., (P1)).
(a) For Algorithm 2, y(k) ...,y](\]f) converge to a common poigt.

(b) If ¢i(y) = fi(Aiy), where A; has full column rank, for ali € V, then we have
Jim [y — 1y @y g am
- 1||u(k+1) — u*||2 = 0 linearly,
C

wherey®) = [(y\")T . (yg\’f))T]T, () ¢ REWI (u*) is a vector that stacka ) (ur D Vie Ni;
u®) e REXD Wi (%) stacksu!® (uf) Vi=1,...,N. and

G2 Ds+c((D+W)®Ik) =0, (24)
. 1 .
M £ AT(D,, — 5D0)A -0, (25)

for somed < o < 1 andp > 0. Here, A = blkdiag{ A, ..., Ax}; Dg = diag{1,...,8n} @ Ik;
D,, = diag{aj%’l, e ,O'JZC’N} ® Ix; and D, = diag{p1,...,pn} ® Ik.

The proof is presented in Appendix A. Theorem 1 implies that, given sufficiently [&fgelC-ADMM

not only achieves consensus and optimality, but also converges linearly provided thaurely smooth
and strongly convexiNote that, to ensure (23), the global knowledge)gf, (D + W) is required by
all agents.As a parallel work, we should mention that a concurrent resiatilar as Theorem 1(b) is

presented in [37].

Remark 1 We remark that the convergence condition in (23) depends on the network topology. Let
L = D — W denote the Laplacian matrix ¢f. ThenD + W = 2D — L. By the graph theory [32],

the normalized Laplacian matrix, i.el; = D~z LDz, must have\max (L) < 2. Further,Amax (L) < 2

if and only if the connected grapfi is not bipartite. Thus, we have,;,(D + W) = /\min(D%(2IN —
L)Dz) > 0, and A\pin(D + W) > 0 wheneverg is non-bipartite.
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IV. DISTRIBUTED DUAL CONSENSUSADMM

In this section, we turn the focus t@#2). In Section IV-A, we present a DC-ADMM method for

solving (P2). In Section IV-B, an inexact DC-ADMM method is proposed.

A. Proposed DC-ADMM

The DC-ADMM is obtained by applying the C-ADMM (Algorithm 1) to problem (5) which is

equivalent to the Lagrange dual @#2). Firstly, similar to (13), we write problem (5) as

N
1
min Y- <90i(’/z) Vi Q> (26a)
{ioy il
s.t.y, = tij7 v; = tij VJ S ./\/;', 1€V, (26b)

wherev; € RM is theith agent’s local copy of the dual variableand ¢; is given in (6). Following a
similar argument as in deriving Algorithm 1, we obtain the following update steps at each itefation

p") = plFY +edjen i vj(-k_l)), (27a)

k 1
I/Z-( ) — argunel]an {cpi(uz) N v; q+u pg )

- >+u<’” y .
oY - }\uev, (27h)

where, with a slight abuse of notation,
P =5 e (ul) + o), (28)

in which {u;;} and{v;;} are dual variables associated with the two constraints in (26b) and are updated

in a similar fashion as in (14a) and (14b), i.e.,

uly) =l VS vieNiey, (292)
(k) _ (k=1) | C, (k=1) _ (k=1)y \,.: »
vy =vyy T oy ) Vi eNie V. (29b)

In general, subproblem (27b) is not easy to handle becauseimplicit and (27b) is in fact a min-max
optimization problem given by

I/i(k) = arg min max { — ¢i(x;) — V] B, + —vlq
vV; €T; N

L1y (kD)
+ufp§k)—|—czje/\/i |vi — et M o B +V 5 } (30)

Fortunately, since the objective function in (30) is convewjrfor any x; and is concave im; for any

v;, the minimax theorem [38, Proposition 2.6.2] can be applied so that the min-max problem (30) can
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be equivalently solved by considering its max-min counterpart and saddle point exists. Specifically, the

max-min counterpart of (30) is given by

. 1
maxmm{ — ¢i(x;) — V; TE,x; + —I/Z q-—+ I/sz( )
€T; v; N

pF D D)
T SV PR 7 H} (31)

(k—1)
Vi — 2|_/\/’1J[Zje/\ﬂ;(”i

2

:maxmin{ — ¢i(x;) + (c|Ni])

€T v;

k—1 k
+u )~ 1pP 4 LB — Lq)]

L Eiz; — +q)

4W|

pE=1)

2
S S } (32)

where the equality is obtained by completing the quadratic term; ok et a:(k) be an inner maximizer

of (30) so that(ui( , T z* )) is a saddle point of (30). The(rp(k )) is a pair of outer-innesolution to
(31) and (32) [38, Proposition 2.6.1]. From (32), tinmer m|n|m|zerui( ) can be uniquely determined

by

(Ew%”—%mL (33)

and that the outer maximizer is given by

k . c
o) —arg min {outei) + 7| B~ )

- - 2
S R .

As a result, the min-max subproblem (27b) can actually be obtained by first solving the subproblem (34)
with respect to the primal variable; followed by evaluating/i(k) using the close-form in (33). The
proposed DC-ADMM is summarized in Algorithm 3.

Interestingly, while DC-ADMM handles the equivalent dual problem in (5), it directly yields primal

optimal solution of(P2), as we state in the following theorem.

Theorem 2 Suppose that Assumptions 1 and 2(b) hold. Thel(ﬁ )) converges to a common
pointv*, which is optimal to the dual problei®). Moreover, any limit point o(wl ,e (k)) is primal

optimal to (P2).
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Algorithm 3 Proposed DC-ADMM for solving(P2)

1: Given initial variablesz” € RX, 1”) ¢ RM andp\”’ = 0 for each agent, i € V. Setk = 1.

