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Supply chain design under uncertainty for advanced biofuel production
based on bio-oil gasification

Abstract
An advanced biofuels supply chain is proposed to reduce biomass transportation costs and take advantage of
the economics of scale for a gasification facility. In this supply chain, biomass is converted to bio-oil at widely
distributed small-scale fast pyrolysis plants, and after bio-oil gasification, the syngas is upgraded to
transportation fuels at a centralized biorefinery. A two-stage stochastic programming is formulated to
maximize biofuel producers' annual profit considering uncertainties in the supply chain for this pathway. The
first stage makes the capital investment decisions including the locations and capacities of the decentralized
fast pyrolysis plants as well as the centralized biorefinery, while the second stage determines the biomass and
biofuels flows. A case study based on Iowa in the U.S. illustrates that it is economically feasible to meet desired
demand using corn stover as the biomass feedstock. The results show that the locations of fast pyrolysis plants
are sensitive to uncertainties while the capacity levels are insensitive. The stochastic model outperforms the
deterministic model in the stochastic environment, especially when there is insufficient biomass. Also,
farmers' participation can have a significant impact on the profitability and robustness of this supply chain.
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Abstract 

An advanced biofuels supply chain is proposed to reduce biomass transporta- 
tion costs and take advantage of the economics of scales for gasification fa- 
cility. In this supply chain, biomass is converted to bio-oil at widely dis- 
tributed small-scale fast pyrolysis plants, and after bio-oil gasification, the 
syngas is upgraded to transportation fuels at centralized biorefi . A two- 
stage stochastic programming is formulated to maximize biofuel producers’ 
annual profi considering uncertainties in supply chain for this pathway. The 
fi makes the capital investment decisions including the locations and 
capacities of the decentralized fast pyrolysis plants as well as the centralized 
biorefi  while the second-stage determines the biomass and biofuels fl ws. 
A case study based on Iowa in the U.S. illustrates that it is economically fea- 
sible to meet the desired demand using corn stover as the biomass feedstock. 
The results show that the locations of fast pyrolysis plants are sensitive to 
uncertainties while the capacity levels are insensitive. The stochastic model 
outperforms the deterministic model in the stochastic environment, espe- 
cially when there is insuffi t biomass. Also, farmers’ participation can 
have a significant impact on the profi y and robustness of this supply 
chain. 
Keywords: stochastic programming, bio-oil gasification, supply chain 
design 
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1. Introduction 

As a potential substitute for petroleum-based fuel, biofuels are playing 
an increasingly important role due to their economic, environmental, and 
social benefits. However, the 2007-2008 global food crisis was claimed to be 
related to biofuels production [1] and this food vs. fuel debate set barriers for 
fi generation biofuels from consumable grain or lipid. On the other hand, 
second generation biofuels are produced from nonedible plant residues or 
dedicated energy crop, such as corn cobs, corn stover, switchgrass, miscant- 
hus, and woody biomass. As a result, the feedstocks for second generation 
biofuels are less land and water intensive, which will not result in signifi t 
negative impact on the food market [2]. According to the revised Renew- 
able Fuel Standard (RFS2) established in 2007, at least 36 billion gallons per 
year of renewable fuels will be produced by 2022 in the U.S., of which at 
least 16 billion gallons per year will be from cellulosic biofuels [3]. However, 
the targeted cellulosic biofuel volume requirement for 2013 was revised to be 
only 14 million gallons, which is significantly lower than the original target. 
This is mainly due to the high capital investment and logistic challenges in 
cellulosic biofuel. The supply chain activities of harvest, collection, storage, 
preprocessing, handling, and transportation dealing with uncertainties rep- 
resent one of the biggest challenges to the cellulosic biofuels industry. Thus, 
it is timely and meaningful to study the economic feasibility of the com- 
mercialization of cellulosic biofuel considering the supply chain design under 
uncertainties. 

Biomass can be converted to transportation fuels through a variety of 
production pathways, including biochemical and thermochemical platforms. 
One example of biochemical pathways is the corn ethanol production from 
fermentation. On the other hand, thermochemical conversion of biomass to 
produce transportation fuels has recently moved to the forefront of biofuel 
research and development. Fast pyrolysis and gasification are two of the most 
prominent technologies for thermochemical conversion of cellulosic biomass. 

Fast pyrolysis thermally decomposes organic compounds in the absence of 
oxygen process, and the products include bio-oil, bio-char, and non-condensable 
gases [4]. The fast pyrolysis reactors typically run at temperature between 
400 ◦C and 600 ◦C and can produce approximately 70% (by weight) bio- 
oil [5]. The other 30% is split between non-condensable gases (e.g., carbon 
dioxide or methane) and bio-char. The non-condensable gases and bio-char 
could be combusted to provide heat for the facility.  In addition, bio-char 
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is mostly organic carbon which can be sequestered or gasified to produce 
syngas [6]. Bio-oil has three to fi e times the energy density compared to 
raw biomass [7]. However, due to the high viscosity and acidity, bio-oil 
needs to be upgraded to be used as transportation fuels. The bio-oil up- 
grading has proven to be a challenging process due to the low conversion 
efficiency and fuel quality. On the other hand, biomass gasification runs 
at much higher temperature (800 ◦C-1300 ◦C) and it is a relatively mature 
technology. The syngas produced from the biomass gasification process will 
typically go through the Fischer-Tropsch synthesis to produce liquid trans- 
portation fuels [1]. However, commercialization of biomass gasification has 
been hampered by its high capital and operating costs due to the challenges 
of transporting bulky solid biomass over a long distance, processing solid 
feedstock at high pressure, and removing contaminants from the product gas 
stream. The techno-economic analysis of biomass gasification by Swanson et 
al. claims that the minimum fuel selling price is $4-5 per gallon of gasoline 
equivalent and the capital investment requirement is $500-650 million for a 
2000 metric ton per day facility [8]. 

