Perceptions and estimates of error rates in forensic science: A survey of forensic analysts

Daniel C. Murrie
University of Virginia

Brett O. Gardner
University of Virginia

Sharon Kelley
University of Virginia

Itiel Dror
University of Virginia

Follow this and additional works at: https://lib.dr.iastate.edu/csafe_conf

Part of the Forensic Science and Technology Commons

Recommended Citation
https://lib.dr.iastate.edu/csafe_conf/46
Perceptions and estimates of error rates in forensic science: A survey of forensic analysts

Disciplines
Forensic Science and Technology

Comments
Posted with permission of CSAFE.

This presentation is available at Iowa State University Digital Repository: https://lib.dr.iastate.edu/csafe_conf/46
LEGAL ADMISSIBILITY OF SCIENTIFIC EVIDENCE

• Trial courts evaluate whether “an expert's testimony pertain[s] to ‘scientific knowledge’” in part by considering the “known or potential rate of error”

• U.S. Supreme Court decisions
 • Daubert v. Merrill Dow Pharmaceuticals, Inc. (1993),
 • Kumho Tire Co. v. Carmichael (1999)

• Other countries have similar standards
WHAT DO WE KNOW ABOUT ERROR RATES?

- Historically, denial of error
- NAS (2009) emphasized need for known error

WHAT DO WE KNOW ABOUT ERROR RATES?

- PCAST (2016) reported,

 - “In response to the 2009 NRC report, the latent print analysis field has made progress in recognizing the need to perform empirical studies to assess foundational validity and measure reliability” (p. 87-88).

 - “Remarkably, there have been only two black-box studies that were intentionally and appropriately designed to assess validity and reliability”

 - Ulery et al., 2011 FBI study: 1 in 604 false positives
WHAT DO WE KNOW ABOUT ERROR RATES?

- PCAST report identified only one appropriately designed study regarding firearm analysis
 - (i.e Baldwin et al., 2014 unpublished)
 - False positive errors: 1 in 66

- Studies of handwriting analysis have typically suggested that analysts offer erroneous conclusions ~40% of the time, although error rates vary widely

TYPES OF ERROR

<table>
<thead>
<tr>
<th>Ground Truth</th>
<th>Identification (Same source)</th>
<th>Exclusion (Different source)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification</td>
<td>Correct identification</td>
<td>False Positive</td>
</tr>
<tr>
<td>Exclusion</td>
<td>False Negative</td>
<td>Correct Exclusion</td>
</tr>
<tr>
<td>Inconclusive</td>
<td>False Negative</td>
<td>False Positive</td>
</tr>
</tbody>
</table>
WHAT ABOUT PROFICIENCY TESTS?

• CTS reports ~ 12% of participants did not correctly identify all prints

• But, should not consider this an error rate in the field

• “This report contains the data received from the participants in this test. Since these participants are located in many countries around the world, and it is their option how the samples are to be used (e.g., training exercise, known or blind proficiency testing, research and development of new techniques, etc.), the results compiled in the Summary Report are not intended to be an overview of the quality of work performed in the profession and cannot be interpreted as such...These comments are not intended to reflect the general state of the art within the profession.”

• (CTS reports p. 1)

PUBLIC PERCEPTION OF FORENSIC SCIENCE ACCURACY

• U.S. laypersons estimate accuracy rates from 78% (alcohol/drug tests) to 95% (DNA)
 • Lieberman et al. (2008)

• U.S. laypersons estimate the false positive rate from:
 • 1 in 10 million (DNA)
 • 1 in 5.5 million (latent print)
 • 1 in 1 million (bitemark, microscopic hair),
 • 1 in 100,000 (handwriting)
 • Koehler (2017)

• Australian laypersons estimated error rates in forensic science testing (M = 39%) and analysis (M = 45%)
 • Ribeiro, et al. (in press).
PUBLIC PERCEPTION OF LATENT PRINT RELIABILITY

<table>
<thead>
<tr>
<th></th>
<th>Somewhat Reliable</th>
<th>Reliable</th>
<th>Very Reliable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laypersons</td>
<td>20%</td>
<td>51%</td>
<td>26%</td>
</tr>
<tr>
<td>Defense Attorneys</td>
<td>39%</td>
<td>23%</td>
<td>6%</td>
</tr>
</tbody>
</table>

Garrett & Mitchell, 2016

WHAT DO FORENSIC SCIENTISTS BELIEVE ABOUT ERROR...
CURRENT STUDY

• Forensic science analysts provide information directly to the courts, including information about error

• Efforts to reform or improve will be influenced by what forensic scientist believe about error

• So what do analysts—who actually perform analyses—believe about error?

METHOD

Participants
• 183 analysts
 • Master’s degree (49%)
 • Bachelor’s degree (43%)
• Grouped into 4 broad disciplines:
 • Biology (46%)
 • Pattern Evidence (24%)
 • Chemistry (18%)
 • Crime Scene Investigation (7%)

Survey
• Administered written survey during trainings
• Questions about:
 • Error rates in discipline
 • Prioritizing errors
 • Where error rates found/published
1. When you are examining evidence, how do you weigh and prioritize the risk of each type of error? Please indicate a number on the scale that prioritizes your personal values and goals.

 I minimize the risk of false positives, and therefore tolerate greater risk of false negatives.

 I accept equal risk of false positives and false negatives.

 I minimize the risk of false negatives, and therefore tolerate greater risk of false positives.

2. How does your lab or workplace weigh and prioritize the risk of each type of error? Please indicate a number on the scale that prioritizes your lab or workplace's values and goals.