2: repeat
3:  ForallieV (in parallel),
k k—1 k—1 k—1
PV =+ e Y ),

(k) _ - (@) + —— || (B, — L
@, = arg min {¢1($z)+4|M|"C(Ez$Z ~N9)

k k—1 k—1 2
—%pg )+Zje/\/i(yi( )+VJ(‘ ))HQ}’ (35)

k k—1 k—1 k
9 =i (T (4 4040 2l

+1Ea - Lq). (36)

4 Setk=Fk+1.

5. until a predefined stopping criterion is satisfied.

Proof: Since DC-ADMM is a direct application of C-ADMM to the dual problem (5), it follows from
[19] that ask — oo,

ui(k) — V¥, I/i(k) — VJ(»k) —0VjeN, ieV. (37)

What remains is to show thainy limit point of (mg’“), . ,xgl\;)) is asymptotically optimal t¢P2), i.e.,
ask — oo,

06 + BTV S0 vieV, (38)

Y Bl —q 0. (39)

To show (38), consider the optimality condition of (34), i.e.,

o (R) U cr( i w1
0 = 0¢;(x, )+2‘M\EZ <C(E2$z’ Nq)

k f— fe—
_ %Pz( ) 4 ZjeNi(Vi( DI V]( 1))>
= 9 (2™) + ETu®, (40)

where the second equality is obtained by (Zijhce (40) holds for alk and ui(k) — v* by (37), (38) is

true whenk — oo.
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To show (39), rewrite (33) as follows
k 1 k ) )

. pgk)+c Z (VZ_(k) . V](_k) - VZ_(k—l) - V](k—l))

JEN;
1
= —(EZZBEk) — NQ) +p§k+1)
e jep @ + ) — D )y (41)

where the last equality is obtained by (28) and (29). Upon summing (4%)#ot,..., N, and by the
fact that N N
>op =3 Yl o) =0
i=1 i=1 jeN;
(by applying (A.13) and (A.14) in Appendix A), we can obtain
i\f: Eiwgk) —q= CZ Z (Vi(k) + I/J(-k) — VZ-(k_l) — VJ(»k_l)). (42)
i=1 i=1 jeN;
Note thatuz.(k) — uz.(k_l) — 0 Vi € V as inferred fromui(k) — v* Vi € V in (37). By applying this fact
to (42), we obtain that (39) is true &s— oo. |
Interestingly, from (42), one observes that the primal feasibilit;(a:ﬂ’c), . ,asg\’;)) to (P2) depends
on the agents’ consensus on the dual variable
We remark that Algorithm 3 is different from the D-ADMM algorithm in [12, Algorithm 3]. Firstly,
Algorithm 3 can be implemented in a fully parallel manner; secondly, Algorithm 3 does not involve
solving a min-max subproblem at each iteration; thirdly, convergence of Algorithm 3 can be achieved

without the assumption that the graghis bipartite.

B. Proposed Inexact DC-ADMM

In this subsection, we propose an inexact version of DC-ADMM, referred to as the IDC-ADMM. In
view of the fact that solving the subproblem in (35) can be expensive, we consider an inexact update of
mf.k). Specifically, since a non-trividk; can also complicate the solutiyrwe propose to approximate

both f;(A;x;) and the quadratic ter%\%(EiM —+q)— §p§k> + Zje/\/i(ui(k_l) +u](-k_1))\|§ in (35)

*When E; has orthogonal columns (e.d& E; = alx for somea € R), then it may not be necessary to approximate the

quadratic term.
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by a proximal first-order approximation aroumfjk_l); this leads to the following update

xgk) =arg mi}n {|E4Tsz(A a: k 1))+W—|ET< (E Z(k 1)
E=D (k—1) v (k=1)
)~ 10+ Ty Y ) ) )

TN lu2+gz<wz>} 43)

where, with a slight abuse of notatioft; > 0 is a penalty parameter. By (19), equation (43) can be

further written as the following PG update

(k)

_ i ) B
T; ' =argmin {7

k— fo—

(2

k-1 k
— s (2 (B~ % q) - 1p{"

2
k—1 k—1
+ et )| |+ aten )
2
:proxgj[ml(-k_l)— 1ATVfZ( i k 1))
k— k
—/\/"5| |ET( (E; -’E( b %Q)_%PE)
+ 3 en (T ”+u§’“‘”))} (44)

We summarize the proposed IDC-ADMM in Algorithm 4.
The convergence property of IDC-ADMM is stated below.

Theorem 3 Suppose that Assumptions 1, 2(b) and 3 hold and
Bi > Amax< “ATA + 2j\/CEZTE> VieV. (47)

Letz* = [(z7)7,..., (z%)T]" denote an optimal solution tP2), and letv* £ v = ... = v} and

{“w ZJ} denote a pair of optimal primal and dual solutions to problé€g) (i.e., (5)).

(@) The sequence®) = [(:c(k))T, . (mg\lﬁ))T]T generated from Algorithm 4 converges#t of (P2)
while ufk), .. (k) converge to a common poist* of problem(5).

(b) If ¢s(x) = fi(Aia:), where A; has full column rank, and; has full row rank, for alli € V, then

for some0 < a < 1 and p > 0, we have

lz® — 2|2 "D — w3

aM+1 P+_||“

& .
+ §||u(’f) 1y ® V*||(D+W)®IM — 0 linearly, (48)

September 12, 2014 DRAFT

This is a manuscript of an article from IEEE Transactions on Signal Processing 63 (2015):482,
doi: 10.1109/TSP.2014.2367458. Posted with permission.



17

Algorithm 4 Proposed IDC-ADMM for solving(P2)

1: Given initial variabIeSacEO) e RE andp(o) = 0 for each agent, i € V. Setk = 1.

