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Femoral Neck Stress in Older Adults During Stair Ascent and Descent

Abstract
A detailed understanding of the hip loading environment is needed to help prevent hip fractures, minimize hip
pain, rehabilitate hip injuries, and design osteogenic exercises for the hip. The purpose of this study was to
compare femoral neck stress during stair ascent and descent and to identify the contribution of muscles and
reaction forces to the stress environment in mature adult subjects (n = 17; age: 50–65 y). Motion analysis and
inverse dynamics were combined with musculoskeletal modeling and optimization, then used as input to an
elliptical femoral neck cross-sectional model to estimate femoral neck stress. Peak stress values at the 2 peaks
of the bimodal stress curves (stress vs time plot) were compared between stair ascent and descent. Stair ascent
had greater compressive stress than descent during the first peak at the anterior (ascent: −18.0 [7.9] MPa,
descent: −12.9 [5.4] MPa, P < .001) and posterior (ascent: −34.4 [10.9] MPa, descent: −27.8 [10.1] MPa, P
< .001) aspects of the femoral neck cross section. Stair descent had greater tensile stress during both peaks at
the superior aspect (ascent: 1.3 [7.0] MPa, descent: 24.8 [9.7] MPa, peak 1: P < .001; ascent: 15.7 [6.1] MPa,
descent: 18.0 [8.4] MPa, peak 2: P = .03) and greater compressive stress during the second peak at the inferior
aspect (ascent: −43.8 [9.7] MPa, descent: −51.1 [14.3] MPa, P = .004). Understanding this information can
provide a more comprehensive view of bone loading at the femoral neck for older population.
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ABSTRACT 13 

A detailed understanding of the hip loading environment is needed to help prevent hip 14 

fractures, minimize hip pain, rehabilitate hip injuries and design osteogenic exercises for the hip. 15 

The purpose of this study was to compare femoral neck stress during stair ascent and descent and 16 

to identify the contribution of muscles and reaction forces to the stress environment in mature 17 

adult subjects (n=17; age: 50-65 years). Motion analysis and inverse dynamics were combined 18 

with musculoskeletal modelling and optimization, then used as input to an elliptical femoral neck 19 

cross-section model to estimate femoral neck stress. Peak stress values at the two peaks of the 20 

bimodal stress curves (stress vs. time plot) were compared between stair ascent and descent. Stair 21 

ascent had greater compressive stress than descent during the first peak at the anterior (ascent: -22 

18.0±7.9 MPa, descent: -12.9±5.4 MPa, p<0.001) and posterior (ascent: -34.4±10.9 MPa, 23 

descent: -27.8±10.1 MPa, p<0.001) aspects of the femoral neck cross section. Stair descent had 24 

greater tensile stress during both peaks at the superior aspect (ascent: 1.3±7.0 MPa, descent: 25 

24.8±9.7 MPa, peak 1: p<0.001; ascent: 15.7±6.1 MPa, descent: 18.0±8.4 MPa, peak 2: p=0.028) 26 

and greater compressive stress during the second peak at the inferior aspect (ascent:  -43.8±9.7 27 

MPa, descent: -51.1±14.3 MPa, p=0.004). Understanding this information can provide a more 28 

comprehensive view of bone loading at the femoral neck for older population. 29 

Key words: Femoral neck, bone stresses, stair ascent and descent, hip moments, estimated 30 

muscle force 31 
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Introduction 34 

Femoral neck fracture is a serious injury that can play an important role in morbidity and 35 

mortality among individuals, especially older adults 1. With the overall mortality rate of hip 36 

fractures at 14.0-21.6%, the estimated 290,000 cases expected by 2030 this injury will result in a 37 

growing health problem for an aging population 2-4. If structural failure is of concern, external 38 

loading, internal loading, bone geometry and bone material properties are the main factors that 39 

need to be investigated 5. Therefore, it is important to investigate the loading environment of the 40 

femoral neck during activities of daily living such as stair negotiation. Modification of these 41 

activities may minimize further damage to an injured site, while still encouraging osteogenesis as 42 

a preventative measure. 43 

A detailed analysis of the proximal femur load is necessary to understand mechanisms of 44 

failure. The femoral neck positions the hip abductor muscles away from the joint center so that 45 

adequate abductor torque can be generated to counter the large adductor torque caused by weight 46 

