
Agricultural and Biosystems Engineering
Conference Proceedings and Presentations Agricultural and Biosystems Engineering

6-2010

Detecting and categorizing hard-coding errors in
Excel Spreadsheets using Visual Basic for
Applications (VBA)
Vertika Rawat
Iowa State University

D. Raj Raman
Iowa State University, rajraman@iastate.edu

Robert P. Anex
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/abe_eng_conf

Part of the Bioresource and Agricultural Engineering Commons

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/
abe_eng_conf/55. For information on how to cite this item, please visit http://lib.dr.iastate.edu/
howtocite.html.

This Conference Proceeding is brought to you for free and open access by the Agricultural and Biosystems Engineering at Iowa State University Digital
Repository. It has been accepted for inclusion in Agricultural and Biosystems Engineering Conference Proceedings and Presentations by an authorized
administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fabe_eng_conf%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fabe_eng_conf%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/abe_eng_conf?utm_source=lib.dr.iastate.edu%2Fabe_eng_conf%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/abe_eng_conf?utm_source=lib.dr.iastate.edu%2Fabe_eng_conf%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/abe_eng?utm_source=lib.dr.iastate.edu%2Fabe_eng_conf%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/abe_eng_conf?utm_source=lib.dr.iastate.edu%2Fabe_eng_conf%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1056?utm_source=lib.dr.iastate.edu%2Fabe_eng_conf%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/abe_eng_conf/55
http://lib.dr.iastate.edu/abe_eng_conf/55
http://lib.dr.iastate.edu/howtocite.html
http://lib.dr.iastate.edu/howtocite.html
mailto:digirep@iastate.edu

Detecting and categorizing hard-coding errors in Excel Spreadsheets using
Visual Basic for Applications (VBA)

Abstract
Electronic spreadsheets play an indispensable role in the simulation, modeling, and analysis of bioenergy
systems, and their results have the ability to affect decision-making significantly. Prior research has shown that
spreadsheets are highly error-prone, and that a large percentage of these errors are difficult to detect. To that
end, we developed computer code (implemented in Visual Basic for Applications, running under Microsoft
Excel) to detect a particularly insidious form of spreadsheet error: the hard-coding error. These errors are
defined as the presence of one or more unreferenced numerical values in a cell formula. Hard-coding errors
are dangerous because they are a likely source of erroneous constants and/or non-updating assumptions. The
code was used to audit six spreadsheets relevant to bioenergy systems, three developed in our lab (and
reported on in other sessions at the AIM), and three in the public domain. The preliminary audit results were
analyzed to understand the nature and distribution of hard-coding errors. The preponderance and diversity of
hard-coding errors in these spreadsheets motivated us to subcategorize them. Together, the hard-coding error
detection program and sub-categorization program provide a robust and rapid means of detecting and
categorizing multiple types of hard-coding errors. Use of these programs could increase the reliability of
spreadsheet software used in simulation, modeling, and analysis of bioenergy systems.

Keywords
Hard-coding errors, non-updating assumptions, bioenergy, Visual Basic for Applications, VBA, Excel, error
detection

Disciplines
Bioresource and Agricultural Engineering

Comments
This is an ASABE Meeting Presentation, Paper No. 1009201.

This conference proceeding is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/abe_eng_conf/55

http://elibrary.asabe.org/abstract.asp?aid=29827&t=3&dabs=Y&redir=&redirType=
http://lib.dr.iastate.edu/abe_eng_conf/55?utm_source=lib.dr.iastate.edu%2Fabe_eng_conf%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages

The authors are solely responsible for the content of this technical presentation. The technical presentation does not necessarily
reflect the official position of the American Society of Agricultural and Biological Engineers (ASABE), and its printing and distribution
does not constitute an endorsement of views which may be expressed. Technical presentations are not subject to the formal peer
review process by ASABE editorial committees; therefore, they are not to be presented as refereed publications. Citation of this
work should state that it is from an ASABE meeting paper. EXAMPLE: Author's Last Name, Initials. 2010. Title of Presentation.
ASABE Paper No. 10----. St. Joseph, Mich.: ASABE. For information about securing permission to reprint or reproduce a technical
presentation, please contact ASABE at rutter@asabe.org or 269-429-0300 (2950 Niles Road, St. Joseph, MI 49085-9659 USA).

An ASABE Meeting Presentation

Paper Number: 1009201

Detecting and categorizing hard-coding errors in Excel
Spreadsheets using Visual Basic for Applications (VBA)

Vertika Rawat, Graduate Research Assistant

Iowa State University, Agricultural & Biosystems Engineering Department,
vrawat@iastate.edu.