7
2: repeat

3:  ForallieV (in parallel),

k k—1 k—1 k—1
PV ="V 4 e Y ),

:I:Ek) = proxgl’? e *D %A?Vfi(Ai:B(kfl))

7 7

LBl (LB~ Lq) - LpiY

- 2B 1N < 7 cty
+ Y en T ) (45)
k k—1 k—1 k
Vz'():2|/{/i\(zje/\fi(”i( )+VJ(' ))—%pg)
+LE2" — Lq)). (46)

4 Setk=Fk+1.

5. until a predefined stopping criterion (e.g., a maximum iteration number) is satisfied.

whereu®) and u* are defined similarly as in Theorem M is defined in(25), and P £ Dg —

%blkdiag{wll—‘EF{El, . WlN—‘E%EN} = 0.

The proof is presented in Appendix B. Note that, in addition to the smooth and strongly convex objective
function, IDC-ADMM also requires matrice&;'s to have full row rank in order to have a linear

convergence rate.

V. NUMERICAL RESULTS

In this section, we examine the numerical performance of Algorithm 1 to 4 presented so far.

A. Performance of C-ADMM and IC-ADMM

To test C-ADMM (Algorithm 1) and IC-ADMM (Algorithm 2), we considered the distributed RPD LR
problem in (7) with®; (y; A;, b;) in (8) andg;(y) = %[yl +n(y), whereX > 0 is a penalty parameter,
andn(y) is an indicator function specifying that the regression variables lie in & set{y ¢ RX | |z;| <
a ¥ i} for somea > 0 (see Egn. (3)). We considered a simple two image classification task. Specifically,
we used the images D24 and D68 from the Brodatz data set (http://www.ux.tisamafen/brodatz.html)
to generate the regression data matdx We randomly extractedN M )/2 overlapping patches with

dimensionvK x K from the two images, respectively, followed by vectorizing ffepatches into
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vectors and stacking all of them into dd x K matrix. The rows of the matrix were randomly shuffled
and the resultant matrix was used as the data matri¥or the RPD LR problem (7), we horizontally
partitioned the matrix4 into N submatricesA, ..., Ay, each with dimensiod/ x K. These matrices
were used as the training data. Note that edgltontains patches from both images. The binary labels
b;'s then were generated accordingly withfor one image and-1 for the other. The connected graph
G was randomly generated following the same method as in [39].

To implement C-ADMM (Algorithm 1), we employed the fast iterative shrinkage thresholding algorithm
(FISTA) [40], [41] to solve subproblem (15) for each agénEor (15), the associated FISTA steps can

be shown as

gl(é):max{—a,min{a,S[zi(z_l) oo [ATVfZ( iz )

(k—1) (k1) (0)
k) -1 Y + Y, Ap;
+2cZ(zi 5 )}, ol (49a)
JEN;
20 = g0 L Lol gleny (49b)

042
where/ denotes the inner iteration index of FISTﬁg) > 0 is a step size and is defined in (21). The
stopping criterion of (49) was based on the PG resighge) (pgr = Hz(z 2 N(Z H/(pl \/F) [40], [41].
For obtaining a high-accuracy solution of (15), one may set the stopping criterion agpge.g.,107°.
Suppose that FISTA stops at iteratiiik). We then seyi(k) = gl@(k)) as a solution to subproblem (15).

For IC-ADMM (Algorithm 2), the corresponding step in (20) is given by

y® —max {_ a,min{ ,l_s[ﬁylﬁ’f‘”—A?Vﬁ( Ay)

2

—pt* +CZ 1>),%”}. (50)

JEN;
From (??) and (49), the complexity of agerntat iterationk of C-ADMM is given by the order of

K+ ¢;(k)(2MK + 2K) if one counts only the multiplication operations; while fro??) and (50), the
per-iteration complexity of each agent in IC-ADMM is given by the ordetkof (2M K + 2K). One
can see that, for each agenthe computational complexity of C-ADMM per iteration(we refer this
as the “ADMM iteration (ADMM lte.)") is roughly/;(k) times that of IC-ADMM.

The stopping criterion of Algorithms 1 and 2 was based on measuring the solution aceataey
(obj(g(’“)) —obj*)/obj* and variable consensus erraterr = SN [|g®) — 5™ |2/N, whereg®) =

(XN, y™)/N, obj(*)) denotes the objective value of (7) givgn= §*), andobj* is the optimal
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value of (7) which was obtained by FISTA [40], [41] with a high solution accuracygef< 10~°. The
two algorithms were set to stop whenew®c andcserr are both smaller than preset target values.

In Table I(a), we considered a simulation exampleNot= 10, K = 10,000, M = 10, A = 0.1 and
a = 1, and display the comparison results. We not only present the required ADMM iterations but also
the computation time per agér(in second) of the two methods. The convergence curves of C-ADMM
and IC-ADMM with respect to the ADMM iteration are also shown in Figs. 1(a) and 1(b). The stopping
conditions areacc < 10~* andcserr < 10~°. For C-ADMM, we considered two cases, one with the
stopping condition of FISTA for solving subproblem (15) septr < 10~ and the other with that set to
pgr < 10~%. The penalty parameterfor C-ADMM was set toc = 0.03 and the step siz;ay) of FISTA
(see (49)) was set to a consta)fﬁ) = 0.1. The penalty parametersand 5 of IC-ADMM were set to
¢ = 0.01 and g = 1.2. We observe from Table I(a) that IC-ADMM in general requires more ADMM
iterations than C-ADMM; however, the computation time is significantly smaller, as also illustrated in
Figure 1(c). Specifically, the computation time of IC-ADMM is aroutd56,/2.14 ~ 20.8 times smaller
than that of C-ADMM pgr < 10~?). We also observe that C-ADMMpgr < 10~%) consumes a smaller
computation time for achievingcc < 10~*. However, the associatezberr = 3.425 x 10~* does not
achieve the target valugd—. In fact, C-ADMM (pgr < 10~%) cannot reduceserr properly. As one
can see from Fig. 1(b), theserr curve of C-ADMM (pgr < 10~*) keeps relatively high and does not
decrease along the iterations. In Fig. 1(a) and Fig. 1(b), we also plot the convergence curves of the
consensus subgradient method in [5], where the diminishing stepl@jzewas used. As one can see,
the consensus subgradient method converges much slower than IC-ADMM.