It is thus necessary to reduce system cost and improve supply chain ef- 
fi to improve the economic feasibility and competitiveness of the ad- 
vanced biofuel production pathways. To reduce feedstock transportation 
cost, it has been suggested that biomass can be converted to bio-oil via fast 
pyrolysis near the harvest sites, then the bio-oil can be transported to the 
upgrading plant for transportation fuels production [9]. In this paper, the 
proposed hybrid production pathway is to combine the two prominent ther- 
mochemical production pathways. Biomass fast pyrolysis produces bio-oil in 
relatively small processing plants at distributed locations so that the trans- 
portation of bulky biomass over a long distance can be avoided. After mild 
hydrotreating, the bio-oil is then transported to a centralized gasification 
facility to produce transportation fuels. It should be recognized that central- 
ized plant has advantages such as economies of scale, the inventory buff 
storage reduction, and administration overhead cost savings [10]. 

One of the biggest challenges of advanced biofuel production industry 
is the design of supply chain networks under uncertainties. There is a rich 
literature on supply chain network design. Shah reviewed the previous stud- 
ies in modeling, planning, and scheduling with some real world examples to 
summarize the challenges and advantages of supply chain optimization [11]. 
An et al. compared the supply chain research on petroleum-based fuel and 
biofuel [12]. Eksioglu et al. formulated a model to determine the numbers, 
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locations, and capacities of the biorefi conducted a case study for Mis- 
sissippi in the U.S. to illustrate and verify the optimization model [13]. Nixon 
et al. used goal programming model to deploy the pyrolysis plants supply 
chain in Punjab, India [14]. Most of the literature on biofuel supply chain 
design assumes all the parameters in the system are deterministic. However, 
the biofuel industry is highly affected by the uncertainties along the supply 
chain such as biomass supply availability, technology advancement and bio- 
fuel price. For example, the biomass feedstock supply is highly dependent 
on biomass yield and farmers’ participation. As a result, it is of vital impor- 
tance to design the biofuel supply chain considering the uncertainties along 
the supply chain. Kim et al. considered a two-stage stochastic model using 
bounds of the parameters to determine the capacities and locations of the 
biorefi [15]. Alex et al. formulated a mixed integer linear program- 
ming model to determine optimal locations and capacities of biorefi 
[16]. Osmani et al. used stochastic optimization to deal with the uncertain- 
ties in biomass yield and price as well as biofuel demand and price [17]. As a 
recent advancement in the cellulosic biofuel technology, decentralized supply 
chain design for thermochemical pathways have not been studied extensively, 
especially scenario under uncertainties. This paper aims to provide a math- 
ematical programming framework with a two-stage stochastic programming 
approach to design the supply chain network considering uncertainties along 
the supply chain. The production pathway under consideration is the bio-oil 
gasification, with bio-oil production from biomass fast pyrolysis at decen- 
tralized facilities and syngas production and fuel synthesis in the centralized 
gasification facility. This model provides methodological insights for the de- 
cision makers on the capital investment decisions and logistic decisions for 
the biofuel supply chain. 

The remainder of the paper is organized as follows: in Section 2, the 
problem statement for the biofuel supply chain design is presented. Then, 
we discuss the deterministic mixed integer linear programming model and the 
two-stage stochastic programming models in Section 3. A case study of Iowa 
is conducted to illustrate and validate the optimization model in Section 4. 
Finally, we conclude the paper in Section 5 with a summary and potential 
research directions. 
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2. Problem Statement 

As mentioned, one of the most important decisions faced by the biofuel 
industry is the design of the supply chain networks, especially under the 
system uncertainties. This provides the major motivation for this study. 

The supply chain system schematics for the bio-oil gasification pathway 
are shown in Fig.1. Biomass is collected and consolidated at the county 
level. Biomass is then transported to the decentralized fast pyrolysis facil- 
ities to be converted to bio-oil. Mild-hydrotreated bio-oil is transported to 
the centralized gasification facility to produce the transportation fuels. It is 
assumed that each biomass feedstock supply location/county can serve mul- 
tiple fast pyrolysis facilities; each fast pyrolysis facility can acquire feedstock 
from multiple biomass supply locations. The locations for the decentralized 
fast pyrolysis facilities and centralized gasification facility are assumed to be 
the centroids of counties. 

 

 
 

Figure 1: System schematics of supply chain 

 
The supply chain network design of biofuel production is highly affected 

by the uncertainties along the supply chain such as biomass supply availabil- 
ity, technology advancement and biofuel price. The biomass supply availabil- 
ity is highly dependent on crop yields and farmers’ participation; the conver- 
sion rates are affected by technology advancement and operating conditions; 
the biofuel price would change based on market conditions and enacted poli- 
cies.  Thus, it is of vital importance to make the supply network design 
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decisions with the system uncertainties taken into consideration. Stochastic 
programming is one of the most widely used modeling frameworks to study 
the decision making under uncertainties. 