of the torso. In general, the torso weight vector acting on the femoral neck causes bending stress 47 

that results in inferior surface compression and superior surface tension during the single support 48 

phase of gait. Axial stress, caused by a component of the torso weight and the muscles that cross 49 

the hip, acts in compression evenly throughout the cross section and sums with the bending 50 

stress. This tends to increase the compression on the inferior surface and decrease the tension on 51 

the superior surface. The probability of bone failure may be altered through changes to the 52 

magnitude or frequency of loading (fatigue fractures) 6, insufficient bone strength (fragility 53 

fractures) 7, or a combination of these factors. 54 



Several studies have examined the joint loading environment of the proximal femur 55 

during stair ascent and descent 8-12, yet there is still uncertainty concerning which activity 56 

produces greater loads. This lack of clarity is partly due to the difficulty in measuring the 57 

variables that are directly responsible for damage. The most direct measures of hip loading are 58 

from instrumented prostheses 8. These devices transmit the hip joint forces via a wireless signal 59 

to a computer while patients perform various activities. It should be noted that these 60 

measurements were performed on a small number of subjects (n = 2-4) and the subjects were 61 

atypical since they had undergone hip replacement surgery within 11-31 months prior to testing. 62 

Although this procedure provides a direct measure of the hip joint forces, the invasive nature and 63 

limited subject pool reduces the practicality of this protocol in most laboratory and clinic 64 

settings. 65 

Several studies have utilized inverse dynamics and rigid body models to estimate net 66 

joint moments and reaction forces during stair ascent and descent 13, 14. As an estimate of femoral 67 

neck loading these measures give only a rough approximation. Both the net joint moment and the 68 

reaction force neglect the effects of co-contracting muscles and fail to consider the size of the 69 

bone in determining the potential for failure.  70 

Using procedures developed for mechanics of materials, stress analysis is an alternative 71 

method of estimating bone loads. Inverse dynamics are combined with musculoskeletal 72 

modelling and estimated muscle forces 15 to quantify hip contact forces and ultimately stresses or 73 

strains in the bone 16. Forces, moments and bone structure are all taken into account so that 74 

excessive loading can be determined from any source. The purpose of this study was to compare 75 

hip joint contact forces and stress on a cross section of the femoral neck during stair ascent and 76 

descent. In this study, a detailed analysis of these stresses was performed by decomposing the 77 



sources of the stress into those due to muscle forces, muscle moments, reaction forces and 78 

reaction moments. It was hypothesized that increased hip extensor muscle forces required to 79 

generate greater hip extensor moments during stair ascent 13, 14 would cause femoral neck 80 

compression stresses to be greater than during stair descent. 81 

Methods 82 

Seven male (age: 60 ± 6 yr; body mass: 75 ± 14 kg; height: 1.73 ± 0.05 m) and ten female 83 

subjects (age: 57 ± 5 yr; body mass: 67 ± 8 kg; height: 1.67 ± 0.05 m) who were free from lower 84 

limb injuries volunteered to participate. Before participation, they signed a written informed 85 

consent that had been approved by the Iowa State University Human Subjects Review Board. 86 

Body mass, height, and right lower extremity segment lengths, widths, and 87 

circumferences were measured. Eighteen reflective markers were placed on anatomical 88 

landmarks of the trunk, pelvis, and right lower extremity with a minimum of 3 markers/segment: 89 

toe, heel for the foot segment; anterior/posterior leg for the leg segment; anterior thigh, right hip 90 

for the thigh segment; left hip, right/left ASIS and sacrum for the pelvis segment; medial/lateral 91 

ankle can be considered both in the foot and leg segments, medial/lateral knee can be considered 92 

both in the leg and thigh segments. All anthropometric measurements and marker placements 93 

were performed by the same researcher. A static trial was collected with the subject in 94 

anatomical position to estimate joint center locations by the markers on the joints and then 95 

medial side markers of the lower extremity were removed. All subjects performed five trials of 96 

stair ascent and five trials of descent (three-step staircase, height of each stair: 19 cm) at their 97 

normal comfortable speed. The left foot started each trial, and the right foot contacted the force 98 

platform on the second step. AMTI force platforms (1600 Hz, AMTI, Watertown, MA) were 99 



placed on the two lower stairs to measure ground reaction forces. Motion data were collected 100 

using an 8-camera system (160 Hz, Vicon MX, Centennial, CO). 101 

 Ground reaction forces and motion data were filtered using a fourth-order, low-pass 102 