 Minimizes the risk of false positives, and therefore tolerates greater risk of false negatives.

 Accepts equal risk of false positives and false negatives.

 Minimizes the risk of false negatives, and therefore tolerates greater risk of false positives.

3. How does your discipline as a whole (e.g., firearms and toolmarks, latent prints) weigh and prioritize the risk of each type of error? Please indicate a number on the scale that prioritizes your discipline's values and goals.

 Minimizes the risk of false positives, and therefore tolerates greater risk of false negatives.

 Accepts equal risk of false positives and false negatives.

 Minimizes the risk of false negatives, and therefore tolerates greater risk of false positives.

PART 2

1. Which of these is closest to the rate of false positive errors in your discipline? In other words, an experienced forensic scientist in your discipline would mistakenly conclude a match or identification where none truly exists approximately 1 time in ____:

☐ 2
☐ 10
☐ 100
☐ 1,000
☐ 10,000
☐ 100,000
☐ 1,000,000
☐ 1,000,000,000 (one billion)
☐ 1,000,000,000,000 (one trillion)
☐ 1,000,000,000,000,000 (one quadrillion)
☐ Less than 1 time in one quadrillion
☐ Such an error is impossible.

Note: Scale drawn from Kohler (2017), for comparison to layperson estimates.
ESTIMATED ERROR RATES

- **False positives**: 1 in 10,000 (0.01% error rate)
- **False negatives**: 1 in 100 (1.0% error rate)
- Older analysts proved higher estimates of false positive and negative errors
 - 6% - 8% of variance explained by age

Research funded by the Center for Statistics and Applications in Forensic Evidence (CSAFE) - forensicstats.org
ESTIMATED ERROR RATES

Pattern Evidence (n = 32)

Chemistry (n = 20)

Research funded by the Center for Statistics and Applications in Forensic Evidence (CSAFE) - forensicstats.org
WHERE DO YOU FIND ERROR RATES?

What is the basis of your reported error rates in questions 1 and 2? Please be as specific as possible (i.e., if your response comes from a specific publication or document, please identify that publication or document). Imagine that you were being asked this question in court and had to convey to the court exactly what source you used.

☐ Source: __

☐ I do not know of any specific source that documents known error rates in my discipline.

SOURCE OF ERROR ESTIMATES

- No source provided
- Provided source
- "I don't know..."
- Work/Training experience
- Scientific journal/study (6.6% of all analysts)
- Proficiency testing
- Personal belief/Lab procedures

Research funded by the Center for Statistics and Applications in Forensic Evidence (CSAFE) - forensicstats.org
SOURCE OF ERROR ESTIMATES BY DISCIPLINE

<table>
<thead>
<tr>
<th>Discipline</th>
<th>Error Estimates (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology</td>
<td>85.7%</td>
</tr>
<tr>
<td>Crime Scene Investigation</td>
<td>77.8%</td>
</tr>
<tr>
<td>Chemistry</td>
<td>65.5%</td>
</tr>
<tr>
<td>Pattern Evidence</td>
<td>63.2%</td>
</tr>
<tr>
<td>Other</td>
<td>65.5%</td>
</tr>
</tbody>
</table>

ACCEPTABILITY OF ERROR TYPES

Although forensic scientists examining evidence strive for perfect accuracy, no amount of training, skill, dedication, or perseverance can eliminate all errors. In determining whether evidence does or does not support a match or identification, some cases present more of a challenge than others, and there is always at least some risk of making a wrong determination. Forensic scientists examining evidence must always balance the risk of false positives versus false negatives:

- A **false positive** is the error of determining that evidence does support a match or identification, when a match or identification does not truly exist.

- A **false negative** is the error of determining that evidence does not support a match or identification, when a match or identification truly does exist.

The risk of false positive and false negative errors are interrelated, such that avoiding one type of error increases the risk of the other type of error. For example, a latent print analyst who is very careful not to conclude a match exists where none exists (i.e., avoid false positive errors) is more likely to miss a match that exists (i.e., make a false negative error). Conversely, an analyst who is very careful not to miss a match (i.e., avoid false negative errors) is more likely to conclude a match exists where none exists (i.e., make a false positive error).
ACCEPTABILITY OF ERROR TYPES

- Greater work experience = Greater preference to minimize false positives and tolerate more false negatives
 - 5% of variance explained

- Analyst estimates varied according to discipline
 - 5% of variance explained

<table>
<thead>
<tr>
<th>Pattern Evidence</th>
<th>Biology</th>
<th>Crime Scene Investigation</th>
<th>Chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyst</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workplace</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discipline</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Research funded by the Center for Statistics and Applications in Forensic Evidence (CSAFE) - forensicstats.org
DISCUSSION

• Analysts most commonly estimated:
 • False positive errors: 1 in 10,000 (0.01% error rate)
 • False negative errors: 1 in 100 (1% error rate).

• These rates are lower than the smallest error rates reported in the literature.

• Over 1 in 5 examiners estimated the risk of each type of error to be “impossible” or extremely low (i.e., ≤1 in one billion)

DISCUSSION

• Daubert (1993) advises judges to consider the “known or potential rate of an error” when admitting scientific evidence.

• Analysts provided widely divergent estimates of error in the same fields—with some estimates impossibly low.

• Most analysts could not identify where error rates for their discipline were published or available
 • ≤7% could identify a study or document
DISCUSSION

• The field has limited data on error rates in some disciplines

• But such data is becoming available

• Analysts were rarely familiar with the details of this data

• Rather, they tended to estimate error rates were quite low

• These estimates may be what are conveyed to courts, and what motivate improvement efforts…