The goal of this paper is to provide a two-stage stochastic programming 
framework for the biofuel supply chain optimization problem considering 
uncertainties. The comparison and analysis of the results provide method- 
ological suggestions on the capital investment and logistic decisions. The 
insights derived from this study can contribute to the body of knowledge in 
decision making under uncertainties. 

 
3. Model Formulation 

The deterministic and stochastic models for this biofuel supply chain de- 
sign problem are introduced. The objective is to maximize the annual profi 
for biofuel producers based on the hybrid production pathway of bio-oil gasi- 
fi The deterministic mixed integer linear programming model is fi 
introduced as a baseline model and then the two-stage stochastic model is 
presented to address the decision making under uncertainties. The stochastic 
programming framework bears the concept of recourse, which means some 
decisions (recourse actions) are taken after uncertainties have been realized. 
In other words, fi decisions are made by taking the factors’ future 
effects into account. In the second stage, the actual values of the variables 
are realized and the corrective actions can be taken [18]. 

 
3.1. Mathematical notations 

The mathematical notations are summarized in Table 1. 
 

3.2. Deterministic model 
In the deterministic mixed integer linear programming model, all the 

system parameters are assumed to be known with certainty. 
 

3.2.1. Objective Function 
The objective function is to maximize the annual profi for biofuel pro- 

ducers, which is defi  as the revenue from selling the biofuels subtracted 
by the total system costs along the supply chain including the penalties. 
Penalties are imposed on the unmet demand which is based on the assump- 
tion that the producers have to purchase fuels from other sources to satisfy 
unmet demand. Penalties are also imposed for the surplus production due 
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k 

CBM 

CBO 

CBF 

 
 
 
 
 

  Table 1: Notations for deterministic model   
Subscripts 

 

i 1, 2, , I Biomass supply locations 
j 1, 2, , J Candidate fast pyrolysis facility locations 
k 1, 2, , K Biofuel demand locations 

l 1, 2, , L Fast pyrolysis capacity levels 

m 1, 2, , M Candidate refining facility locations 

Decision Variables 

xij Amount of biomass transported from supply location i to candidate fast 
pyrolysis facility location j 

yjm Amount of bio-oil transported from candidate fast pyrolysis facility lo- 
cation j to candidate refining facility location m 

zmk Amount of biofuels transported from refining facility location m to de- 
mand location k 

ajl Whether a fast pyrolysis facility of capacity level l is planned at candi- 
date facility location j (binary variable) 

gm Whether a refining facility is planned at candidate refining facility loca- 
tion m (binary variable) 

Parameters 

B Total budget 

CUP Capital cost of the centralized refining facility 

l Capital cost of the decentralized fast pyrolysis facility at capacity level 
l 

Pk Biofuels price at demand location k 
Dk Biofuels demand at demand location k 
Pek Penalty for the unmet demand at demand location k 
Pel 
CCol Penalty for the exceeded demand at demand location k 

i Unit biomass collecting cost at supply location i 
CMO Unit conversion cost from dry biomass to bio-oil 
COF Unit conversion cost from bio-oil to biofuels 

ij Unit biomass shipping cost from supply location i to candidate fast 
pyrolysis facility location j 

jm Unit bio-oil shipping cost from candidate fast pyrolysis facility location 
j to candidate refining facility location m 

mk Unit biofuel shipping cost from candidate refining facility location m to 
demand location k 

Ul Capacity of fast pyrolysis facility at level l 
V Capacity of refining facility 
Ai Available biomass feedstock at location i 
α Sustainability factor 
β Conversion factor from wet biomass to dry biomass 

γ The loss factor of biomass dur7ing collection and transportation 
θ1 Conversion ratio, metric ton of bio-oil per metric ton of dry biomass 
θ2 Conversion ratio, metric ton of biofuels per metric ton of bio-oil 
δ Availability    factor 
n Operation life for facilities in year 

q Interest   rate 
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i=1 

j=1 
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ij 

+            CBO
 

BF 

 

 

 
 

to additional inventory holding and storage costs. A variety of system costs 
have been considered in the model including facility capital investment cost, 
biomass collection cost, biofuel conversion cost, and logistic cost. 

Firstly, the total capital cost for the decentralized fast pyrolysis facility at 
level l is 

),J
 

),L 
l=1 C

Capajl. With the assumption that the facilities have an 
n-year operation life and an interest rate of i, the annual amortized capital 
cost is (i(i + 1)n)/((i + 1)n − 1) 

),J
 

),L 
l=1 C

Capajl + CUP ). Secondly, the cost 
of collection biomass from diff t feedstock location is 

),I
 

),J 
j=1 CColxij . 

Thirdly, CMO (1 − γ)β 
),I

 xij  is the fast pyrolysis conversion cost from 
biomass to bio-oil and COF ),J 

),M 
m=1 yjm is the conversion cost from bio- 

oil to biofuel at the gasification and upgrading biorefinery. Lastly, the logistic 
costs include the biomass shipping cost from biomass feedstock locations to 
fast pyrolysis facility locations, the bio-oil shipping cost from fast pyrolysis 
facility locations to gasification and upgrading biorefi location, and the 
biofuel shipping cost from gasification and upgrading biorefi location to 
demand locations. 