Butterworth filter with a cutoff frequency of 6 Hz 17, 18. The stance phase cycle for stair 103 

ascent/descent began when the right foot contacted the force platform and finished with toe-off. 104 

All gait cycles were normalized into a percentage of the stance phase. A rigid body model was 105 

used with inverse dynamics procedures to estimate three-dimensional joint moments and reaction 106 

forces at the ankle, knee, and hip. Segment masses, center of mass locations, and moments of 107 

inertia were obtained by the equations of Vaughan et al. 19.  108 

An individually scaled musculoskeletal model based on the joint and muscle definitions 109 

of Arnold et al. 20 was implemented in Matlab to estimate the dynamic muscle-tendon length and 110 

velocity adjusted maximal muscle forces, muscle moment arms and orientations for 44 lower 111 

limb muscles using the three dimensional segment angles obtained during the trials. Static 112 

optimization was used to select a set of muscle forces that minimized the sum of the squared 113 

muscle stresses 21 and balanced using the sagittal plane hip, knee and ankle moments, frontal 114 

plane hip moment and the transverse plane hip and ankle moments. Solutions were also 115 

constrained by the maximal dynamic muscle forces estimated with the musculoskeletal model. 116 

𝑀𝑀𝑀𝑀𝑀𝑀 ∑ (44
i=1 Fi/Ai)2          Subject to: rij × Fi = Mj 0 ≤ Fi ≤ Max dynamic Fi 117 

For the ith muscle: Fi is estimated muscle force, Ai is the cross-sectional area, rij is the 118 

moment arm for the jth joint moment, and Mj is the jth joint moment. 119 

Hip joint reaction forces were summed with muscle forces crossing the hip joint to 120 

obtain hip contact forces that were then transformed into the thigh coordinate system. The thigh 121 



coordinate system has the long axis of femur as longitudinal direction (y-axis), the cross product 122 

of y-axis and the vector from knee joint center to lateral knee marker as the anterior-posterior 123 

axis (x-axis), the cross product of  x- and y-axis as medial-lateral axis (z-axis). Forces and 124 

moments acting at the centroid of the femoral neck cross section were calculated by transforming 125 

the hip contact forces into a femoral neck coordinate system and using the techniques and 126 

assumptions of beam theory. The femoral neck coordinate system had one axis (z-axis) parallel 127 

to the longitudinal axis of the neck and one orthogonal axis pointing approximately forward (x-128 

axis) and the third (y-axis) obtained by the cross product of the first two. 129 

An elliptical bone model (Figure 1) was used to estimate stresses on the superior, inferior, 130 

anterior and posterior surface of the femoral neck. Age and gender specific subperiosteal width 131 

and cortical width 22 were used to create quadratic prediction equations for the outer and inner 132 

diameters along the superior/inferior axis. 133 

Male Outer Diameter = −0.0004 × age2 + 0.0962 × age + 32.042, R2 = 0.982 134 

Male Inner Diameter = −0.0004 × age2 + 0.1152 × age + 27.476, R2 = 0.987 135 

Female Outer Diameter = −0.0004 × age2 + 0.1036 × age + 26.662, R2 = 0.99 136 

Female Inner Diameter = −0.0003 × age2 + 0.1102 × age + 22.445, R2 = 0.994 137 

Where age is in years and diameters are in millimeters. 138 

Anterior/posterior diameters were estimated by multiplying the superior/inferior diameters by the 139 

ratio of maximal to minimal diameters (male: 1.16±0.04; female 1.26±0.03) 23. 140 

The stress estimation formulas were as follows: 141 

σsuperior = σ�−Map� + σ(Faxial)     σinferior = σ�Map� + σ(Faxial) 142 



σanterior = σ(Mml) + σ(Faxial)      σposterior = σ(−Mml) + σ(Faxial) 143 

Where σsuperior is the stress on the superior aspect of the femoral neck, σinferior is the 144 

stress on the inferior aspect, σanterior is the stress on the anterior aspect, σposterior is the stress on 145 

the posterior aspect, σ(Mml) is the stress generated by sagittal plane moment, σ�Map� is the 146 

stress generated by frontal plane moment and σ(Faxial) is the stress caused by the axial force. 147 