D. Raj Raman, Associate Professor, P.E.
Iowa State University, Agricultural & Biosystems Engineering Department,
rajraman@iastate.edu.

Robert P. Anex, Professor
Iowa State University, Agricultural & Biosystems Engineering Department,
rpanex@iastate.edu.

Written for presentation at the
2010 ASABE Annual International Meeting

Sponsored by ASABE
David L. Lawrence Convention Center

Pittsburgh, Pennsylvania
June 20 – June 23, 2010

Abstract. Electronic spreadsheets play an indispensable role in the simulation, modeling, and
analysis of bioenergy systems, and their results have the ability to affect decision-making
significantly. Prior research has shown that spreadsheets are highly error-prone, and that a large
percentage of these errors are difficult to detect. To that end, we developed computer code
(implemented in Visual Basic for Applications, running under Microsoft Excel) to detect a
particularly insidious form of spreadsheet error: the hard-coding error. These errors are defined
as the presence of one or more unreferenced numerical values in a cell formula. Hard-coding
errors are dangerous because they are a likely source of erroneous constants and/or non-updating
assumptions. The code was used to audit six spreadsheets relevant to bioenergy systems, three
developed in our lab (and reported on in other sessions at the AIM), and three in the public
domain. The preliminary audit results were analyzed to understand the nature and distribution of
hard-coding errors. The preponderance and diversity of hard-coding errors in these spreadsheets
motivated us to subcategorize them. Together, the hard-coding error detection program and sub-
categorization program provide a robust and rapid means of detecting and categorizing multiple
types of hard-coding errors. Use of these programs could increase the reliability of spreadsheet
software used in simulation, modeling, and analysis of bioenergy systems.

Keywords. Hard-coding errors, non-updating assumptions, bioenergy, Visual Basic for
Applications, VBA, Excel, error detection

1. INTRODUCTION
The versatility of spreadsheets has led to their extensive application at all levels of organizations.
Because of their wide use, concerns have been raised about the integrity and validity of
spreadsheets (Galletta et al., 1997), and other authors have shown that spreadsheets are highly
error-prone (Powell et al., 2009). Approximately 80% of errors documented by EuSpRiG
(European Spreadsheet Risks Interest Group) were in a formula (Powell et al., 2008). Users
cannot readily detect the majority of such errors, which could result in potentially devastating
miscalculations in many settings. The typical approach to debugging spreadsheets involves doing
hand calculations to verify the results – unfortunately, this approach is time consuming and is
frequently skipped or done cursorily. Furthermore, even if the spreadsheet is providing correct
results with one set of input data, hidden errors can mean that when inputs change, incorrect
values result. A systematic and automated method of error detection could serve to reduce error
rates and make spreadsheets more reliable.

A first step in developing any type of automated error detection system is to characterize the
types of errors that can occur. To this end, Rajalingham et al. (2000) have proposed the most
elaborate taxonomy for spreadsheet errors. In their taxonomy, errors are broadly categorized as
system-generated and user-generated. User-generated errors are further decomposed into
qualitative and quantitative errors. Quantitative errors are numerical errors that lead to incorrect
bottom-line values, as opposed to qualitative errors, which do not immediately produce incorrect
numeric values but degrade the quality of the model.

Quantitative errors are further subdivided into Accidental errors (due to typing errors), Omission
errors (failure to consider one or more important parameters), Alteration errors (making changes
to the model) and Duplication errors (re-creating elements of the model). They could also fall

into the categories of Domain Knowledge errors (stemming from a lack of knowledge) or
Mathematical Representation errors (due to inaccurate construction of a formula) or
Logic/Syntax errors (due to erroneous logic or syntax).

Qualitative errors are generally trifurcated into Structural errors (resulting from flaws in the
design or lay-out of the model), Temporal errors (from the use of data which has not been
updated), and Maintainability errors (from spreadsheet features which make it difficult to be
modified). An extremely common maintainability error is the so-called hard-coding error.
Hard-coding errors occur when raw numerical values are used in a formula instead of referenced
variables. The term “hard-coded” applies because it renders the formula, and hence the whole
spreadsheet model, less flexible to changing values in future scenarios.

Hard-coding errors, which are qualitative errors, can also result in duplication errors, which are
quantitative errors. The typical hard-coding duplication error occurs when a constant assumed
value is hard-coded. This causes two possible negative consequences. First, the constant buried
in a cell formula is easily forgotten when updating a spreadsheet. For example, if current diesel
prices are hard-coded into a cell, this cell will contain a non-updating assumption value and will
cause the workbook to provide erroneous results if a user forgets to update this value. Second,
users may use different numerical values for the same constant in different cells. For example,
3.8 L/gal in one cell and 3.785 L/gal in another. These sorts of inconsistencies lead to bottom-
line errors in the workbook.