In sum, the objective function can be formulated as follows: 

 
maxζ = income − penalty − cost 

K M K M M 

=             (Pk zmk ) −    {(Dk −     zmk )P ek + (      zmk − Dk )P el } 
k=1 m=1 

(q(q + 1)n) 
k=1 

J L 
m=1 m=1 

I J       Cap UP Col 
−{ 

((q + 1)n − 1) 
( 

j=1 

 

l=1 
Cl ajl + C ) + 

i=1 

 

j=1 
Ci xij 

I J M I J 

+CMO (1 − γ)β     xij + COF               yjm +            CBM xij 
i=1 

J M M K 
j=1 m=1 i=1 j=1 

jm yjm + 
j=1 m=1 

    
 
m=1 k=1 

Cmk zmk } 
 

3.2.2. Constraints 
The constraint (1) ensures that the sum of capital cost of decentralized 

fast pyrolysis facilities and centralized biorefi does not exceed the total 
budget. 
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J L 

B ≥ CUP +            CCapajl (1) 
j=1 l=1 

The total amount of biomass transported from supply location i to all 
the candidate fast pyrolysis facility locations should not exceed the available 
feedstock for each supply location as denoted in constraint (2). α is the 
sustainability factor which is the percentage of biomass that has to be left 
in the fi   to sustain the soil nutrients.  δ is the availability factor which 
is defi d as the ratio of the available biomass to collectable biomass. This 
factor represents the social factors that could impact the biomass availability 
for biofuels production such as farmers’ willingness to participate [19]. 

 
J   

xij ≤ (1 − α)δAi, ∀i (2) 
j=1 

 
The facility capacity limits are included in the model in constraint (3) 

and constraint (4). The loss factor γ ∈ [0, 1) is the fraction weight loss of 
biomass during the collection, transportation, and unloading process and β 
is the conversion ratio from wet biomass to dry biomass on the weight basis. 

 

L I   
Ulajl ≥ (1 − γ)β      xij , ∀j (3) 

l=1 i=1 
 

J 

V gm ≥    yjm, ∀m (4) 
j=1 

There should be no more than one fast pyrolysis facility in each candidate 
facility location illustrated in constraint (5). In addition, only one centralized 
refining facility will be constructed in one region of interest (typically one 
state) as denoted in constraint (6). 

 
L   

ajl ≤ 1 ∀j (5) 
l=1 

M   
gm = 1 (6) 

m=1 
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We assume that biomass is converted to bio-oil with conversion efficiency 
θ1 and bio-oil is converted to biofuel with conversion efficiency θ2 on the 
weight basis. Thus, we have the following conversion balance constraints (7) 
and (8): 

 

I M 

(1 − γ)βθ1        xij =        yjm, ∀j (7) 
i=1 m=1 

J M M K 

θ2                yjm =              zmk (8) 
j=1 m=1 m=1 k=1 

In summary, this mixed integer linear programming model aims to max- 
imize the annual profi for biofuel producers considering the capital invest- 
ments and logistic decisions. This deterministic model provides the baseline 
for the stochastic programming model in the next sections. 

 
3.3. Two-stage stochastic programming model 

Feedstock availability, fuel price, capital costs, logistic costs and technol- 
ogy advancement are among the most infl tial stochastic parameters along 
the biofuel supply chain [20]. These uncertainties can be incorporated into 
the stochastic modeling framework to assist the decision making. 

In this study, biomass availability, technology advancement, and biofuel 
prices are selected as the stochastic parameter to be investigated.The stochas- 
ticity of the parameter are discretely distributed. We use subscript s to rep- 
resent scenario with corresponding probability Prs and the subscript is also 
incorporated into the decision variables and parameters. 

The two-stage stochastic programming model is formulated as follows: 
 
 

(q(q + 1)n) J L
 S K M 

max ζ = ((q + 1)n − 1) 
   

(CCapajl + CUP ) + 
  

Prs{
   

(Pk zmks) 
j=1 

K M 
l=1 

M 
s=1 

I 
k=1 m=1 

J 

− {(Dk − zmks)P ek + ( zmks − Dk )P e, } − { CColxijs
 

k=1 m=1 

I 
m=1 

J M 
i=1 

I J 
j=1 

+CMO (1 − γ)β     xijs + COF               yjms +            CBM xijs 
i=1 j=1 m=1 i=1 j=1 
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J M M K 

jm yjms 
j=1 m=1 

s.t. 

mk zmks}} 
m=1 k=1 

Constraints (1), (5), (6) 
J   

xijs ≤ (1 − α)δAis, ∀i, ∀s 
j=1 

L I   
Ulajl ≥ (1 − γ)β     xijs, ∀j, ∀s 

l=1 
J 

i=1 

V gm ≥   yjms, ∀m ∀s 
j=1 

I M 

(1 − γ)βθ1,s        xijs =       yjms, ∀j, ∀s 
i=1 

J M 
m=1 

M K 

θ2,s                yjms =             zmks, ∀s 
j=1 m=1 m=1 k=1 

xijs, yjms, zmks ≥ 0, gm ∈ {0, 1}, ∀i, j, k, m, l, s 

 
The fi  decisions involve variables which have to be decided be- 

fore the uncertainties are realized. After the uncertainties are realized, the 
second-stage decisions are made. In this supply chain network design model, 
the fi decision variables include the binary variables ajl and gm, 
which make the capital investment decisions including the facility locations 
(decentralized fast pyrolysis and centralized refining facility) and capacities of 
the decentralized fast pyrolysis facilities. The second-stage decision variables 
xijs, yjms, zmks determine the biomass and biofuels fl ws. 