Negative values indicate compressive stress and positive values indicate tensile stress. 148 

The total stress on the femoral neck cross section is caused by a combination of the joint 149 

reaction force and the muscle forces. An analysis was undertaken to investigate how these 150 

variables independently affect the stress environment. The joint reaction force and muscle forces 151 

have the potential to compress the elliptical cross section of the femoral neck and to produce 152 

bending about the major and minor axes. The stress analysis was performed using each of these 153 

four components separately: 1) the joint reaction force compression component, 2) the muscle 154 

force compression component, 3) the joint reaction force bending/moment component, and 4) the 155 

muscle bending/moment component. The total muscle component was the sum of 2 and 4, the 156 

total reaction component was the sum of 1 and 3, and the total stress was the sum of 1-4. 157 

Previous validation work explored the correlations between elliptical bone model and CT 158 

bone model for the tibia bone, which showed that the correlation of peak tensile stress on the 159 

anterior site was 0.89, and the peak compressive stress on the posterior site was 0.96 24. These 160 

correlations were considered to be sufficiently high to perform a repeated measures statistical 161 

analysis. Since the shape of the femoral neck cross section is a closer fit to the elliptical model 162 

than the tibia, it is reasonable to assume that the correlations of stresses on the femoral neck 163 

between the elliptical model and a CT model should be even higher than the outcomes from the 164 

tibia study 24. Moreover, this elliptical model was selected since it provided a method to 165 



determine stress curves for the entire stance phase and allows for the breakdown of individual 166 

stress components in a more computationally efficient manner than with a finite element model. 167 

The primary dependent variable was stress, but peak longitudinal, medial-lateral and 168 

anterior-posterior hip contact forces were also calculated to help explain results. Pairwise t-tests 169 

were used to compare the peak hip joint contact forces between stair ascent and descent. For the 170 

stress analysis, the independent variables were the direction of travel (ascent vs descent) and the 171 

site or location of the stress on the femoral neck cross section (anterior, posterior, superior and 172 

inferior). The stress was estimated at the two time points during the stance phase that 173 

corresponded with the two peak values on the stress by time curves. The stress on the superior 174 

aspect of the cross section did not have a consistent first peak during stair ascent so the average 175 

time of the peak during descent was used. In order to get a more holistic view of the relationship 176 

between these variables, the stress was decomposed into four sources (muscle force, muscle 177 

moment, reaction force and reaction moment). The average of 5 trials for each direction was 178 

used for statistical analysis. Positive stress values indicate a tensile stress and negative values 179 

indicate a compressive stress throughout this paper, however statistics were performed on the 180 

absolute value of the stress, making tensile and compressive stress clinically equivalent. A two-181 

way repeated-measures MANOVA was used to compare the differences between the four sites 182 

on the femoral neck and the direction as well as a site by direction interaction (SPSS, IBM 183 

Corp). Univariate ANOVAs were performed given a significant multivariate statistic. Pairwise t-184 

tests were used to compare the stresses at the same site between stair ascent and descent. If 185 

sphericity was violated a Greenhouse-Geisser correction was performed. Force and moment 186 

contributions to the stress were not statistically compared but used to explain stress magnitudes. 187 

The alpha level was set at .05 for all statistical tests. 188 



Results 189 

Hip joint contact forces acts at the center of the femoral head (hip joint center) and are 190 

presented in the thigh coordinate system (Figure 2). The anterior-posterior and longitudinal forces 191 

tended to be bimodal with the first peak occurring at approximately 20% of stance and the second 192 

peak occurring at approximately 80% of stance. In general, the peak 1 forces were greater than 193 

peak 2. The laterally directed component often had only a single peak value occurring at 20% of 194 

stance. This component of the hip joint contact force was statistically greater during ascent (ascent: 195 

2.51 ± 0.39 BW, descent: 1.37 ± 0.24 BW, p<0.001).  The peak 1 posteriorly directed component 196 

of the hip joint contact force was also greater in ascent (ascent: 1.44 ± 0.29 BW, descent: 0.85 ± 197 

