Approaching the low-temperature limit in nucleation and two-dimensional growth of fcc (100) metal films Ag/Ag(100)

Thumbnail Image
Date
2002-01-01
Authors
Wedler, H.
Behm, R.
Rottler, J.
Maass, P.
Stoldt, C.
Thiel, Patricia
Evans, James
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Person
Evans, James
Professor
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Mathematics
Welcome to the exciting world of mathematics at Iowa State University. From cracking codes to modeling the spread of diseases, our program offers something for everyone. With a wide range of courses and research opportunities, you will have the chance to delve deep into the world of mathematics and discover your own unique talents and interests. Whether you dream of working for a top tech company, teaching at a prestigious university, or pursuing cutting-edge research, join us and discover the limitless potential of mathematics at Iowa State University!
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryMathematicsChemistry
Abstract

We analyze the formation of two-dimensional Ag islands following deposition of about 0.1 ML of Ag on Ag(100) over a temperature regime ranging from classical nucleation and growth behavior to almost immobile adatoms, from 300 to 125 K. Particular emphasis is placed on the post-deposition dynamics at the lower end of the temperature range, where the saturation island density is not reached at the end of the deposition, and nucleation and aggregation processes continue with adatoms from the remaining adatom gas. Our analysis combines VT scanning tunneling microscopy experiments with kinetic Monte Carlo simulation of appropriate atomistic models. The only adjustable parameters in the model are the terrace diffusion barrier and prefactor, which can be determined from island density behavior near room temperature. Other processes such as rapid edge diffusion, and “easy” nucleation and aggregation of diagonally adjacent adatoms, are treated as instantaneous. The model excellently reproduces all aspects of behavior at low temperatures, demonstrating that nucleation and growth processes can be described in one consistent scheme, down to the regime of almost immobile adatoms.

Comments

This article is from Physical Review B 66, no. 15 (2002): 155435, doi:10.1103/PhysRevB.66.155435.

Description
Keywords
Citation
DOI
Copyright
Tue Jan 01 00:00:00 UTC 2002
Collections