In Table I(b), we considered another example with the network size increasdd-=t050. We set
¢ = 0.004 for C-ADMM and p{) = 0.1 for FISTA; while for IC-ADMM, we setc = 0.008 and 8 = 1.2,
The computation times of C-ADMM and IC-ADMM under this setting are also shown in Fig. 1(c). We
can observe similar comparison results from Table I(b) and Fig. 1(c). Specifically, the computation time
of IC-ADMM is around 8.75 times smaller than C-ADMM@r < 10~°). When considering a lower
accuracy ofpgr < 1074, it is found that C-ADMM cannot properly converge.

To corroborating the linear convergence behavior of C-ADMM and IC-ADMM as claimed in Theorem
1(b)), we consider a problem instance of (7) wkh= 0, N = 10, K = 25, M = 1,000 anda = 10.
We setc = 0.2 for C-ADMM and pz(-g) = 0.01 andpgr < 10~° for FISTA; while for IC-ADMM, we set

®The simulation was performed on a desktop computer with 8-core Intel 1.3GHz CPU and 8 GB RAM. All the algorithms
were implemented by MATLAB codes.
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TABLE |: Comparison of C-ADMM and IC-ADMM

(@ N =10, K =10,000, M =10, A=0.1, a = 1.

C-ADMM C-ADMM IC-ADMM
(pgr < 1075) | (pgr < 107%)
ADMM lte. 810 675 2973
Compt. Time (sec) 44.56 17.86 214
acc< 10—* 9.982 x 107° | 9.91 x 1075 9.99 x 1075
cserr< 107° 1.53 x 1076 | 3.425 x 10~% | 3.859 x 109

(b) N =50, K =10,000, M =10, A =0.15, a = 1.
C-ADMM C-ADMM IC-ADMM
(pgr < 1075) | (pgr < 107%)
ADMM lte. 952 N/A 7,251
Compt. Time (sec) 81.72 N/A 9.33
acc< 1074 9.99 x 1075 N/A 9.999 x 1075
cserr< 1077 1.305 x 10~7 N/A 1.169 x 10~10

20

¢ = 1.2 and 8 = 10. The convergence curves are shown in Figure 2. One can see from this figure that

both algorithms converge linearly under this setting.

B. Performance of DC-ADMM and IDC-ADMM

We examine the performance of DC-ADMM (Algorithm 3) and IDC-ADMM (Algorithm 4) by con-
sidering the distributed CPD LR problem in (9), witlh;(x;; E;, b) in (10) andg;(x;) = \|lx;||1. Each
variable z; is subject to the constraint sét = {x; € RX/N | |[2;];] < a Vj} for somea > 0. DC-
ADMM and IDC-ADMM were applied to handle the associated problem (11). The regression data matrix
E = [E,,...,Ex] was generated following the same way as generafirig Section V-A. To implement
DC-ADMM, we employed FISTA [40], [41] to solve subproblem (35) and the solution accuracy was
measured by the PG residue of FISTA.

In Table Il(a), we show the comparison results for an examplévofE 50, K = 200, M = 100,

A = 0.05 anda = 10. The convergence curves are also shown in Figs. 3(a) to 3(c). It was=sét05

for DC-ADMM and the step size of FISTAZ(Z) was determined based on a line search rule [41]. We see
from Table li(a) that, for achievingcc < 10~4, DC-ADMM (pgr < 10~°) took 329 ADMM iterations
whereas IDC-ADMM took 10,814 iterations. However, the computation time of DC-ADMd & 107°)
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107 e Consensus Subgradient
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Fig. 1: Convergence curves of C-ADMM and IC-ADMM.

is around42.78/1.92 ~ 22.28 times higher than IDC-ADMM. When one reduce the solution accuracy
of FISTA for solving subproblem (35) tpgr < 10~4, DC-ADMM cannot reach the high accuracy of
acc < 10~%, as observed in Fig. 3(a). From Fig. 3(b), one can see that DC-ADMM converges much
faster than IDC-ADMM with respect to the ADMM iterations. However, as shown from Fig. 3(c), the
comparison result is reversed when one counts the computation times.

In Table IlI(b), we considered another example wikhincreased ta00. We setc = 0.05 for DC-
ADMM, and setc = 0.08 and 5 = 5 for IDC-ADMM. From Table Il(b) and Figs. 3(b) and 3(c), one

can observe similar results.
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- = = IC-ADMM
—— C-ADMM (pgr<10~°)

Accuracy (acc)

0 200 400 600 800 1000 1200
ADMM lteration

Fig. 2: Convergence curves of C-ADMM and IC-ADMM.

TABLE II: Comparison of DC-ADMM and IDC-ADMM

(8 N =50, K =200, M =100, A = 0.05, a = 10.

DC-ADMM DC-ADMM | IDC-ADMM
(pgr <107°) | (pgr <107%)
ADMM lte. 329 N/A 10814
Compt. Time (sec) 42.78 N/A 192
acc< 1074 9.928 x 1075 N/A 9.997 x 1075
(b) N =50, K =800, M =100, A = 0.01, a = 20.
DC-ADMM DC-ADMM | IDC-ADMM
(pgr < 1075) | (pgr < 10~%)
ADMM lte. 475 N/A 38728
Compt. Time (sec) 427.73 N/A 18.07
acc< 1074 9.777 x 1077 N/A 9.999 x 10~°
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In this paper, we have presented ADMM based distributed optimization methods for solving problems
(P1) and (P2) in multi-agent networks. In particular, aiming at reducing the computational complexity
of C-ADMM for solving large-scale instances @P1) with complicated objective functions, we have
proposed the IC-ADMM method (Algorithm 2) where agents perform one PG update only at each
iteration. For(P2), we have proposed the DC-ADMM method (Algorithm 3) and its complexity reduced
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Fig. 3: Convergence curves of DC-ADMM and IDC-ADMM.

counterpart IDC-ADMM (Algorithm 4). Preliminary numerical results based on the distributed LR prob-
lems (7) and (11) have shown ththe proposed methods converge faster than the consensusdigg
method. Moreover, both IC-ADMM and IDC-ADMM require more ADMM iterations than C-ADMM

and DC-ADMM, but the traded computational complexity reduction is significant.