0.19 BW, p<0.001) while the peak 2 force was greater during descent (ascent: 0.51 ± 0.14 BW, 198 

descent: 0.72 ± 0.20 BW, p=0.002). Peak hip contact forces in the longitudinal direction had the 199 

greatest magnitudes and were directed distally. They had the same trend as the posteriorly directed 200 

force peaks – peak 1 was greater during ascent (ascent: 4.57 ± 0.53 BW, descent: 3.95 ± 0.49 BW, 201 

p=0.001) while peak 2 was greater during descent (ascent: 3.16 ± 0.38 BW, descent: 3.77 ± 0.63 202 

BW, p=0.006). 203 

MANOVA results revealed a significant interaction between direction (ascent vs descent) 204 

and site (anterior, posterior, superior and inferior) in peak stress (p<0.001) indicating a 205 

significant interaction in at least one of the peak values. MANOVA main effects were also 206 

significant for direction (p=0.017), and site (p<0.001). 207 

Univariate results indicated that the direction by site interaction was present for both peak 208 

1 (p<0.001) and peak 2 (p=0.013) stresses. Figure 3 and 4 illustrate these interactions by 209 

showing changes in the peak stress values between stair ascent and descent for each site. The 210 

interaction during peak 1 was due to increases in stair descent stresses on the superior and 211 



inferior aspects of the femoral neck but decreases in stair descent stresses on the anterior and 212 

posterior aspects. The interaction during peak 2 was due to a greater increase in stair descent 213 

stress on the inferior aspect of the femoral neck relative to the other three sites. Main effect 214 

statistics are not presented due to the significant interactions. Post-hoc paired t-tests were used to 215 

compare ascent vs descent total stress values at each site and peak (Table 1 and 2). 216 

During both stress peaks the dominant loading in the femoral neck was compressive and 217 

occurred on the inferior region of the femoral neck during both ascent and descent. Compressive 218 

stress at the inferior site was greater during stair descent than ascent for the second stress peak (-219 

43.8 ± 9.7 MPa (peak 2-Ascent-Inferior), -51.1 ± 14.3 MPa (peak 2-Descent-Inferior), p= 0.004). 220 

Peak tensile stresses occurred in the superior region and were greater during stair descent 221 

during both peaks (1.3 ± 7.0 MPa (peak 1-Ascent-Superior), 24.8 ± 9.7 MPa (peak 1-Descent-222 

Superior), p < 0.001; and 15.7 ± 6.1 MPa (peak 2-Ascent-Superior), 18.0 ± 8.4 MPa (peak 2-223 

Descent-Superior), p = 0.028) compared to stair ascent. 224 

The anterior and posterior regions were generally in compression. Peak compressive 225 

stress on the anterior aspect of the femoral neck was greater during stair ascent (-18.0 ± 7.9 MPa 226 

(peak 1-Ascent-Anterior)) compared to descent (-12.9 ± 5.4 MPa (peak 1-Descent-Anterior)) at 227 

peak 1 (p < 0.001). Likewise, the posterior aspect had an increased compressive stress for stair 228 

ascent (-34.4 ± 10.9 MPa (peak 1-Ascent-Posterior)) than descent (-27.8 ± 10.1 MPa (peak 1-229 

Descent-Posterior)) at peak 1 (p < 0.001). 230 

              Based on the estimations from the model, the stress caused by the reaction component 231 

was calculated separately from the stress caused by the muscle component so that distinct 232 

contributions to the stress load could be assessed (Table 1). Overall, the greatest stresses were 233 

compressive with the reaction component causing greater stress magnitudes than the muscle 234 



component. The three greatest stress magnitudes caused by the reaction component were -86.6 ± 235 

17.1 MPa (peak 1-Ascent-Inferior), -80.6 ± 26.2 MPa (peak 1-Descent-Inferior), and -73.0 ± 236 

19.1 MPa (peak 2-Ascent-Inferior) while the three greatest stress magnitudes caused by the 237 

muscle component were -63.1 ± 18.5 MPa (peak 1-Ascent-Superior), -48.7 ± 17.3 MPa (peak 1-238 

Descent-Posterior), and -43.8 ± 17.8 MPa (peak 2-Ascent-Superior). 239 

              Stresses were also decomposed according to the contributions from moments and forces. 240 

In general the contribution to the peak stress was dominated by the moments. The greatest 241 

compressive stress was at the inferior site during peak 1 of stair descent, the reaction force 242 

produced -4.1 ± 0.9 MPa of compression and the muscle forces produced -13.0 ± 3.0 MPa.  243 