Constraints (1), (5), and (6) are the fi st-stage constraints, these con- 
straints remain the same in all scenarios and they are same as in the deter- 
ministic linear program model. The rest of the constraints change based on 
the stochastic scenario. Note that this model is a generic method to deal 
with uncertainties in a supply chain and can be adapted to other type of 
uncertainties and supply chains settings. 

One of the most commonly used methods for scenario generation is mo- 
ment matching method. This method aims to construct a set of scenarios 
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with corresponding probability such that the statistical properties of the ap- 
proximating distribution match the specified statistical properties based on 
historical data or reality. This is achieved by minimizing the diff be- 
tween the statistical properties of the constructed distribution and the known 
specifications, subject to nonnegative probabilities that sum up to one [21]. 

 
4. Case study 

We apply the supply chain design framework for a case study based on 
Iowa in the U.S. to illustrate and validate the optimization model. Iowa 
possesses the largest quantity of corn stover in the United States and has been 
one of the leading states of corn ethanol and soybean biodiesel production 
[22]. With the abundance of cellulosic biomass, Iowa has the potential in the 
cellulosic biofuel production via thermochemical conversion processes. 

 
4.1. Data sources 

The centroids of 99 counties of Iowa are chosen as candidate biomass (corn 
stover in this case study) supply locations, the potential sites for distributed 
fast pyrolysis facilities, and the candidate location for the centralized gasifi- 
cation facility. The annual corn stover yield is estimated based on corn grain 
yield with the residue harvest index of 0.5 meaning 50% of the above ground 
biomass is grain and the amount of corn stover is same as grain [23]. The 
weight of No. 2 fi corn at 15.5% moisture is applied to calculate the corn 
grain yields [24]. The county level corn production and yield data from 2003- 
2012 are collected from the National Agricultural Statistics Service (NASS), 
United States Department of Agriculture (USDA) [25]. The average county 
level corn stover yield in Iowa for 2003-2012 is shown in Fig. 2 with the 
darkness of the shade corresponding to the corn stove yield. 
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Figure 2: Average corn stover yield in Iowa (2003-2012) 
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In addition, the collectable corn stover is limited by growing conditions, 
soil nutrient levels, and method of harvest. Montross et al. reported the 
collection efficiencies of using three strategies in Kentucky: bale only to be 
38%; rake and bale to be 55%; and mow, rake, and bale to be 64% [26]. 
Schechinger and Hettenhaus reported collection efficiencies of 40% to 50% 
without raking and 70% with raking in large-scale stover collection operations 
in Nebraska and Wisconsin [27]. Lindstrom suggested that a 30% removal 
rate would not significantly increase soil loss [28]. Papendick et al. later 
shows that a 30% removal rate results in 93% soil cover after residue harvest 
[29]. The National Resource Conservation Service (NRCS) suggests that a 
minimum of 30% of stover cover must remain in the fi to prevent soil 
erosion [30]. In this analysis, we assume the sustainability factor to be 0.3, 
which means at least 30% of the stover must be left in the fi to maintain 
soil health. In the base case scenario, the availability factor is assumed to be 
0.4, and the impact of this availability factor on the supply chain design is 
also investigated in this study. 

The collection cost for corn stover is diff t for each county due to the 
diff in collection quantities and collection methods. The collection 
cost estimation is based on the regression analysis from Graham et al. [31]. 
Biomass loss factor, which accounts for possible mass loss during loading, 
transportation, and unloading of the biomass, is assumed to be 0.05 in this 
analysis [32, 33]. 

The total gasoline demand of Iowa is based on the state-level gasoline con- 
sumption from the Energy Information Administration (EIA) [34]. Weekly 
retail gasoline prices for the Midwest area from 2003 to 2012 are also from EIA 
[35]. Gasoline demand of each demand area is assumed to be proportional to 
the population of metropolitan statistical areas (MSAs). The partitions and 
population information of Iowa MSAs are based on U.S. Census Bureau [36]. 

All the biomass suppliers, biorefi and demand locations are as- 
sumed to be at the county centroids. Transportation distances for biomass, 
bio-oil and biofuels are calculated using the great circle distance, which is 
defi as the shortest distance between the two locations on a sphere. In 
addition, the actual distances have been adjusted to account for the difference 
in the transportation methods by the circuit factors from the Congressional 

Budget Office [37]. 
The fi transportation cost of corn stover via truck is 5.34 $/metric 

ton*miles and the variable cost of 0.23 $/metric ton*miles [38]. The trans- 
portation cost of bio-oil via truck is assumed to be equal to the national 
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average truck shipping cost of 0.312 $/metric ton*miles based on Bureau 
of Transportation Statistics (BTS). The transportation cost of biofuel via 
pipeline is assumed to be equal to the national average oil pipeline cost, 
which is 0.032 $/metric ton*miles [39]. The cost data have been adjusted for 
infl        to the 2012 US dollars. 