Powell et al., (2009) applied a spreadsheet auditing protocol to 50 diverse operational
spreadsheets, and reported that hard-coding errors were the most common (43.5 % of erroneous
cells), followed by logic errors (28.6% of erroneous cells). The remaining categories including
omission, duplication, and accidental errors together accounted for less than 5% of erroneous
cells.

In this paper we report on the results of a spreadsheet auditing effort in which hard-coding errors
were automatically identified and subcategorized, thus addressing a need for such information
identified by prior workers in the field (Powell et al., 2008). We were initially unaware of the
auditing and error-checking tools available in Excel (e.g., XL Analyst,
http://www.codematic.net/, Spreadsheet Professional, http://www.spreadsheetinno vations.com/),
and developed the code for hard-coding error detection in-house. As we used our code, we
realized the importance of sub-categorizing hard-coding errors when dealing with engineering
spreadsheets, and added a second program with sub-categorization capabilities. These
capabilities extend beyond what is available commercially, to our knowledge. We then applied
the pair of programs to multiple bioenergy-relevant spreadsheets.

2. MATERIALS & METHODS
2.A OVERVIEW

Both programs developed in this project used Microsoft Excel’s built-in visual basic for
applications (VBA) programming capability. The first program identified hard-coding errors and
presented a summary of error statistics along with a new worksheet tab containing a detailed
error report. This tab was labeled HCER (Hard-Coding Error Report). The first program also
flagged error cells using shading and font bolding to make it easy for users to locate them. The
second program scanned the HCER summary, and categorized the errors into four unique types.

2.B ALGORITHMS
The first program stores all worksheet names in the workbook in a string array. Worksheets that
are strictly charts/graphs are automatically skipped. The program displays the worksheet count
and queries the user to see if there are any protected sheets in the workbook. If there are any
protected worksheets, the cell shading and bolding functions are disabled. Because the detection
algorithm can be misled by worksheet names containing numbers (e.g., “TAB_44”), the user is
prompted to enter new names for any such worksheets, and the program assigns the new names.

Any excel spreadsheet is made up of a thousands of rows and columns, with most going unused.
The program uses built-in functions to find row and column bounds of data for each worksheet,
thus reducing runtime significantly.

On each worksheet, the program loops through all cells in within the data bounds. Once a
formula cell is found, the formula is stored in a string and parsed. If a number is encountered as
the string is parsed, a check is made on the preceding element. If the predecessor turns out to be
a letter, the program assumes that a cell address is specified, not an unreferenced numerical
value. If this is the case, the program checks the successor string element too, skipping the
successive string elements, as long as they are numbers. However, if the predecessor to a number
was not a letter, a hard-coding error is flagged. A counter variable keeps track of the number of
such instances. If a hard-coding error has been detected, the numerical value is checked to see if
it is equal to one. If this numeral is “1” there is another counter variable that keeps track of the
number of unity occurrences. The “unity-error” distinction is made because in certain formulae –
such as when converting from moisture content to total solids of a biomass feedstock – the use of
a numerical one is justified and not indicative of a typical hard-coding error. For example,
Powell et al. (2008) state “the following formula includes the constant 1, but few spreadsheet
users would consider it erroneous: Sales_06 = Sales_05*(1+growth_rate).” The loop continues
until the last element of the formula string of the concerned cell. At the end of this, the two
counter variables are compared. If they are equal, the cell is solely suffering from the “unity”
error.

The second algorithm looks only at the faulty cells, i.e. the cells with hard-coding errors in the
report produced. The second program places the formula of the faulty cell into a string, and then
parses it. When it runs into a number, it employs the same strategy described earlier to
distinguish valid cell addresses from unreferenced numerical values. In the latter case, the
program checks for multiple possibilities, including: (1) unity errors, (2) power of 10
conversions, (3) commonly used unit conversion, or (4) other unidentified numerals. The
program thus isolates any unreferenced numerical values from the formula string and places
them into the relevant subcategories. Multiple instances of different sub-categories in a single
cell are captured and reported.

2.C INTERFACE
A series of dialog boxes are used for the primary user interface for the first program (the second
program does not require any such dialog boxes). Message boxes, input boxes and radio buttons
are used as follows: (a) To display the total number of worksheets in the workbook. (b) To

respond to whether there are any protected worksheets in the workbook. (c) To display the tab
names of worksheets which contain numbers. (d) To enter the new tab names for worksheets
with numbers. (e) To choose the background color and font of the cells to be flagged.

