Jil-1, a Chromosomal Kinase Implicated in Regulation of Chromatin Structure, Associates with the Male Specific Lethal (Msl) Dosage Compensation Complex

Ye Jin
Iowa State University

Yanming Wang
Iowa State University

Jorgen Johansen
Iowa State University, jorgen@iastate.edu

Kristen M. Johansen
Iowa State University, kristen@iastate.edu

Follow this and additional works at: https://lib.dr.iastate.edu/zool_pubs

Part of the Cell and Developmental Biology Commons, Genetics Commons, and the Molecular Genetics Commons

Recommended Citation
Jin, Ye; Wang, Yanming; Johansen, Jorgen; and Johansen, Kristen M., "Jil-1, a Chromosomal Kinase Implicated in Regulation of Chromatin Structure, Associates with the Male Specific Lethal (Msl) Dosage Compensation Complex" (2000). Zoology and Genetics Publications. 52.
https://lib.dr.iastate.edu/zool_pubs/52

This Article is brought to you for free and open access by the Zoology and Genetics at Iowa State University Digital Repository. It has been accepted for inclusion in Zoology and Genetics Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Jil-1, a Chromosomal Kinase Implicated in Regulation of Chromatin Structure, Associates with the Male Specific Lethal (Msl) Dosage Compensation Complex

Abstract
JIL-1 is a novel chromosomal kinase that is upregulated almost twofold on the male X chromosome in *Drosophila*. Here we demonstrate that JIL-1 colocalizes and physically interacts with male specific lethal (MSL) dosage compensation complex proteins. Furthermore, ectopic expression of the MSL complex directed by MSL2 in females causes a concomitant upregulation of JIL-1 to the female X that is abolished in *msl* mutants unable to assemble the complex. Thus, these results strongly indicate JIL-1 associates with the MSL complex and further suggests JIL-1 functions in signal transduction pathways regulating chromatin structure.

Keywords
protein kinase, dosage compensation, Drosophila, chromatin, MSL complex

Disciplines
Cell and Developmental Biology | Genetics | Molecular Genetics

Comments
JIL-1, a Chromosomal Kinase Implicated in Regulation of Chromatin Structure, Associates with the Male Specific Lethal (MSL) Dosage Compensation Complex
Ye Jin, Yanming Wang, Jørgen Johansen, and Kristen M. Johansen
Department of Zoology and Genetics, Iowa State University, Ames, Iowa 50011

Abstract. JIL-1 is a novel chromosomal kinase that is upregulated almost twofold on the male X chromosome in Drosophila. Here we demonstrate that JIL-1 colocalizes and physically interacts with male specific lethal (MSL) dosage compensation complex proteins. Furthermore, ectopic expression of the MSL complex directed by MSL2 in females causes a concomitant upregulation of JIL-1 to the female X that is abolished in msl mutants unable to assemble the complex. Thus, these results strongly indicate JIL-1 associates with the MSL complex and further suggests JIL-1 functions in signal transduction pathways regulating chromatin structure.

Key words: protein kinase • dosage compensation • Drosophila • chromatin • MSL complex

Introduction
DNA tightly packed together with histones and other proteins into nucleosomes is not easily accessible to the enzymes that use it as a template for transcription or replication. Consequently, remodeling of chromatin structure at promoter regions may play an essential role in regulation of gene expression (Wolffe and Hayes, 1999). Structural changes in chromatin may also form the basis for dosage compensation mechanisms that have evolved to equalize levels of X-linked gene products between males and females. In humans, one of the two X chromosomes in females is inactivated by condensation of the chromosome into a Barr body and in C. elegans, association of condensin-like molecules with the two female X chromosomes reduces transcription levels from each by about half (Lucchesi, 1998). However, in contrast to these mechanisms, both female X chromosomes in Drosophila are actively expressed. Consequently, in order to achieve equal levels of expression of genes on the X chromosome, a two-fold hyper-transcription of the male’s single X chromosome occurs relative to the female’s two X chromosomes and the autosomes (Baker et al., 1994; Kelley and Kuroda, 1995; Lucchesi, 1998). This increased transcriptional activity correlates with a more diffuse chromosome structure, such that despite the fact that it contains half the DNA content, the male X chromosome appears to be the same width as the paired female X chromosomes (Gorman and Baker, 1994).