However, the reaction moment produced 36.4 ± 18.1 MPa of tensile stress and the muscle 244 

moment produced -76.6 ± 25.8 MPa of compressive stress. 245 

Discussion 246 

The hypothesis that hip contact forces would be significantly greater during stair ascent 247 

was not universally supported by the results. Peak hip contact forces were greater during stair 248 

ascent than descent at peak 1, but at peak 2 the posteriorly and distally directed hip contact forces 249 

were greater during stair descent than ascent (Figure 2). These shapes of the contact force curves 250 

were mirrored by the muscle activity in the hip extensor muscles during ascent and descent 251 

(Figures 6 and 7). 252 

The hypothesis that femoral neck stress would be significantly greater during stair ascent 253 

was also not supported by the results. We estimated femoral neck stresses at four sites on the 254 

femoral neck during stair ascent and descent for older adults and then analyzed the sources of 255 

stress. The MANOVA main effect of ascent/descent on femoral neck stresses (p = 0.017) and the 256 

interaction effect between directions and femoral neck sites (p < 0.001) were both significant. 257 



The univariate interaction effects for both stress peak 1 (p<0.001) and peak 2 (p=0.013) were 258 

significant. Results indicates that 1) at some sites the stresses were greater during ascent than 259 

descent, in other sites the stresses were greater during descent compared to ascent (Figure 3); 2) 260 

stress change patterns were similar among different sites, but the change of slope between stair 261 

ascent and descent for some sites were much greater than other sites (Figure 4). Both peak tensile 262 

stress at the superior site (both peaks) and peak compressive stress at the inferior site (peak 2) 263 

showed greater stress during stair descent. The peak 1 stress during early stair descent could be a 264 

consequence of a relatively extended position of the hip and knee during this phase of the decent. 265 

This erect posture may allow the ground reaction force vector to be directed through the joints 266 

and minimize the ability of the muscles to absorb the energy of the downward moving mass. 267 

This can be seen in the EMG activity of the hip extensor muscles during stair ascent and descent 268 

25. 269 

An examination of the stress caused by the reaction force/moment compared to the 270 

muscle force/moment highlights how this relationship affects the total stress environment. In 271 

general, any time the reaction force/moment caused a stress greater than 25 MPa (compressive or 272 

tensile) the muscles contracted to produce bending in the opposite direction and thus reduced the 273 

total stress. For example, the weight and acceleration of the torso caused a reaction force to push 274 

down on the head of the femur during P1 ascent. This bent the neck concave inferior and caused 275 

64.4 ± 17.1MPa of tensile stress on the superior aspect of the neck. However, hip abductor and 276 

extensor muscles were activated at that time and they produce concave superior bending. This 277 

compressed the superior region with a stress of -63.1 ± 18.5 MPa.  The net result was minimal 278 

stress (1.3 ± 7.0 MPa) because the tensile stress cancelled the compressive stress in this region. 279 

During descent the reaction component caused 67.5 ± 24.7 MPa of tensile stress while the 280 



muscle component was reduced to -42.7 ± 19.0 MPa of compression. This resulted in increased 281 

tension on the superior surface (24.8 ± 9.7 MPa) compared to ascent (1.3 ± 7.0 MPa). 282 

On both superior and inferior surfaces of femoral neck, the muscle component produced 283 

stresses opposite to, but smaller in magnitude than the stresses produced by the reaction 284 

force/moment, so greater stresses from muscle can be an effective way to minimize the net 285 

stresses on these 2 surfaces of femoral neck. Stair descent tended to decrease the stresses 286 

produced by muscle compared to stair ascent. This suggests that the ability of the muscles to 287 

reduce bone stress may be minimized during stair descent. 288 

The stress produced by forces is predominantly compressive, while stress produced by 289 

moments creates compression on the inside of the curvature and tension on the outside portion. 290 

In general, the magnitude of the stress caused by moments was greater than the magnitude 291 

caused by forces at most sites and directions. The stress caused by the moment dominated on 292 

both the inferior and superior regions but the contribution of the moments was generally reduced 293 

at the anterior and posterior sites. 294 

There are several limitations associated with these procedures. An ellipse model of the 295 

femoral neck cross-section was created for each subject based on age and gender. Derrick et al. 24 296 

showed that a homogeneous elliptical model such as this could be favorably compared to a more 297 

detailed nonhomogeneous model derived from a CT scan of the tibial cross-section (r-squared = 298 