2.D ERROR STATISTICS/OUTPUT
After the first program is finished running on all the selected worksheets, it displays the total
number of cells checked and the number of cells with hard-coding errors in a popup box. The
same error statistics, along with a list of all the faulty cells, their cell addresses and the formulae
can be viewed on the Hard-Coding Error Report tab (denoted by “HCER”), which is placed as
the last worksheet of the workbook. The HCER also displays the frequency of cells with hard-
coding errors and the number of cells with hard-coding errors that are uniquely unity errors.

The HCER worksheet also presents a list of each error detected, sorted by worksheet, indicating
both cell reference and the equation in the cell. This makes it easy for the user to assess the
errors. If the only hard-coding error in a cell is a unity error, HCER displays them with a grey fill
to be easily distinguished from the non-unity errors. In our experience, cells with only unity
errors are less dangerous than other hard-coding errors, and graying the unity errors enables the
user to rapidly scan though the report and select non-unity errors for further examination.

The second program creates a sub-categorization table at the upper right of the HCER worksheet.
The sub-categorization statistics include the frequency of (1) unity errors, (2) power of 10
conversions, (3) commonly used unit conversion, and (4) other unidentified numerals. The table
shows the number of instances of the different kinds of hard-coding errors for each faulty cell of
the complete workbook.

2.E AUDIT OF BIOENERGY-RELEVANT SPREADSHEETS
The working code was used on the following six workbooks related to bioenergy simulation,
modeling and analysis to better understand the distribution of hard-coding errors: The Cob-Cost
workbook designed by Carol Faulhaber (MS student, Iowa State University) computes amortized
grassroots capital cost of corn-cobs storage systems. The Simple Framework for Analyzing
Anaerobic Digestion (S-FAAD) workbook, also by Faulhaber, evaluates the economic viability
of anaerobic digestion using a set of operating parameters and scale factors. The Framework for
the Evaluation of Bioenergy Feedstocks (FEBEF) was developed by Raj Raman and Katrina
Christiansen (Ph.D. student, Iowa State University)to provide insight into the relative costs and
lifecycle impacts of algae, switchgrass, Miscanthus, and corn. The GREET-BESS Analysis
Meta-Model (GBAMM) prepared by Richard Plevin (Energy and Resources Group, University
of California, Berkeley) compares life cycle global warming intensity estimates for corn ethanol
as computed in BESS (Biofuel Energy Systems Simulator) and GREET (Greenhouse Gases,
Regulated Emissions, and Energy Use in Transportation) to understand why the results from the
two models are so disparate. The Ethanol-Profitability D1-10 workbook prepared by Don
Hofstrand (Extension Farm Management Specialist, Iowa State University) presents an economic
model of a typical northern Iowa corn ethanol plant to help track its profitability of corn ethanol
production. The GREET Model (Argonne National Laboratory, Argonne, IL) is a
comprehensive model evaluating the energy use and emissions for diverse scenarios.

3. RESULTS & DISCUSSIONS
3.A SAMPLE RESULTS
Figures 1 and 2 illustrate output from running HCER on a sample spreadsheet. Figure 3
illustrates the output from running the sub-categorization program on a sample HCER.

Figure 1: Screenshot of the final pop-up message box

Figure 2: Screenshot of the Hard-Coding Error Report (HCER) with

the error statistics at the top

Figure 3: Screenshot of the results of sub-categorization of hard-coding errors

3.B SUB-CATEGORIZATION OF HARD-CODING ERRORS
In light of the large number of hard-coding errors detected in the sample spreadsheets, it
appeared useful to further subcategorize them into the following:

• Unity errors
• Power of 10 conversions
• Commonly used unit conversion factors
• Other unidentified numerals

Although all power of 10 conversions are unit conversion factors, they form a class of their own
and have an overwhelming occurrence rate compared to the other commonly used unit
conversion errors. For this reason, we chose to separate them from the other commonly used unit
conversion errors.

3.C AUDIT RESULTS FROM BIOENERGY-RELEVANT SPREADSHEETS

The results of the audits are shown in Table 1 & Table 2. Table 1 shows the frequency of hard-
coding errors in the tested spreadsheets ranged from 11- 44%. We note that the low scoring
workbook in this regard – FEBEF – originally had well over 45% of its cells as hard-coding
errors; the 11% reported reflected a major effort to remove hundreds of instances of hard-coding
errors. During this removal process (by one of the co-authors of this paper, Raman), a hard-
coded cell was found to also contain a serious Mathematical Representation error that caused

significant errors in the bottom-line values in that spreadsheet. If we had not actively improved
FEBEF based on the audit, the lowest error rate would have been 22%.