In an effort to determine the molecular basis for dosage compensation in Drosophila, a number of genetic screens were performed that have identified several genes necessary for achieving equal levels of most X-linked transcription (Fukunaga et al., 1975; Belote and Lucchesi, 1980). The products of these genes assemble into a complex termed MSL (male specific lethal)1 that is thought to be responsible for targeting a histone acetyltransferase that acetylates histone H4 (H4Ac16) to the upregulated male X chromosome, which in turn leads to altered chromatin structure (Smith et al., 2000). The MSL holocomplex is known to include MSL1, a novel acidic protein (Palmer et al., 1993); MSL2, a RING finger protein (Bashaw and Baker, 1995; Kelley et al., 1995; Zhou et al., 1995); MSL3, a chromodomain protein (Gorman et al., 1995); MLE, an RNA helicase (Kuroda et al., 1991); MOF, a histone acetyltransferase (Hilfiker et al., 1997); and two nontrans-

1Abbreviations used in this paper: GST, glutathione-S-transferase; ip, immunoprecipitation; MSL, male specific lethal.
labeled RNAs, roX1 and roX2 (Meller et al., 1997; Franke and Baker, 1999). The MSL complex preferentially associates at hundreds of sites on the male X but fails to assemble in females due to a Sex lethal–regulated block in translation of the MSL2 subunit (reviewed in Bashaw and Baker, 1996). The MSL complex colocalizes with the H4A c16 pattern on the male X chromosome, and absence of any of the MSL complex subunits prevents both MSL complex assembly as well as the enhanced H4A c16 modification on the male X chromosome (Turner et al., 1992; Bone et al., 1994). Furthermore, studies have shown that ectopic expression of MSL2 in females results in formation and targeting of the MSL complex to both female X chromosomes with a concomitant upregulation of H4A c16 levels (Kelley et al., 1995; Bashaw and Baker, 1995).

Thus, in order to understand the mechanisms of dosage compensation occurring in Drosophila it is necessary to identify all the components of the MSL complex and to determine how they may interact to mediate upregulation of transcription on the male X. Recently, we have characterized a novel tandem kinase, JIL-1, which is enriched almost twofold on the male larval polytene X-chromosome (Jin et al., 1999). In this study, we demonstrate (a) that JIL-1 colocalizes with the MSL complex proteins on the male X, (b) that JIL-1 can molecularly interact with MSL complex proteins, (c) that ectopic expression of MSL2 in females causes a concomitant upregulation of JIL-1 to the female X, and (d) that this upregulation is abolished in msl mutants that are unable to assemble the complex. Thus, these results strongly indicate that JIL-1 can associate with the MSL dosage compensation complex. The ability of JIL-1 to phosphorylate histone H3 in vitro (Jin et al., 1999) further suggests a model where JIL-1’s role in the MSL complex is to assist in regulating transcription possibly through modification of chromatin.

Materials and Methods

Drosophila Stocks

Fly stocks were maintained according to standard protocols (Roberts, 1986). Oregon-R was used for wild-type preparations. The w; msl1[w+ H83M-2-G]; M; Malarial; M; msl1[w+ H83M-2-G] stocks (Kelley et al., 1995) were the generous gift of Drs. M. Kuroda and R. Kelley (Baylor College of Medicine, Houstin, TX).