In the fast pyrolysis process, the biomass is converted into bio-oil (53- 
78%), char (12-34%), and gas (8-20%) [40]. The bio-oil yield is assumed to 
follow the normal distribution based on the experimental results from Iowa 
State University. In this study, the fl bed reactor is employed in the 
fast pyrolysis which has an average conversion ratio of 0.63 from biomass to 
bio-oil on weight basis [41]. The conversion ratio from bio-oil to biofuel is not 
available due to lack of experimental data. The bio-oil gasification yield are 
related to gasification agent and conditions [42]. Limited experiments show 
high carbon conversion of gasification but low efficiency from syngas to fuel. 
Raffelt et al. reported a conversion ratio of 0.156 on weight basis for slurry 
(80% bio-oil and 20% char) gasification [40]. We assume that the conversion 
ratio from bio-oil to biofuel follows a normal distribution with an average 
of 0.20 on weight basis. With these assumptions, the average fuel yield for 
the pathway under analysis would be 31.2 million gasoline gallon equivalent 
(GGE) per year for the plant size to of 2000 metric ton biomass per day 
facility. This is consistent with reported fuel yield of 29.3-58.2 million GGE 
per year for 2000 metric ton per day facility [43]. 

Wright et al. reported that the capital cost of centralized gasification 
plant with a capacity of 550 million GGE per year is about 1.47 billion 
[44]. The capital cost of distributed fast pyrolysis facility with a capacity of 
2,000 metric ton per day is $200 million [41]. The commonly used scaling 
factor of 0.6 (the ”sixth-tenth rule”) is applied to estimate capital cost for 
facilities with other capacity levels [45]. In this study, we consider three 
capacity levels of distributed fast pyrolysis facilities: 500, 1000, and 2000 
metric ton per day. According to RFS2, at least 36 billion gallons per year of 
renewable fuels will be produced by 2022, which is about 28% of the national 
gasoline consumption. In this study, we assume the centralized gasification 
and upgrading plant has a capacity of 550 million GGE per year, which could 
satisfy more than 30% of the gasoline consumption in Iowa. Thus, we only 
need to consider one centralized bio-oil gasification and upgrading facility in 
this case study. 

It is assumed that all the facilities have a 20-year operation life and an 
interest rate of 10% [20, 46]; the online time of all the facilities is 328 days 
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per year (equivalent capacity factor of 90%). In the following two sections, 
the computational results of the biofuel supply chain design for both deter- 
ministic case and stochastic case are presented. 

 
4.2. Analysis for the deterministic case 

In the deterministic case, 17 distributed fast pyrolysis plants will be 
planned to be built, and all of them are at the highest capacity level (2000 
metric ton per day). This is mainly due to the budget limit and economies of 
scale. The centralized gasification plant is planned to be located in Hamilton 
County to balance the bio-oil transportation cost and biofuel transporta- 
tion cost. The optimal locations for these facilities are shown in Fig. 3. The 
shaded areas are biomass feedstock suppliers (71 counties) in this case. These 
counties are mainly located at the central and northern part of Iowa, which 
have a higher yield of corn and thus have better availability for corn stover. 
Several previous studies [33, 32] showed similar site selection decision but 
there are more biomass feedstock counties involved in our case. The counties 
locations of distributed fast pyrolysis plants illustrate the trade-off between 
biomass collection as well as transportation cost and bio-oil transportation 
cost. 
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Figure 3: Optimal facilities locations in the deterministic case 
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In general, feedstock production and logistic constitute more than 35% 
of the total production cost of advanced biofuel [47] and logistic associated 
with moving biomass from farmland to biorefi   can make up 50% to 75% 
of the feedstock cost [48]. Table 2 includes the annual itemized costs in the 
deterministic case. Total shipping cost accounts for 14% of the total cost; 
biomass collecting cost accounts for 18% of the total cost; total capital cost 
accounts for about 25% of the total cost; conversion cost accounts for 43% 
of the total cost. In the category of shipping cost, biomass shipping cost is 
the most significant (54%). These results are in consistent with the range 
reported in the literature [47, 48]. 

 
Table 2: Annual itemized costs in deterministic case (Million dollars) 

 

Biomass collecting cost 416.93 
Total capital cost 604.33 

Capital cost of the centralized refining facility 184.06 
Capital cost of the fast pyrolysis facility 420.27 

Total shipping cost 334.04 
Biomass shipping cost 181.99 
Bio-oil shipping cost 146.80 
Biofuel shipping cost 5.25 

Conversion cost 1020.20 
Total 2375.51 

 
 

4.3. Analysis for the stochastic case 
The uncertainties under considerations include biomass availability, tech- 

nology advancements and biofuel price. Technology advancements uncer- 
tainty is represented by the probabilistic distribution of two conversion ratios. 
Historical data for corn stover yield and retail gasoline prices are available 
to estimate the distributions. In this case study, moment matching method 
has been employed to generate the probabilistic scenarios. Statistics such as 
mean, variance, skewness, and kurtosis are used for moment matching. This 
non-linear optimization problem is solved by applying a heuristic of changing 
initiating value until a satisfactory solution is obtained. The General Alge- 
braic Modeling System (GAMS) is utilized to solve the moment matching 
problem and a scenario tree with a size of 16 is generated. A summary of 
scenarios in the stochastic model is included in Table 3. 
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Table 3: Scenario summary 

 

  

Biomass Yield 
(metric ton/acre) 

2.2066 

Gasoline Prices 
($/Gallon) 

