COMPUTER EVALUATION OF REAL-TIME
X-RAY AND ACOUSTIC IMAGES

M. H. Jacoby, R. S. Loe and P. A. Dondes
Lockheed Missiles and Space Company, Inc.
Sunnyvale, Calif. 94088-3504

ABSTRACT

The weakest link in the inspection process is the subjective interpretation of data by inspectors. To overcome this troublesome fact computer based analysis systems have been developed. In the field of nondestructive evaluation (NDE) there is a large class of inspections that can benefit from computer analysis. X-ray images (both film and fluoroscopic) and acoustic images lend themselves to automatic analysis as do the one-dimensional signals associated with ultrasonic, eddy current and acoustic emission testing.

Computer analysis can enhance and evaluate subtle details. Flaws can be located and measured, and acceptance decisions made by computer in a consistent and objective manner.

This paper describes the interactive, computer-based analysis of real-time x-ray images and acoustic images of graphite/epoxy adhesively bonded structures.

INTRODUCTION

In general, there are three classes of inspection that lend themselves to automatic, computer-based analysis; those tasks that are too dangerous, those that are too difficult, and those that aren't worth peoples' time. The chief example of the dangerous class is inspections around nuclear reactors. There is a big effort under way to automate these tasks. Jobs in the not-worth-it category have been automated for years. These are usually single-purpose system—checking the presence of labels on bottles, for
example. In NDE there exists a class of inspections much too difficult for inspectors to perform with an acceptable degree of consistency. These involve assessing complex visual data. It is this type of inspection that will be discussed in this report.

Although systems for the computer-based processing of visual data have been in use for years, these methods have not found wide acceptance on the factory floor. They have for the most part been used in laboratory. Over twenty years ago Moore worked in metallography. Janney and his associates at Los Alamos have described many applications of computer-based image analysis. Nevatia surveyed the industrial field in 1978. Pearson, Firschein, and Eppler have described techniques for the fully automated inspection of defects imaged on x-ray film. Many more examples could be cited.

The purpose of our work is to develop, by building on these previous efforts, an interactive system that will analyze x-ray and acoustic images. This paper presents examples of computer evaluations of real-time x-ray and acoustic images that are too complicated for inspectors to evaluate accurately.

METHODS

The steps listed below are used to acquire and evaluate images.

X-ray

Images on film or formed on a fluoroscopic conversion screen are scanned with a TV camera. To obtain accurate measurements of defect size the parameters listed below are rigidly controlled.

- Stability, sweep linearity, geometrical distortion
- Block level and shading
- Output signal voltage, synchronization, S/N ratio, resolution
- Blemishes, persistence, microphonics

Acoustics

Acoustic images are acquired by a through-transmission, water coupled, scanning system which moves the sending/receiving transducers horizontally across a fixed test piece. At the end of one horizontal scan line the transducers move vertically to the next station and scan back again horizontally. This pattern is repeated for 512 vertical steps. Each horizontal line contains 512 pulses, with each pulse digitized to eight bits. The acoustic image is stored in memory under computer control where it can be evaluated automatically.
Video

Images on video tape collected at remote inspection sites can also be processed. The taped video signal is sampled, digitized, and stored in image memory. The video recorder should have 525 line interlaced format, the ETA RS-170 standard. Tape motion needs to be controlled by an external sync signal through a capstan servo on the video recorder.

Image Evaluation

Evaluation methods have been described previously10. To review briefly; processing is divided into three parts:

- Noise Reduction
- Thresholding
- Measurement

These techniques are familiar. The important consideration for inspection is how these techniques are applied. Inspectors have always used reference images to evaluate complicated x-rays. The American Society for Testing and Materials (ASTM), publishes x-ray pictures showing flaws in castings. Each condition depicted is given a grade. The inspector compares the test image with the reference images and assigns a grade to the test image. With computer evaluation, this subjective method is replaced by a repeatable, quantitative evaluation of the test image, an evaluation that doesn't merely grade the image but actually counts and dimensions each defect. This improved evaluation is absolutely necessary to establish accurate correlations between inspection data and performance data.

EXAMPLES

These examples are taken from the real-time x-ray and acoustic imaging of graphite/epoxy composite structures. Unlike homogeneous metallic structures, composites as the name implies are a conglomeration of flaw-like indications. Often as many as 40 or 50 per square inch. It is difficult for an inspector to count and measure these indications accurately.