APPENDIX A

PROOF OFTHEOREM 1

Proof of Theorem 1(a): Letg* = [(y1)”, ..., (y3)"]" and{u};,v};,j € N;}} ., be a pair of optimal

primal and dual solutions to problem (13). Then they satisfy the following Karush-Kuhn-Tucker (KKT)
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conditions:V: € V,

ATV fi(Aiy?) + 09i(y}) + X jen, (uf; +v3) = 0, (A.1)
y; =y; VieN, (A.2)
ul; + v}, =0, Vj €N, (A.3)

wheredg; (y*) denotes the subgradient ¢f at y*. Under Assumption 1, (A.2) implies that* £ y7 =

- =yy andy* = 1y ® y*, i.e., consensus among agents is reached, andythus optimal to the
original problem(P1).

By recalling thatpl(k) = zjeM(u§f> + v§’f)) Vi € V, and by the optimality condition of (18) [15],

we have that

0= ATV Ay ) + By — ) + 09,y

+ e (ufy + )

+20 3 jen (u - %) (A.4)
By combining (A.4) with (A.1), one obtains

ATV (A" - ATV (A + i - )
+06:(5") = 00i(y) + Tjens (i) + g — iy — vf)
2 (M - Ty g (A.5)
Adding and subtractingﬁliTVfi(Aiyl(k)) in the left hand side (LHS) of (A.5) followed by multiplying
(ygk) — y*) on both sides yields
(VA" ™) = VA A~y + 8" -y W -y
+ (VA - Vi Ay) A - y")
+ @9:(u") — 09N (" — )+ T () —ugy o) — 03 (" - )

(k—1) (k—1)
+2¢) e, (yfk) . L ) " -y*) =0. (A.6)
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Note that the first term on the LHS of (A.6) can be lower bounded as

(VA ™) = V(AT Ay — o)

k—
Ay ) = V(A2
(k) —-Y ||ATA
k— 1 k *
S|y -y Hi,;A Yy, (A7)

for any p; > 0, where the second inequality is due to (12) in Assumption 3. By the strong convexity of

fi and convexity ofg;, the third and fourth terms of (A.6) can respectively be lower bounded as
(Vhi(Ay) = V(AT Ay - y*)
> 0%y — y* s a, (A8)
(99:(") = 09s(y* )T (W) —y*) > 0. (A.9)
Moreover, it follows from (14a) and (14b) that the fifth term of (A.6) can be expressed as

k * k k *
Zje/\/i(uz(j) —u+ vg('i) ) (yz( ) -y”)

k+1 k+1 « k N
Z]EN( (+)—u —l—’U(+) ’Ujl-)T(y()_y)
() 4 gy ()
— 2 jen; (v = 252w — ). (A.10)
By substituting (A.7) to (A.10) into (A.6) and summing oves= 1,..., N, we obtain

k ~ -
ly™ =9Ik = 51" = v, b

+(y™® —y* N Dy (y ™ — g)

N
33 @Y — )T -y

i=1 jeN;
al k k
1) * *
+ Z ( ) sz')T(’y,( - )
i=1 EM
N (k) (k) (k—1) (k=1 T
TY Y Y (k) _ox
+2CZZ< - 5 )(yz- -y
=1 jeN;
<0, (A.11)
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wherey(®) = [(ygk))T, ce (yg\];))T]T, A = blkdiag{A1,..., Ay}, Dy, = diag{L?l, . ,L?’N} ® Ik,
Dgs = diag{f,...,08} ® Ix, D, =diag{p1,...,pn} ® Ik, and as defined in (25),
M= A"(D,, — %D,,)A.
It can be observed from (A.3) and also (14a) and (14b) that
u;; v = 05,4, (A.12)
ult) + ol =0 vj,i,k, (A.13)

given the |n|t|alu( ) + 'v( ) =0 V3, i, k which is equivalent to settinpgk) =0VieV (See Step 1 of
Algorithm 2). Besides, due to the symmetric property¥df, for any {«;;}, we have

Z Z Qi —ZZ Ji.jcvi

i=1jEN; i=1 j=

N N
=3 Z[W]i,jaﬁ = Z > a (A.14)

1
By the above two properties, the fourth and fifth terms in the LHS of (A.11) can be written as

S e (Y — ) Ty — )
+Zz PyEACH vty 'U;z')T(yi(k) - y)
= N S en @l )T () — )
+ N Y e (0T — ) Ty — )

= SN Y en @l )Ty )

k k k
=23 S en (u uf “?j)T(“§j+l)_“z(j))

2 2(q (kD) _ )T (kD) — (), (A.15)

C

where the first equality is owing to (A.14), the second equality is by (A.12) and (A.13), and the third
equality is due to (14a). In (A.15)*) (u*) is a vector that stackzs( (uj;) forallj € Ni,i=1,...,N.
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The sixth term in the LHS of (A.11) can be rearranged as follows

k k— k .
SN S e W )Ty — g

i —

k k— k
+e N, ZjeM(yj(- )—y§- Ty —y)

— N N — g — )

k k— k
+ e SN Wil -y )Ty

= c(y® —y*NT(D @ Ix)(y» — §%)
+e(y® —yENT(W @ I ) (y™®) — §*)

=c(y® —y* (D + W) @ Ik](y™* - g%).