2.2035 

Conversion 
Ratio θ1 

0.4961 

Conversion 
Ratio θ2 

0.1825 
2.1568 2.5758 0.4476 0.1810 
2.9174 2.4271 0.7770 0.2197 
3.1437 4.5391 0.6242 0.1993 
2.9115 4.4923 0.6243 0.1984 
2.9048 3.4381 0.6253 0.1959 
2.6570 3.5253 0.6229 0.2097 
2.9986 3.2187 0.6206 0.1963 
2.7582 3.3948 0.6198 0.1961 
2.1041 2.5689 0.3952 0.1875 
2.7502 3.3767 0.5742 0.1917 
2.6637 3.2652 0.5465 0.1925 
2.7056 3.3314 0.5897 0.1944 
2.6095 3.1129 0.5376 0.1945 
3.1086 4.0164 0.6265 0.1950 
2.0942 2.8036 0.3858 0.1562 

 

 Pr. 

1 0.0128 
2 0.0114 
3 0.1269 
4 0.1130 
5 0.1116 
6 0.1078 
7 0.1092 
8 0.1255 
9 0.0531 
10 0.0100 
11 0.0288 
12 0.0164 
13 0.0259 
14 0.0143 
15 0.1231 
16 0.0100 
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In the stochastic case, 17 distributed fast pyrolysis plants are proposed, 
and all of them are at the highest capacity level. This is same as the determin- 
istic case and indicates that the capacity levels are insensitive to uncertain- 
ties. The numbers of biomass feedstock sites (counties) involved in stochastic 
case are various based on scenarios with a maximum of 79 counties. Nine 
scenarios (with a total probability of 0.6) need biomass supply from more 
than 71 counties. The optimal locations for these facilities are represented 
in Fig. 4. The shaded areas are union set of the biomass feedstock sites 
involved in all the stochastic scenarios (81 counties). 

 

 
 

Figure 4: Optimal facilities locations in stochastic case 
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In both the deterministic and the stochastic cases, 17 distributed fast py- 
rolysis plants are proposed but they are not at the same locations. The plants 
are all proposed to be built at the highest capacity level which was found to 
be more cost effective due to the economies of scale, and this conclusion is 
consistent with previous literature [32, 46]. The centralized gasification plant 
will be constructed at the same site (Hamilton County) in both cases, which 
is located at the center of high corn yield counties. 

Despite of the similarities of the both cases, diff exist for the sup- 
ply chain network configurations. In the stochastic case, it is preferable to 
build the fast pyrolysis plants farther away from the centralized gasification 
and upgrading plant because biomass collection sites are more distributed 
due to the uncertainties in biomass feedstock supply availability. Thus, this 
supply chain network demonstrates the management of the trade-off between 
biomass availability and transportation costs. 

The yearly profit in the deterministic case is 154.53 million dollars. For 
comparison, the numerical value of parameters used in deterministic case are 
the expected value of those parameters from the stochastic scenarios, thus 
this deterministic solution is also called the expected value solution (EV). The 
solution in the stochastic case is known as recourse problem solution (RP). In 
this case study, the yearly profi from the recourse problem is 129.57 million 
dollars. If we apply the decisions in deterministic case to the stochastic 
environment, we will get the expected yearly profi with the EV solution. 
This is called expected results of EV solution (EEV), which is 129.11 million 
dollars in this case study. The value of the stochastic solution (VSS) could be 
defi as V SS = EEV − RP . The VSS is about 0.46 million dollars, which 
is the direct economic benefit of considering uncertainties in the decision 
making process. 

 
4.4. Discussion on the impact of farmers’ participation 

Although some literature has investigated the environmental consequences 
of biomass collection from the fi limited studies have taken the social fac- 
tors such as farmers’ willingness to participate into consideration. However, 
the farmers’ willingness to participate makes a direct impact on the biomass 
feedstock availability. Recently, an Iowa farmer survey conducted by Tyndall 
et al. shows that only 17% of farmers in Iowa show interest in harvesting 
their stover and about 37% are undecided [22]. This survey showed that the 
farmers’ environmental concerns such as water quality, soil moisture, wildlife 
habitat, and loss of nutrients (P, N, K) are the most important barrier for 
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stover collection. On the other hand, farmers have the option to sell the 
biomass to the market for heating or electricity generation[49]. Therefore, 
biomass availability is directly related to the farmers’ willingness to supply 
the cellulosic biomass. In this section, the impact of farmers’ participation, 
which is represented as the availability factor δ in both the deterministic case 
and the stochastic case, is further discussed. 

For the deterministic case, if the availability factor δ is less than 0.23, 
which means on average no more than 23% of the farmers would participate 
in corn stover collection, the objective function value is equal to zero. In 
this case, this biofuel supply chain system is not profi  and it is optimal 
not to construct any facilities. When the availability factor δ is in the range 
of 0.23 to 0.36, the system is profi but it could not satisfy the biofuel 
production target of the entire state. The goal is to satisfy at least 30% of 
the gasoline consumption in Iowa, which is about 517 million GGE per year. 
Thus, at least 33000 metric ton dry biomass per day is needed at distributed 
fast pyrolysis plants. The biofuel supply target will be met if the availability 
factor δ is larger than 0.36. 