Immunohistochemistry

A nJL-1 IgG' antibodies were purified from eggs of chickens (Aves Labs) that had been injected with pGEX K1, a GST (glutathione-S-transferase)-JIL-1 fusion protein containing residues 886–1,013 (Jin et al., 1999). A JIL-1–specific monoclonal antibody, SC9, was made to pGEX K1 using standard procedures (Harrow and Lame, 1988). A affinity-purified anti-Msl1 (rabbit), -Msl2 (rabbit), and -Msl3 (goat) antibodies were the generous gift of Drs. M. Kuroda and R. Kelley. Polytene chromosome squash preparations from late third instar larvae were double immuno- stained using FITC– and TRITC-conjugated species-specific secondary antibodies as previously described by Jin et al. (1999).

Confocal microscopy was performed with a Leica confocal TCS NT microscoope system equipped with separate A rgon UV, A rgon, and Krypton lasers and the appropriate filter sets for Hoechst, FITC, and TRITC imaging. A separate series of confocal images for each fluorophor of double labeled preparations was obtained simultaneously with z intervals of typically 0.5 μm. A average projection image for each of the image stacks was obtained using the NIH–image software. These were subsequently imported into Photoshop where they were pseudocolored, image processed, and merged.

Results

MSL Complex Proteins on the Male X Chromosome Colocalize with JIL-1

JIL-1 kinase localizes to interband regions on both male and female polytene chromosomes but is upregulated almost twofold on the male X chromosome (Jin et al., 1999) in a pattern reminiscent of antibody labeling of proteins in the MSL complex (Kuroda et al., 1991; Gorman et al., 1995; Zhou et al., 1995). Thus, in order to determine the relationship of JIL-1 localization with respect to the MSL dosage compensation complex proteins, chromosomal squashes prepared from larval salivary glands were double labeled with JIL-1 antisera and with either MSL1, MSL2, or MSL3 antibody. Fig. 1 shows an example of such a double labeling for JIL-1 and MSL1-specific antibodies. JIL-1 localization is shown in green, MSL1 protein localization in red, and merged.
in red, and colocalization is indicated by yellow regions in the composite image. The predominantly yellow labeling in the composite image indicates that JIL-1 colocalizes with MSL1 along the entire length of the male X chromosome except at the tip (Fig. 1 A, arrow). At some band locations in the composite image the color is more green or orange than pure yellow due to slight differences in the relative staining intensity of the two antibodies that can vary from preparation to preparation. However, in all cases examined, the banding patterns themselves overlapped (except at the tip; Fig. 1, B and C). Identical results were obtained in double labelings with JIL-1 and MSL2 and MSL3 antibodies (data not shown). In contrast with JIL-1 (Jin et al., 1999) neither MSL1, MSL2, nor MSL3 are found at significant levels on the autosomes (Bashaw and Baker, 1996).

JIL-1 Upregulation on X Chromosomes Depends on the Presence of the MSL Complex

The observed colocalization of JIL-1 with the MSL proteins led us to ask whether JIL-1 would also be inappropriately upregulated on the female X chromosomes in the presence of ectopic MSL2. This has been demonstrated to be the case for other proteins in the MSL complex (Bashaw and Baker, 1995; Kelley et al., 1995). Chromosomal squashes prepared from salivary glands of third instar female larvae that ectopically express MSL2 in a heterozygous msl1 or msl3 background and thus have assembled MSL complexes on their paired X chromosomes were immunostained with JIL-1 antibody. When the MSL complex is targeted to the female X chromosomes, it is accompanied by a concomitant increase of JIL-1 localization (Fig. 2, A and C). That this increase is dependent on the presence of the MSL complex is supported by JIL-1 immunostainings of female polytene chromosome squashes ectopically expressing MSL2 in an msl1/msl1 or msl3/msl3 homozygous background incapable of MSL complex assembly due to absence of the MSL1 or MSL3 subunit, respectively. In these females JIL-1 is no longer upregulated on the paired X chromosomes (Fig. 2, B and D) but now is found distributed on both X chromosomes and throughout all of the autosomes in a pattern consistent with its normal wild-type localization. These results suggest that the upregulation of JIL-1 on the male X chromosome is directly correlated with the presence of the MSL complex. There are two possible scenarios that can account for these observations: either JIL-1 is an integral component of the MSL complex itself or the activity of the MSL complex directs the upregulation of JIL-1 to specific sites on the X chromosome.