] (A.16)
Note thatby the graph theory [32], the normalized Laplacian matrex, D : LDz, haveAmaX(D‘%LD‘%) <
2. Thus, in (A.16),
D+W =2D-L=D:2Iy—D :LD 2)Dz = 0.
By substituting (A.15) and (A.16) into (A.11), we obtain
R e e R
+y® -y TG y"Y - g7)
+ %(u(k“) — ) (W) — 0y <o, (A.17)
where as defined in (24),
G2 Ds+c(D+W)®Ik) = 0.
Note that
(@® — a7 Q) - a%) = Sl — a*[},
+51a® — a3 — el — a3 (A1)
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for any sequence®) and matrix@ > 0. By applying (A.18) to each of the terms in (A.17), one obtains
that

) 1 1
(y® — )T [M + §G] (™ =9+ [[ul — w3

1 gn C) o
<@ =g GV —g7)
1 sy 1
) — - D — )
(@ ® — oy e L AT DAl (0 k-1, A19
2 D) F=p

Now, consider the condition ofi; in (23). It can be easily checked that (23) implies that

2 Pi
= = A.20a
Ofi 9 >0, ( )
L2,
Bilk + Amin(D + W)Ig — %AZT A; -0, (A.20b)

for someo?; < p; < 207, Vi € V, and therefore
M>=0, G- A"D, D,'A 0. (A.21)
With (A.21), (A.19) impliesthe following two resultgR1) ask — oo, the sequencé|ly® — g*||Z +
%Hu(kﬂ) — u*||2 converges for any pair of optimai* andw* to problem (13); anqR2)
yF) —y*=D 0, kD) _ B 0, (A.22)
The result(R1) implies that the sequences ngk)} and {ul(.f)} (so is {vgf)}) are bounded. Let
y=[9)7,...,@n)"7", 4; ando;; be a set of limit points ofy*)}, {uf.f)} and{vg?)}, respectively.
Firstly, by the result ofu*+1) — () — 0 and (14a), we have
gy 0= g2g =y Vi (A.23)
Secondly, by (A.13), we have
Qi + Bij = 0V, i. (A.24)
Thirdly, by applying the result off*) — y*=1) — 0 and (A.23) to (A.4), we have

0= ATV f(Aii) + 0gi(G) + > (g + 01) (A.25)
JEN;
foralli € V. So,y and{4,;,v;;} are in fact a pair of optimal primal and dual solutions to problem (13)
[see (A.1), (A.2) and (A.3)]Therefore, according t(R1), the sequencé |y — g% + L{[u*D) — a3

convergesFurthermore, sincé |y — g%+ |u*+1) —4|2 has a limit value equal to zero, we conclude
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that 1)|y®) — §||Z + 1 |u+) — @|2 in fact converges to zerdhis says thay") — g v i € V and

u*t1) — 4. The proof is thus complete.

Proof of Theorem 1(b): Let 0 < o < 1 be some positive number and rewrite (A.19) as

. 1 . i
(159 = 5B ona + S =) + 1y = 51

1
+ly*Y — g* )20 + = [luFT — )3
C

1, 1. "
+ (y® —y=)T [56‘ - §ATDLpo1A} (y® -y

_ _ 1
< (I = B gna + S = ).
Then, in order to prove linear convergence rate, i.e., for some0,
- 1
(™ = 5" gpana + -l = w[3)
1 k—1 ~ %12 1 k 2
< m(”y( ) _y*H%G—i-aM—i_EHu( ) _u*”2)7
it is sufficient to show that
- _ . 1
9™ = 5" 12 —ayna + Iy = 12 + <D —u®)3

_ 1 1 - 1= _
+ (YW —ym)T {EG - 5A" Dy, D, 1A] (y™ -y D)

~ 1 *
2 01 = 5 B g ona + 20— ).
Recall from (A.5) and (A.10) that

ATV fi( Ay ) — ATV fi(Aiy?) + Biy™ — oY)

(2

k+1 k+1
3 jen, (WY )+ S (0D )

(k) (k) (k—1) (k—1)
Yy, +y; Y +y; _
+ 2C Z]EM < 3 — 3 = 0

By applying (A.12) and (A.13), (A.28) can be expressed as

ATV Ay YY) - ATV f(Ay) + By — oY)

Do gy =gt g )
N CszM(ngk) — B g y](k—1)> _o
After stacking (A.29) fori = 1,..., N, one obtains
AT(Vf(Ay"Y) =V f(AgH) + Gy —y )

+ Y (u*) —ur) = 0.
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(A.26)

(A.27)

(A.28)

(A.29)

(A.30)
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whereV f(Ay®)2((V f1(A1y")T, .. (VA (Axy)T)T and T € RENX2EIK s a linear mapping
matrix satisfying

ZJEN1 (ugljﬂ) US'I;H))
; = YutD), (A.31)
e, (i = ufi )
According to [26], bothu(*+1) andw* lie in the range space 7. Hence, one can show that
I () — w?)|P > o () [ — w3 (A.32)
where o, (Y) > 0 is the minimum nonzero singular value ®f. From (A.30), we have that
IG(y™ —y* D)3
= | - AT (Vf(Ay* ) - Vf(AGH)) - L (D —uh)|3
> (1= | AT (VF(Ay™) — Vf(fh?*))ll%
+(1-- H (D —a)[I3
> (1~ u)Amax(AT&H(w(Ay“”) - VF(Ag))3
(1= )k (D) —
> (1= 1) Amax (AT A)|| (y*= — v)l%rp, 4
(1= ) (0 — (A33)

where the first inequality is due to the fact that

1
la+qlf > (1 - wlal3 + (1 - ;)II(AI% (A.34)

for any a,q and i > 0, the second inequality is obtained by setting> 1 and (A.32), and the last
inequality is by (12). Equation (A.33) implies that

) 0
lu D — |3 < ly®) — y*=V | &
(1 =)ok, ()
o — 1)/\maX(A A) k-1
1™ = )% b, 4 (A.35)
(1 =)ok, () ATDr,A
"Note that the matriXX corresponds to matrid/_ in [26].
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According to (A.35), (A.27) can hold true if