Table 4 provides the annual itemized costs and profi for a variety of 
availability factor δ’s. The total capital cost, biomass collection cost and 
total shipping cost increase when availability factor  increases from 0.3 to 
0.4. This is because of the increase of the facilities production and capacities. 
It should be noted that when the biofuel production capacity can meet the 
target biofuel demand, the total shipping cost and biomass collection cost will 
decrease as the availability factor increase. After that, the total capital cost 
will not change since the same number and capacities of facilities are planned. 
As a result, the yearly profit will increase as the availability factor increase. 
In summary, the system cost will decrease and yearly profi will increase 
with increase in the farmers’ participation because there is more fl y 
in choosing the biomass suppliers and better decisions can be reached. 

 
Table 4:  Annual itemized costs and profits for different δ (Million dollars) 

 

δ 0.3 0.4 0.5 0.6 0.7 
Profit 69.246 154.53 200.92 232.09 256.43 

Total capital cost 530.21 604.39 604.39 604.39 604.39 
Biomass collecting cost 347.72 416.93 409.46 402.17 398.69 

Total shipping cost 296.27 334.04 295.13 271.24 250.38 
Conversion cost 840.14 1020.20 1020.20 1020.20 1020.20 
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Compare Figure 5 to Figure 3, it is observed that the locations of fast 
pyrolysis plants are more centralized when availability factor δ is equal to 
0.7 and we only need 40 counties (rather than 71 when δ is equal to 0.4) 
to supply the biomass. These results not only illustrate the phenomena 
that the locations of fast pyrolysis plants are sensitive to uncertainties, but 
also suggest that the optimal supply chain decisions will be improved by 
increasing biomass availability due to the additional fl in choosing 
the biomass harvesting sites and consequently reduction of total system cost 
[32, 17]. 

 

 
 

Figure 5: Optimal facilities locations in deterministic case (δ = 0.7) 
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Table 5 shows the value of the stochastic solution (VSS) will decrease 
as the availability factor increase. The VSS will reduce to zero when the 
availability factor is larger than 0.5. It can be observed from the model that 
as farmers’ participation increase in Iowa, the supply chain design and op- 
timization model will become more robust. On the other hand, since the 
advanced biofuel industry is still at its infancy, the farmers’ participation is 
currently at a relatively low level. Therefore, it is beneficial to apply stochas- 
tic programming framework to deal with the uncertainties and improve the 
decision making. This analysis provides the decision makers another insight 
to improve system resiliency by increasing farmers’ participation. 

 
Table 5:  Stochastic programming results for different δ 

 

δ EV RP EEV VSS 
0.3 69.25 56.25 55.74 0.51 
0.4 154.53 129.57 129.11 0.46 
0.5 200.92 171.82 171.76 0.06 
0.6 232.09 200.93 200.93 0 
0.7 256.43 222.74 222.74 0 

 
 

5. Conclusion 

Cellulosic biofuels play an increasingly important role in meeting RFS2 
and reducing energy dependence. The hybrid thermochemical production 
pathway of bio-oil gasification which combines fast pyrolysis and gasification 
is one of the promising production pathways for advanced biofuel production. 
In this production pathway, the widely distributed small-scale fast pyrolysis 
processing plants could avoid transporting bulky solid biomass over a long 
distance and the centralized gasification and fuel synthesis facility can take 
advantage of the economies of scales. Due to the significance of supply chain 
related system costs, the design of biofuel supply chain networks plays an 
essential role in the commercialization process. 

This paper provides a mathematical programming framework with a two- 
stage stochastic programming approach to deal with the uncertainties in the 
biofuel industry. The fi st-stage makes the capital investment decisions in- 
cluding the locations and capacities of facilities while the second-stage deter- 
mines the biomass and biofuels fl ws. This model is a generic method to deal 
with uncertainties in a supply chain and can be easily adapted to deal with 
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other uncertainties and applied to other supply chain problems. The opti- 
mization model provides methodological suggestions for the decision makers 
on the capital investment decisions and logistic decisions in the stochastic 
environment. 

A case study of Iowa is presented to illustrate and validate this supply 
chain design and optimization model. The results show that uncertain fac- 
tors such as biomass availability, technology advancement and biofuel price 
can be pivotal in this supply chain design and optimization. The locations 
of fast pyrolysis plants and logistic decisions are sensitive to uncertainties 
while the capacity levels are insensitive. In addition, farmers’ participation 
has a significant impact on the decision making process. It is appropriate 
and necessary to apply stochastic programming framework to deal with the 
uncertainties, especially at a low farmers’ participation level. As farmers’ 
participation increase, the supply chain design and optimization model will 
become more profi le and more robust against the uncertainties along the 
supply chain. 

In summary, this paper provides a modeling framework to study the ad- 
vanced biofuel production pathway under uncertainty. Our study is subject 
to a number of limitations. Firstly, we assume the sustainability factor and 
farmers’ participation are the same for each county. However, these factors 
may vary based on the land characteristics and agricultural management 
practices. Additional constraints such as water use constraints [50]) can be 
included to better describe the biomass availability. Secondly, we assume 
the transportation cost within counties is negligible, which could impact the 
supply chain design and decision making. Thirdly, we consider three sources 
of uncertainties and more uncertainty factors can be considered. Last but 
not least, only one set of scenarios is generated in this paper, more scenarios 
could be generated to test the stability of the stochastic results. We shall 
address these limitations in our future research. 
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