1. Real-time x-ray evaluation of destructive test specimens.

Over 1000 tensile and compression test specimens were inspected by real-time x-ray and the resulting images evaluated by computer. Figure 1 is the digitized x-ray image of a group of tensile specimens. The operator evaluates each separately. Figure 2 is the binary image of one particular specimen. Figure 3 shows the printout listing the voids in the specimen. All 1000 specimens
were evaluated in this manner. Based on this data, realistic acceptance standards were established for graphite/epoxy structures, standards less rigid than those based on theoretical considerations.

![Figure 1. Tensile Specimens](image1)

![Figure 2. Binary Image](image2)

NUMBER OF DEFECTS GROUPED BY SIZE BINS:

<table>
<thead>
<tr>
<th>SIZE BIN</th>
<th>NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>< .050 INCHES</td>
<td>45</td>
</tr>
<tr>
<td>.050 - .080 INCHES</td>
<td>12</td>
</tr>
<tr>
<td>.080 - .120 INCHES</td>
<td>8</td>
</tr>
<tr>
<td>.120 - .180 INCHES</td>
<td>3</td>
</tr>
<tr>
<td>.180 - .250 INCHES</td>
<td>0</td>
</tr>
<tr>
<td>> .250 INCHES</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 3. Defect List

2. Adhesive bond evaluation by acoustic imaging

Graphite/epoxy composites cannot be joined by welding as can metals and thermoplastics. The choice is between adhesive bonding and mechanical fasteners, with bonding the preferred method mainly due to lower weight and better strength. All-bonded graphite/epoxy composite structures have not as yet been built primarily because it is extremely difficult to inspect for bond integrity. Acoustics is the
preferred modality for inspecting adhesive bonds. Chas-
kelis11 has approached the problem from the fundamentals
of ultrasonic wave propagation in solids. Williams12 has
expanded on this work using pattern recognition to assess
adhesive properties. Our approach is strictly determinis-
tic, no bond properties are measured as such. Test speci-
mens are fabricated in a way to produce a wide variety of
adhesive bond strengths. The bonded region is then probed
with acoustic energy in the 10 to 50 MHz range. The meth-
ods discussed above are used to count and measure pixels
below a threshold. These numbers are then correlated with
adhesive bond performance during pull tests.

Figure 4 is an acoustic image of the bonded region of a
test specimen. Figure 5 superimposes the histogram of the
intensity values over the image. Figure 6 is the binary
image and Figure 7 the list of indications below the
threshold. The total area of the indications is then cor-
related with bond strength.

SUMMARY

Accurate and consistent evaluations of real-time x-ray and
acoustic images of graphite/epoxy structures often exceed the cap-
abilities of inspectors. Computer evaluation is required.

Figure 4. Acoustic Image of
Bond Region

Figure 5. Histogram
DEFECT OUTPUT LIST

<table>
<thead>
<tr>
<th>GRP.NO.</th>
<th>CNTR X</th>
<th>CNTR Y</th>
<th>QUMCAV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>186</td>
<td>26</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>187</td>
<td>30</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>194</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>209</td>
<td>32</td>
<td>21</td>
</tr>
<tr>
<td>2</td>
<td>202</td>
<td>31</td>
<td>78</td>
</tr>
<tr>
<td>6</td>
<td>193</td>
<td>44</td>
<td>90</td>
</tr>
<tr>
<td>7</td>
<td>205</td>
<td>55</td>
<td>92</td>
</tr>
<tr>
<td>8</td>
<td>186</td>
<td>59</td>
<td>99</td>
</tr>
<tr>
<td>9</td>
<td>182</td>
<td>79</td>
<td>114</td>
</tr>
<tr>
<td>10</td>
<td>168</td>
<td>83</td>
<td>121</td>
</tr>
<tr>
<td>11</td>
<td>142</td>
<td>171</td>
<td>127</td>
</tr>
<tr>
<td>12</td>
<td>145</td>
<td>173</td>
<td>129</td>
</tr>
<tr>
<td>13</td>
<td>129</td>
<td>329</td>
<td>130</td>
</tr>
<tr>
<td>14</td>
<td>127</td>
<td>443</td>
<td>131</td>
</tr>
<tr>
<td>15</td>
<td>146</td>
<td>460</td>
<td>132</td>
</tr>
<tr>
<td>16</td>
<td>127</td>
<td>464</td>
<td>133</td>
</tr>
<tr>
<td>17</td>
<td>198</td>
<td>467</td>
<td>134</td>
</tr>
<tr>
<td>18</td>
<td>129</td>
<td>478</td>
<td>136</td>
</tr>
<tr>
<td>19</td>
<td>133</td>
<td>478</td>
<td>137</td>
</tr>
</tbody>
</table>

Figure 6. Binary Image

Figure 7. Defect List

REFERENCES