Iy ™ = 71— = 019" =91 grana

_ 1 1 - 1o~ _
(" —y* TG - SATDL, DA (y® - y* )
> Y W C Y TP I
= = 1)o7 (T) :
[y — %20

5(p — DAmax (AT A)
>
c(1 -1z (1)

w/” min

which are respectively satisfied if the following three conditions can be satisfied for &onte

(k=1) _ ~*\[12 ~
1(y ] )IIATDLfA,

(1—a)M = 5(%@ + aM), (A.36a)
le_Litp, D-1Ax 0 G'a (A.36b)
27 20 T T E -0z ()T '
1 (:u - 1))\max (ATA)
D,, —=D,)=§ D;.. A.36
APes =3P 205 T2y P (A360)

Note that, givens;’s in (23), we haveD,, — +D, - 0 and G — %ATDLfD[le > 0 (see (A.20) and
(A.21)); moreover, sinced;’s are full column rank, we hav®1 > 0. Hence there must exist some> 0

such that the three conditions in (A.36) all hold true. |

APPENDIX B

PROOF OFTHEOREM 3

Proof of Theorem 3(a): Letz* = [(z})7,..., (z%)T]? andv* be a pair of optimal primal and dual
solutions to(P2), and letv* = [(v1)”,..., (vx)"]" and{u};, v};,j € Ni}iL, be a pair of optimal primal

and dual solutions to problem (26). Then they respectively satisfy the following optimality conditions

ATV fi(x}) + 0gi(z}) + El v  =0,i €V, (A.37)
SN Bzl =g, (A.38)
0pi(V) + 3+ X (ufy +v5,) =0, i €V, (A.39)
vi=viVjeN,ieV, (A.40)
uf v =0VjeN;,ieV. (A.41)
where dy;(v}) = —E;x} asx} is a maximizer to (6) withv = v} [42]. Under Assumption 1, (A.2)
implies thatv* £ vf = - = v} ando* = 1y ® v*.
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Firstly, by recalling thatpl(k) = ZjeM (u§f> + vj(.’f)), it follows from (41) and (A.39) that
0= B! — Fa) + Tjen (wf ™ + o)
+ed e (ui(k) + uj(-k) - ul-(k_l) - u](-k_l)) (A.42)
:—Eim;—i—%q—l—zja\/i w D ien VSie (A.43)

By multiplying ui(k) — v* to the both sides of (A.43), we obtain

Z (u(k-i-l) + ’U(k+1) —ur — ’U*-)T(I/(k) . V*)

N 1] .77' ] J2 7
JEN;
+e Z (Vi(k) + V](k) . Vi(k—l) B Vj(_k—l))T(Vi(k) —
JEN;
— (@ —an)TEf WY —v) = 0. (A.44)

Secondly, from the optimality of (43), we have that

+ kB LB )~ 15 el + o)
+ Y en Y + Vﬁk_”)] + Pi(a) — )
= ATV fi( AV + dg (") + BT v
+ P(zF) — 2 Y) (A.45)
= AT (VA ) -V i Aie) + ATV fi(Aiw]”)
+og(e") + Bfv{Y + Pi(a”) — ") (A.46)
= ATV fi(Aix}) + 0g(x}) + E] V%, (A.47)
where, in the first equality, we have added and subtrag%E?Eimgk) and defined
P; = filk — g5 Bl Ei; (A.48)

the second equality is due to (33); and the last equality is becapise a maximizer to (6) with

v = v}. Multiplying both (A.46) and (A.47) Witr‘wgk) — x, combining with (A.44), and summing for
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i1=1,...,N, yields

N N
S (Vh(AEY) - V(A )T A — )+ (@ — 2T P - a)+
=1 =1

hE

)

N
(Vi Ay = V fi(Aa)T Ai(@l — 27) + 3 (09(2") — dg(@)))T (") — 2b7)
1 ,

.
Il

N
22 (“z('fﬂ) + ”y('];H) —uf; — o) W — v
i=1 jeN;

N
+ CZ Z (Vi(k) + u](.k) — ui(k_l) — y(.k_l))T(y,(k) —-v})=0.

; (A.49)
=1 jeN;

Similar to (A.15) and by (29), the fifth term in the LHS of (A.49) can be expressed as

N k+1 k+1 k
SN e (Y ol o T )
2

(u(k—i-l) N u*)T(u(k—H) - u(k))
C

(A.50)

Moreover, the sixth term in the LHS of (A.49) can be shown as

k k— k
DD DI (7L L LY ALV

K3 (2 7

k k— k .
+ e e @ T M

=S N = TP — )

K3 K3

k k—1 k N
+eXi, Z;VZI[W]Z](VJ( ) VJ(» ))T(V-( ) _ vy)

= c(v®) — pE=INTQ k) — %), (A.51)
whereQ £ (D + W) ® I,;. By applying (A.7), (A.8), (A.9), (A.50) and (A.51) to (A.49), one obtains

2 1 2
k * k k
||m( )_m HM__Hm( 1) _m( )|| . , pl ~

+(m(k) _ m(k—l))Tp(m(k) —x¥)

+e(@® — p*E=INTQ*) — %)

+ 2(u(k+1) o u*)T(u(k—l-l) o u(k)) <0,

(A.52)
C

wherev®) = [(Lb")T . WT|T, P = blkdiag{P,..., Py} = 0, andD,,, Dy,, D,, A andM
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are all defined below (A.11). After applying (A.17) to (A.52), we obtain
* 1 * C ~ &
™) — @[3y p + EHu(’“*” — 3+ §HV(’“ - 7*Ig

1 c -
< J2®) — @t R+ 2l [+ St - o

1 - 1
_ 5||gc(k) _ plk 1)||§3—ATDLfD;1A _ EHu(k+1) _ u(k)H%
C —
- §||1/(k) — =02, (A.53)
It is easy to show that, under (47), it holds true that
, 2.
o} —C >0 P- pf"ZAZ-TA,->O, VieV, (A.54)

for someo—]%i <pi < 20—]%72. Vi € V, which implies that
P-0, P-A"D, D,"A>0.