JIL-1 Molecularly Interacts with the MSL Complex

To address whether JIL-1 may associate with the MSL dosage compensation complex, we performed coimmunoprecipitation experiments designed to test for molecular interactions. We used protein extracts from the *Drosophila* S2 cell line that expresses both the MSL complex (Copps et al., 1998) as well as JIL-1 (Jin et al., 1999). To facilitate the cross-immunoprecipitation experiments, we introduced a V5-epitope–tagged full-length JIL-1 construct into stably transfected S2 cells. The V5-tagged JIL-1 fusion protein can be detected in Western blot analysis (Fig. 3 A, S2 lysate) and retains its kinase activity (data not shown). For immunoprecipitation experiments, proteins were extracted from the transfected S2 cells, fractionated on SDS-PAGE after ip, Western blotted, and probed with the appropriate antibodies. Fig. 3 A shows ip experiments using either anti-MSL1 (top panel), anti-MSL2 (middle panel), or anti-MSL3 (bottom panel). All three antibodies were able to coimmunoprecipitate V5-tagged JIL-1 as shown on Western blots probed with anti-V5 antibody. The V5-tagged JIL-1 can be detected in the total S2 lysate, but is not immunoprecipitated by any of the normal sera control ips. Fig. 3 B shows the converse experiment: anti-V5 monoclonal antibody was able to coimmunoprecipitate MSL1 (top panel) and MSL2 (bottom panel) as well as
MSL3 (data not shown) from S2 cells that were stably expressing V5-tagged JIL-1, but not from control untransfected S2 cells that do not express the V5–JIL-1 fusion protein. Fig. 3 C shows that endogenous JIL-1 can be immunoprecipitated by MSL1 antibody and, conversely, MSL1 can be immunoprecipitated by JIL-1 antibody from untransfected S2 cell lysate. These results demonstrate a molecular interaction of JIL-1 with the MSL complex. However, since immunoprecipitation of any one of the MSL complex proteins will co-ip the other proteins (Copps et al., 1998), it does not indicate whether any of these proteins interact directly with JIL-1.

To further characterize which region(s) of the JIL-1 kinase is likely to interact with other components of the MSL dosage compensation complex, we generated GST-JIL-1 fusion proteins covering different domains of JIL-1 including a nearly full-length JIL-1 construct (GST-JIL-1), the NH2-terminal domain (GST-NTD), the first kinase domain (GST-KDI), the second kinase domain (GST-KDII), and the COOH-terminal domain (GST-CTD) (Fig. 4 A). These GST-JIL-1 fusion proteins or a GST-only control were coupled with glutathione agarose beads, incubated with S2 lysate, washed, fractionated by SDS-PAGE, and analyzed by Western blot analysis using antibodies specific for MSL1 or MSL3 (Fig. 4 B). Whereas the GST-only control showed no pull-down activity for either MSL protein, GST-JIL-1 was able to pull down both MSL1 and MSL3. Furthermore, we found that this pull-down activity was specific to the kinase domains of JIL-1: both GST-KDI and GST-KDII were able to pull down both MSL1 and MSL3, but neither GST-NTD nor GST-CTD showed such activity. These results suggest that the direct molecular interaction of JIL-1 with the MSL complex is mediated by the kinase domains and not the NH2- or COOH-terminal sequences.