0.89 for the peak tensile stress on the anterior site, and 0.96 for the peak compressive stress on 299 

the posterior site). Moreover, the shape of femoral neck cross section is more elliptical than the 300 

cross section of the tibia, suggesting these correlations are conservative when compared to the 301 

current study. Muscles were scaled to the individual but modeled with standardized insertions, 302 

origins and contraction properties and the muscle forces were estimated using static optimization 303 



with a cost function that minimized muscle stresses. Individual differences in the muscle 304 

properties or non-optimal sequencing of muscle activity could influence the muscle forces. 305 

Muscle optimization does not guarantee an exact replication of the muscle force patterns. 306 

The process assumes that the activation of muscles follows the rules of the cost function 307 

(minimization of the sum of the muscle stress squared). Differences between the estimated and 308 

actual muscle force may occur if a person uses an alternate pattern of recruitment.  Estimated hip 309 

extensor muscle forces were compared to EMG data 25 in the literature to assess the accuracy of 310 

this estimation.  Figures 6 and 7 show the comparison between hip extensor muscle forces and 311 

EMG activity (including biceps femoris long head, semimembranosus, upper gluteus maximus, 312 

and gluteus medius muscle forces). The cross-correlation between the two EMG and muscle 313 

force shows acceptable agreement for stair ascent (0.725) but a lower cross-correlation value 314 

(0.162) for descent. This lower cross-correlation during descent was due to the peaks of EMG 315 

curves being shifted closer to contact and toe-off. 316 

The lower limb joint center (ankle/knee/hip) calculations were based on the reflective 317 

markers placed on the bony landmarks of each joint. Inaccuracies in marker placement may 318 

result in errors in the estimation of joint center locations. These inaccuracies may decrease the 319 

accuracy of joint moment estimation based on the inverse dynamics method 26. Although the 320 

repeated measures nature of this study likely reduces the effect of inaccurate marker placement it 321 

does not insure that the errors in marker placement or marker movement are the same between 322 

ascent and descent. 323 

In this study, contact force and femoral neck stress were analyzed to evaluate loading at 324 

the hip joint during stair ascent and descent for older population. Joint contact forces give a good 325 

estimate of the loading between the femoral head and the pelvic acetabulum. Bone stresses are 326 



more directly related to the loads that cause the bone to fracture and include the influence of 327 

muscle forces, reaction forces and bone geometry. We found that the greatest hip contact forces 328 

occurred at about 20% of stance while ascending the stairs. Stresses in the femoral neck were 329 

generally, but not universally, greater during stair descent. Stress variations on the periphery of 330 

the femoral neck cross-section were large with the inferior region receiving the greatest stress 331 

values. Combining contact forces and bone stresses could help future studies analyze loading 332 

conditions in a more comprehensive way for other physical activities. 333 

  334 
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Figures 400 

 401 

Figure 1. Elliptical bone model superimposed on a cross-sectional CT scan of the femoral neck. 402 

 403 

Figure 2. Ensemble average of contact forces at 3 planes of the hip joint. ML stands for Medial-Lateral direction, 404 

AP stands for Anterior-Posterior direction, LONG stands for longitudinal direction. Positive values indicate 405 

lateral, posterior, and downward directions. 406 



 407 

Figure 3. Change of stress between stair ascent and descent during stress peak 1 for the anterior, posterior, 408 

superior and inferior regions of the femoral neck. 409 
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 411 

Figure 4. Change of stress between stair ascent and descent during stress peak 2 for the anterior, posterior, 412 

superior and inferior regions of the femoral neck. 413 

 414 

Figure 5. Ensemble average of stresses at superior and inferior sites of femoral neck, positive values indicate 415 

tension, negative indicate compression. 416 
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 417 

Figure 6. Average of estimated hip extensor muscle forces (in Newtons) and EMG activities (in % MVIC) [19] 418 

during stair ascent. 419 

 420 

Figure 7. Average of estimated hip extensor muscle forces (in Newtons) and EMG activities (in % MVIC) [19] 421 

during stair descent.422 



Tables 423 

Table 1. Means (SD) of muscle caused and reaction force caused stresses (MPa) on 4 sites on the femoral neck during stair ascent and descent for peak 1. Bolded 424 

values and corresponding p-values indicate significant differences between stair ascent and descent stresses. 425 