Thus, (A.53) implies tha{R1) the sequencéa(®) — m*||12v1+;13 + 2w — w3 + §[lv® — oG

converges for any optimat* to (P2), and optimalo* andu* to problem (26); anqR2)

2®) — =D 0, u* D _ k) 5 0, (A.55)

[o®) — =D 0, (A.56)

Lete = [(#1)7,...,(@n)T]", o =[(1)7,. .., (@oN8)T]7, 4, andd,; bea set oflimit points of {z(*)},
k

) (ul) and (v, respectively. Firstly, by applying the fact af*) — z(*1) — 0 to
(A.46), we have

ATV fi(Aiz) +0g(2) +Ef; =0, VicV. (A.57)
Secondly, by (A.13), we have
Wi + Vi = 0 Yy, 1. (A.58)
Thirdly, applying the fact ofu,l(.fﬂ) — u§f> — 0 to (29a) yields

Zﬁk)_,/](’f)_>0:>,)é;9i:ﬁjVj€/\/i,i€V (A.59)
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The result of") — u](.k) — 0}, i and Assumption 1 implies that®) — 1y @ v*) — 0 for anyi € V.
Since the Laplacian matrif1ly = 0 [32], one obtains

[® — pFD )G

> (v e @ —u" )Ty @ 0 - 1Y)
= (1D + W)Ly — V|3
= (152D - L)1y)[p” — V)3
= X)L N DI = oV, (A.60)
which, when combined with (A.56), further implies that
v ) Loviev. (A.61)
By applying (A.61) to (A.42), one obtains
0=—Ei#i + vq+ > jcn Wij + 2 jen Oji (A.62)
= 00i(01) + N a + X jen, Wij + 2 jen; Vjis (A.63)
wheredy; (v;) = —E;&; since (A.57) implies that; is a maximizer to (6) withv = ; [42]. Finally,
by summing (A.62) fori =1,..., N, followed by applying (A.14) and (A.58), one obtains

SN Eidi=q. (A.64)

The results in (A.57), (A.58), (A.59), (A.63) and (A.64) imply thiaandz are in fact a pair of optimal
primal and dual solutions t(P2), andz and {u;j,v;;} are a pair of optimal primal and dual solutions
i k P
to problem (26) [see (A.37) to (A.41)]. Thusgccording to(R1), the sequencéz*) — lRps1p +
Hluk+D — a3 + ¢[lv® — 5|%, in fact converges to zero and thereby®) — &, u*+1) — 4 and
v S oviev |
Proof of Theorem 3(b): We assume that;(x;) = f;(A;x;), A; has full column rank and; has full
row rank, for alli € V. Denoter®) £ |z*) — a:*HiMJF%P + Lut — w3 + 5™ — ¥ for
somea > 0. One can write (A.53) as follows

r® 4 |z®) - m*H%l—a)M +[|l2*Y — @2

1
k1 k k—1)2
<plhh - 5“‘10( )~ al )Hp_;ATDLfD;lA

1 & _
=l — a3 = e ® R,
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Therefore, it suffices to show that, for soie- 0,
l® — |2,y + 25 — 220

1 k k—1)12 1 k+1 k)12
+3llz® - 2t 2 a3

-1A™D, . D;'A
c _
+ §Hl/(k) — vV > 5B, (A.65)
Firstly, from (A.45) and (A.47), we have that (withogts)

AL (VA" Y) Vi Aa)) + BN P — )

7 K3

n B(m(k) - mgk_n

: )=0. (A.66)
By applying (A.34) to (A.66), we have, for somg > 1,
1P () — )2
> (1 — )| AT (Vfi( Az ™)~V fi(Age)) |2
+(1=-o[BT (-

> (1 - 1) Lpid2 (AT A |z — 2)3

1
- min(BED) [ — 07|12, (A67)
1

where the second inequality is obtained by (12). Note bat W = 2D — L < 2D asL = 0 [32].

Hence, we have

co - N
EHV(M —*|If < bl — 0¥ |he
< céTlH(a:(k) — a:(k_l))H%;Tp + céTQHw(k_l) — a:*)”%, (A.68)

—DAZ, (AT A)IA
)} > 0 andry = max;cy {(m ( )_Tﬁ,(\m;(]gi)]la?
151 ¢

where the second inequality is due to (A.67) = max;cy { (I_L)LW EET

0 are finite given thakE;’s have full row rank.

Secondly, upon stacking (A.43) for alle V' and applying (A.3) and (A.12), one obtains
T (u* ) —u*) + Q™ — p*-b)
—E(z® —2z*) =0, (A.69)

whereE = blkdiag{Eq,...,Ex} andY is given in (A.31). Analogously, by applying (A.34) to (A.69)
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and by (A.32), one can show that, for some > 1,

1) 1)
h (k+1) *2<_ (k) _ x2
u u X €T
C” ”2 = ¢ 3” ”E]TE]

) —1)c _
L= e w6 |3, (A.70)

T3

wherer; = (1 — L)o2. () > 0. By (A.68) and (A.70), sufficient conditions for satisfying (A.65) are

12 /7 min

therefore given byYi € V,

2 Piy AT g O ,r
— o — N ; >~ _ P — A . .
(1 —a—da)(oy, 5 JA; A; = 2R + = A; A, (A.71a)
(o3, — %)A?Ai > oI, (A.71b)
1 L3 o7 T
—pP— AT A; = con PT P, (A.71c)
2 2p;
1 8pe—1) (A.71d)
2 T3
Under (A.54) and full column rankA;’s, we see that (A.71)s true for somed > 0. The proof is
complete. |
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