Discussion

In this study, we present evidence that JIL-1 can associate with the MSL dosage compensation complex by showing that JIL-1 colocalizes with MSL proteins on the polypedne chromosomes and that JIL-1 physically interacts with the MSL complex in cross-immune precipitation and pull-down assays. Furthermore, ectopic expression of MSL2 in females, known to inappropriately recruit the MSL complex to the female X, causes a concomitant recruitment of JIL-1 to the female X. This upregulation is abolished in msl mutants that are unable to assemble the complex strongly indicating that the upregulation of JIL-1 on the male X is dependent on the presence of a functional MSL complex.
The MSL complex is believed to promote dosage compensation in males by targeting MOF, the histone acetylase responsible for the increased H4Ac16 modification found on the male X chromosome (Smith et al., 2000). This modification is thought to lead to a more diffuse chromatin structure and enhanced accessibility of the DNA for transcription. However, it is becoming increasingly evident that in addition to acetylation, phosphorylation may also play a key role not only at the level of modulation of transcription factor activity, but also more generally at the level of chromatin structure. For example, histone H3 phosphorylation has been found to occur in a small subset of nucleosomes in mitogenically stimulated cells (Barratt et al., 1994; Sassone-Corsi et al., 1999). This phosphorylation appears to be regulated by mitogen-activated signal transduction cascades indicating a direct link between signal transduction pathways and chromatin structure. JIL-1 has been shown to phosphorylate histone H3 in vitro (Jin et al., 1999) suggesting that the MSL complex may affect chromatin structure not only by histone acetylation, but also by histone phosphorylation. However, the finding that JIL-1 interacts with the MSL complex through its kinase domains also raises the possibility that one or more of the proteins in the MSL complex itself could be a substrate for JIL-1. Regardless of whether the substrate(s) for JIL-1 is histones or components of the MSL complex or both it is likely that the JIL-1 kinase serves as a regulator of MSL complex function through specific phosphorylation.

The MSL complex is based on physical interaction assays such as coimmunoprecipitation and GST pull-down experiments. These approaches require a fairly stable interaction between JIL-1 and the MSL complex making it unlikely that this association depends on the presence of the roX RNAs. This is in contrast to the MLE product that is not found as part of the MSL complex during chromatographic separation (Copps et al., 1998), a finding consistent with it being the...
only one of the known MSL complex proteins to be lost from the male X chromosomes upon treatment with RNase (Richter et al., 1996). Moreover, the finding that addition of GST-JIL-1 fusion protein to S2 cell extracts can be used to pull down the MSL complex indicates that this association can occur in vitro and suggests that the JIL-1 kinase can interact with the preassembled MSL complex. However, since this preassembled complex may already contain endogenous JIL-1 it does not address whether the formation of the MSL complex requires the presence of JIL-1 protein or whether JIL-1 is present in the MSL complex in stoichiometric amounts.

In contrast to the other MSL complex proteins, JIL-1 is also present in female chromosomes and male autosomes (Jin et al., 1999), all of which are void of MSL complexes (Bashaw and Baker, 1996). Future experiments will determine whether JIL-1’s more general distribution on the autosomes and on the female X chromosomes may reflect JIL-1’s participation in other transcriptional regulator complexes. The deployment of certain proteins into several different chromatin remodeling complexes is emerging as a common theme in the composition of various chromatin remodeling machines and may be a way to accomplish hierarchical levels of gene regulation (Holstege et al., 1998). Here we have shown that JIL-1 associates with at least one known chromatin remodeling machine, the MSL complex, suggesting a direct link between the JIL-1 kinase and the signal transduction pathways regulating transcription and chromatin structure.

We wish to thank Drs. M Itzl Kuroda and Richard Kelley for valuable discussions and suggestions as well as for their generous gift of anti-M SL antibodies and [H3M-2f1] stocks. We also wish to thank Ms. Anna Yeung for expert technical assistance and Ms. Virginia Lephart for maintenance of fly stocks.

This work was supported by NSF Grant MCB-9600587.

Submitted: 6 March 2000
R evised: 19 April 2000
A ccepted: 24 April 2000

References