Phase transformations in nanograin materials under high pressure and plastic shear: nanoscale mechanisms

Thumbnail Image
File
2014_LevitasVI_PhaseTransformationsInNanograin.pdf (405.55 KB)

File Embargoed Until: (8000-01-01)
Date
2014-01-01
Authors
Levitas, Valery
Javanbakht, Mahdi
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Aerospace Engineering

The Department of Aerospace Engineering seeks to instruct the design, analysis, testing, and operation of vehicles which operate in air, water, or space, including studies of aerodynamics, structure mechanics, propulsion, and the like.

History
The Department of Aerospace Engineering was organized as the Department of Aeronautical Engineering in 1942. Its name was changed to the Department of Aerospace Engineering in 1961. In 1990, the department absorbed the Department of Engineering Science and Mechanics and became the Department of Aerospace Engineering and Engineering Mechanics. In 2003 the name was changed back to the Department of Aerospace Engineering.

Dates of Existence
1942-present

Historical Names

  • Department of Aerospace Engineering and Engineering Mechanics (1990-2003)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Aerospace Engineering
Abstract

There are two main challenges in the discovery of new high pressure phases (HPPs) and transforming this discovery into technologies: finding conditions to synthesize new HPPs and finding ways to reduce the phase transformation (PT) pressure to an economically reasonable level. Based on the results of pressure–shear experiments in the rotational diamond anvil cell (RDAC), superposition of plastic shear on high pressure is a promising way to resolve these problems. However, physical mechanisms behind these phenomena are not yet understood. Here, we elucidate generic mechanisms of coupled nucleation and evolution of dislocation and HPP structures in the nanograin material under pressure and shear utilizing the developed advanced phase field approach (PFA). Dislocations are generated at the grain boundaries and are densely piled up near them, creating a strong concentrator of the stress tensor. Averaged shear stress is essentially larger in the nanograin material due to grain boundary strengthening. This leads to the increase in the local thermodynamic driving force for PT, which allows one to significantly reduce the applied pressure. For all cases, the applied pressure is 3–20 times lower than the PT pressure and 2–12.5 times smaller than the phase equilibrium pressure. Interaction between nuclei leads sometimes to their coalescence and growth of theHPP away from stress concentrators. Plasticity plays a dual role: in addition to creating stress concentrators, it may relax stresses at other concentrators, thus competing with PT. Some ways to optimize the loading parameters have been found that lead to methods for controlling PT. Since such a local stress tensor with high shear stress component cannot be created without plastic deformations, thismay lead to newtransformation paths and phases, which are hidden during pressure induced PTs.

Comments

This article is from Nanoscale6 (2014): 162-166, doi:10.1039/c3nr05044kPosted with permission.

Description
Keywords
Citation
DOI
Copyright
Wed Jan 01 00:00:00 UTC 2014
Collections