Table 1: Frequency of hard-coding errors (HCE) in the six tested spreadsheets
Workbook tested Total number of

cells checked
Number of cells with HCE Frequency (%)

Cob Cost 203 89 44
GBAMM 462 100 22
S-FAAD 702 181 26
FEBEF 844 90 11
Ethanol Profitability 2757 608 22
GREET 66945 26867 40

Table 2 provides distribution statistics on the hard-coding errors in the six spreadsheets. The
values in Table 2 are the frequencies of each type as a percentage of the total number of hard-
coding errors in the respective workbooks.

Table 2: Sub-categorization of hard-coding errors from six tested spreadsheets (Each of the
percentages is specific to the spreadsheet, i.e., 14% unity errors mean 14% of the total
number of HCE instances in Cob Cost were unity errors)

Workbook tested Unity errors (%) Power of 10 (%) Commonly
used Unit

Conversions
(%)

Other
Unidentified

Numerals (%)

Cob Cost 14 14 18 54
GBAMM 7 69 0 24
S-FAAD 21 7 38 34
FEBEF 94 0 0 6
Ethanol Profitability 8 77 0 15
GREET 47 25 0 28

Both GBAMM and Ethanol-Profitability workbooks suffered from high rates of Power of 10
conversions (69% and 77% respectively). Interestingly, these two workbooks had no “other
commonly used unit conversion” type errors. Reflecting the effort to rid FEBEF of power of ten
and unit conversion errors, unity errors predominate in FEBEF (at a rate of 94%). The Cob Cost,
S-FAAD and GREET had unity errors exceeding 14%, while the Ethanol-Profitability Workbook
had fewer than 10%, perhaps because it is a financially oriented spreadsheet where the unity
errors that typify engineering equations are not as prevalent. Other unidentified numeral hard-
coding errors formed a significant mass of errors with a frequency ranging from 6% to 54%.
Other unidentified numeral errors are hard-coding errors that contain numerical values other than
unity, factors of 10, and the commonly identified unit conversion factors in the program. In some
instances, their frequency even exceeds those of the other commonly used unit conversion
factors put together. Future versions of this code should have an option for users to specify
additional conversion factors heavily used in their spreadsheets.

Conclusion
The frequency of cells with hard-coding errors in the bioenergy-related spreadsheets ranged from
11 – 44%. This is a high error rate, especially since each occurrence is an opportunity for more
serious numerical errors. To reduce the frequency of hard-coding errors, spreadsheet authors can
create an “Assumptions” tab listing necessary conversions and naming each conversion with a
brief but descriptive moniker (e.g., “Acresperha”). By systematically using these named factors
in equations, the vast majority of hard-coding errors can be eliminated. Odd factors, such as
molecular weights, can similarly be removed, but the cost-benefit ratio is questionable. Having a
small fraction (e.g., less than 1%) of cells with such errors is probably not a major problem for
most spreadsheets. Along with structuring spreadsheets to make computations easy to follow,
and clearly listing units on all quantities, elimination (or at least minimization) of hard-coding
errors must be considered another fundamental part of good spreadsheet practices.

Acknowledgements
This material is based upon work supported by the USDA Higher Education Challenge Grant
Award #2006-38411-17034.

References
Galletta, D.F., K.S. Hartzel, S.E. Johnson, J.L. Joseph, and S. Rustagi. 1997. Spreadsheet
Presentation and Error Detection: An Experimental Study. Journal of Management Information
Systems. 13(3): 45-63.

Powell, S.G., K.R. Baker, and B. Lawson. 2008. A critical review of the literature on spreadsheet
errors. Decision Support Systems. 46: 128-138.

Powell, S.G., K.R. Baker, and B. Lawson. 2009. Errors in operational spreadsheets. Journal of
Organizational and End User Computing. 21(3): 24-36.

Rajalingham, K., D.R. Chadwick, and B. Knight. 2008. Classification of Spreadsheet Errors.
Computing Research Repository. abs/0805.4224.

	6-2010
	Detecting and categorizing hard-coding errors in Excel Spreadsheets using Visual Basic for Applications (VBA)
	Vertika Rawat
	D. Raj Raman
	Robert P. Anex
	Detecting and categorizing hard-coding errors in Excel Spreadsheets using Visual Basic for Applications (VBA)
	Abstract
	Keywords
	Disciplines
	Comments

	Microsoft Word - 1009201.docx