Stress 
Site 

Peak 1 Stress Components 
Stair Ascent Stress (MPa) Stair Descent Stress (MPa) 

Muscle Reaction   Muscle Reaction   
Force 

Source 
Moment 
Source 

Total 
Muscle 

Force 
Source 

Moment 
Source 

Total 
Reaction Total Force 

Source 
Moment 
Source 

Total 
Muscle 

Force 
Source 

Moment 
Source 

Total 
Reaction Total 

Superior 
-20.6 -42.6 -63.1 -2.9 67.3 64.4 1.31 -10.7 -31.9 -42.7 -3.8 71.3 67.5 24.81 
(4.5) (15.7) (18.5) (0.6) (18.5) (17.1) (7.0) (3.2) (16.0) (19.0) (1.0) (24.0) (24.7) (9.7) 

Inferior 
-21.7 54.5 32.8 -3.4 -83.2 -86.6 -53.8 -13.0 36.4 23.5 -4.1 -76.6 -80.6 -57.2 
(4.9) (20.6) (17.2) (0.6) (22.9) (23.4) (12.2) (3.0) (18.1) (16.4) (0.9) (25.8) (26.2) (15.1) 

Anterior 
-20.0 28.0 8.0 -3.0 -23.0 -26.0 -18.01 -12.3 -2.3 -14.6 -3.1 4.9 1.8 -12.91 
(6.2) (12.2) (9.0) (1.1) (12.1) (12.7) (7.9) (2.6) (12.5) (11.0) (1.1) (13.9) (14.4) (5.4) 

Posterior 
-21.9 -26.8 -48.7 -3.4 17.7 14.3 -34.41 -13.4 7.1 -6.3 -4.0 -17.6 -21.6 -27.81 
(4.9) (13.4) (17.3) (0.6) (16.0) (15.8) (10.9) (3.0) (12.4) (13.2) (0.8) (15.6) (15.8) (10.1) 

1. p < 0.001 426 

  427 



25 

 

Table 2. Means (SD) of muscle caused and reaction force caused stresses (MPa) on 4 sites on the femoral neck during stair ascent and descent for peak 2. Bolded 428 

values and corresponding p-values indicate significant differences between stair ascent and descent stresses. 429 

Stress 
Site 

Peak 2 Stress Components 
Stair Ascent Stress (MPa) Stair Descent Stress (MPa) 

Muscle Reaction   Muscle Reaction   
Force 

Source 
Moment 
Source 

Total 
Muscle 

Force 
Source 

Moment 
Source 

Total 
Reaction Total Force 

Source 
Moment 
Source 

Total 
Muscle 

Force 
Source 

Moment 
Source 

Total 
Reaction Total 

Superior 
-9.9 -33.9 -43.8 -3.0 62.6 59.5 15.71 -13.2 -15.2 -28.4 -2.7 49.2 46.5 18.01 
(2.1) (16.4) (17.8) (0.8) (20.0) (19.3) (6.1) (3.4) (10.5) (12.1) (0.6) (18.6) (18.2) (8.4) 

Inferior 
-10.9 40.1 29.2 -3.4 -69.6 -73.0 -43.82 -13.9 16.1 2.3 -2.8 -50.6 -53.3 -51.12 
(2.4) (15.8) (14.3) (0.6) (18.6) (19.1) (9.7) (3.4) (11.3) (10.3) (0.6) (19.3) (19.9) (14.3) 

Anterior 
-9.2 5.0 -4.2 -2.8 -7.4 -10.2 -14.4 -13.2 -30.2 -43.6 -2.6 31.0 28.5 -15.0 
(2.8) (9.5) (8.7) (0.8) (11.1) (11.6) (7.7) (2.8) (11.8) (13.2) (0.6) (11.6) (11.4) (5.3) 

Posterior 
-10.6 -6.3 -16.9 -3.0 1.8 -1.2 -18.1 -13.2 30.0 16.7 -2.7 -34.0 -36.7 -20.0 
(2.3) (9.7) (10.3) (0.7) (11.3) (11.3) (8.6) (3.3) (12.5) (11.4) (0.8) (14.5) (14.8) (7.6) 

1. p < 0.029 430 

2. p < 0.005 431 

 432 
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